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1. Introduction

In a linear exchange economy, agents are characterized by an initial endowment of com-
modities and a linear function, which evaluates the utility from consumption of these
goods. A Walras equilibrium is a price and a reallocation of the goods such that every
consumer’s allocation maximizes the utility function over the feasible points which cost
less than the initial endowment. This special case of the Arrow-Debreu model has been
extensively studied in the literature (cf. [2], [3], [7], [8], [9], [11], [13], [14], [15]).

Cornet [7] proved that an equilibrium is a solution of a convex program with the utility
vectors and the initial endowments appearing as parameters. Eaves [8] proposes an algo-
rithm which computes, in a finite number of steps, an equilibrium or a reduction of the
economy if no equilibrium exists.

Although the assumption of linear preferences is quite strong, this model is helpful for
several reasons. It is well adapted as a first approach of complex problems such as imper-
fect competition (Bonnisseau and Florig [1]), indivisible goods (Florig [10]) or the effect
of taxes on asset prices (Bottazzi and de Meyer [5]). Indeed, equilibria of linear exchanges
economies exhibit interesting properties like the uniqueness of the utility levels even in
the presence of multiple equilibrium prices. For example, the definition of an oligopoly
equilibrium à la Gabszewicz-Michel [12] can be stated without additional assumptions
since the multiplicity of equilibria has no influence on the payoff of the consumers. Fur-
thermore, an economy with general smooth preferences can be approximated by a linear
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exchange economy, where the approximate utility functions are defined by the gradient
vectors of the true utility functions. So the results obtained for linear economies may be
interpreted in the original economy, when the agents are engaged in small trades around
their initial endowments. The same idea is exploited to study short sighted exchange
processes (Champsaur and Cornet [6], Bottazzi [4]). Finally, linear exchange economies
naturally appear in the markets with limit price orders (Mertens [16]).

The purpose of this paper is the sensitivity of the equilibrium price of a linear exchange
economy with respect to the utility functions and the initial endowments. The sensitivity
analysis tools coming from optimization can not be applied. At present the results assume
some strong second-order information and sometimes uniqueness of the optimal solution,
which are not satisfied in the case of linear exchange economies. We extend previous
results of Bonnisseau, Florig and Jofré [2], [3], who have proved that the Walras equilib-
rium price function of a linear exchange economy is Lipschitz continuous on the interior
of the parameter space. These results have been extended to a continuum of agents by
Florenzano-Moreno-Garcia [9].

Interiority of the initial endowments means that every consumer owns initially a strictly
positive quantity of every commodity. Most consumers however own initially a single
commodity - their labor. Interiority is thus a rather strong assumption. It does not fit
with the analysis of strategic equilibria of the Cournot-Walras type (see Bonnisseau and
Florig [1]). Moreover, analyzing the effect of potential entrants, is equivalent to study an
economy with some agents having zero endowment, which is increased if they decide to
enter the market.

It is thus important to study the case where the initial endowments lie on the boundary
of the parameter space. Let U be the set of parameters (utility vectors and initial endow-
ments) where the normalized equilibrium price is unique. We prove that the normalized
equilibrium price is locally Lipschitz continuous on the (relative) interior of U and only
on it.

The following simple example shows that the normalized equilibrium price is not locally
Lipschitz continuous around an economy with several equilibrium prices. Nevertheless,
in this simple case, U is open. A more interesting example, but with 4 consumers and
4 commodities, is given in Section 4, where the equilibrium price is not locally Lipschitz
continuous around an economy on the relative boundary of U .
We consider a linear economy with two consumers and two commodities. The utility
functions are u1(a, b) = a + b and u2(a, b) = 2a + b. If the initial endowments are
(0, 1) and (1, 0), the equilibrium price set is the cone generated by (1, 12) and (1, 1). For
ε > 0 small enough, if the initial endowments are (ε, 1 − ε) and (1 − ε, ε), then the
unique normalized equilibrium price is (1, 1). If the initial endowments are (ε, 1−2ε) and
(1− ε, 2ε), then the unique normalized equilibrium price is (1, 1

2
). For a small value of ε,

the initial endowments are close but the equilibrium prices remain far one from the other.

The proof uses a decomposition of the space by considering the connected components of
a graph associated to the equilibrium. Then, we prove the local Lipschitz behavior for
each element of the decomposition, and, we prove that the initial price function obtained
as a selection of the previous collection of functions is locally Lipschitz.
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2. The model

We consider a linear exchange economy with a finite set L = {1, . . . , `} of commodities
and I = {1, . . . ,m} of consumers. The consumption set of consumer i is R`

+ and his
utility function ui : R

`
+ → R is defined by ui(xi) = bi · xi for a given vector bi ∈ R`

+. His
initial endowment is a vector ωi ∈ R`

+. For each (b, ω) ∈ ((R`
+)

m)2, L(b, ω) denotes the
linear exchange economy associated with the parameters b and ω. Throughout the paper
we will make the two following assumptions:

(A1) (
∑m

i=1 bi,
∑m

i=1 ωi) ∈ R`
++ ×R`

++;

(A2) for every i, bi 6= 0.

These assumptions mean that a positive quantity of each commodity is available, each
commodity is desired and each consumer desires at least one commodity. Note that the
set of elements (b, ω), which satisfies these two assumptions, is open in ((R`

+)
m)2.

Definition 2.1.

(i) If p ∈ R`
+ is a price vector, the demand of consumer i, denoted d(bi, p, p · ωi), is the

set of solutions of the following maximization problem:










maxui(xi) = bi · xi

p · xi ≤ p · ωi

xi ≥ 0

(ii) A Walras equilibrium of L(b, ω) is an element (x, p) ∈ (R`
+)

m ×R`
+ such that:

(a) for every i, xi ∈ d(bi, p, p · ωi);

(b)
m
∑

i=1

xi =
m
∑

i=1

ωi.

(iii) A proper subset I ′ of I is called self sufficient in L(b, ω) if for all h ∈ L,
∑

i∈I′ bih > 0
implies

∑

i∈I\I′ ωih = 0.

For every (b, ω) ∈ (R`
+)

m × (R`
+)

m, we note P (b, ω) the set of Walrasian equilibrium price
vectors in R`

+. Note that (A1) implies P (b, ω) ⊂ R`
++. For each p ∈ R`

++, for each i ∈ I,

δ(bi, p) = {h ∈ L|phbik ≤ pkbih, ∀k ∈ L}.

δ(bi, p) is the set of commodities that the consumer wishes to consume if the price vector
is p, since the ratio between the marginal utility and the price is maximal for these
commodities. For each p ∈ R`

++,let

G(b, p) = {(i, h) ∈ I × L | h ∈ δ(bi, p)}.

Note that G(b, p) may be seen as a graph where the set of vertices is I ∪ L and there
exists an edge between the vertices i ∈ I and h ∈ L if and only if (i, h) ∈ G(b, p).

We note W the set of couples (b, ω) such that P (b, ω) is nonempty and by U the set of
couples (b, ω) such that P (b, ω) is an half line, which means that the equilibrium price is
unique up to multiplication. In this case, we note without ambiguity G(b, ω) = G(b, p)
for p ∈ P (b, ω).

We recall a characterization of the elements of U (see, Proposition 4.1. in [2]).
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Proposition 2.2. Let (b, ω) satisfying Assumptions (A1) and (A2) and let p ∈ P (b, ω).
Then (b, ω) is in U , if and only if, the economy L(c, ω) with cih = bih if (i, h) ∈ G(b, p)
and 0 if not, has no self sufficient subset.

3. Local Explicit Formula

In this section, we show that on U , the equilibrium price vector can be obtained by an
explicit local formula, which depends on the utility functions and the initial endowments.
Actually, we exhibit a finite number of algebraic mappings and the equilibrium price
vector is always given by one of these mappings. To choose the right one, it suffices
to know the graph G(b, ω) or, more precisely, the connected components of this graph.
By Eaves [8], it is possible to compute an equilibrium in a finite number of steps, and
therefore also the right graph.

Let C be the finite set of the correspondences from I to L, which are onto and nonempty
valued. For all C ∈ C, let GC be the graph associated to C with vertices I ∪ L and an
edge between the vertices i ∈ I and h ∈ L if and only if h ∈ C(i).

With each economy (b, ω) ∈ U , we associate the correspondence C such thatGC = G(b, ω).
Conversely, for each C ∈ C, let

ΩC = {(b, ω) ∈ U | GC = G(b, ω)}.

Note that (ΩC)C∈C is a finite partition of U . It is also easy to check that for all C ∈ C,
ΩC 6= ∅.
For every C ∈ C, we denote by GC

1 , . . . , G
C
n the connected components of GC and by

IC
1 , . . . , IC

n (resp. HC
1 , . . . ,HC

n ) the elements of GC
1 , . . . , G

C
n in I (resp. L). Since C is onto

and nonempty valued, IC
1 , . . . , IC

n (resp. HC
1 , . . . ,HC

n ) is a partition of I (resp. L). For
each z ∈ R` and for each ν ∈ {1, . . . , n}, we denote by zν the restriction of z to the
components in HC

ν .

We obtain the formula in two steps. The following lemma shows that, if two economies
are associated with the same graph, then the restrictions of the equilibrium price vectors
to each subset of the partition (HC

ν ) are proportional. For all C ∈ C, let

BC = {b ∈ (R`
+)

m|h ∈ C(i) ⇒ bih > 0}.

Note that b ∈ BC if (b, ω) ∈ ΩC since (i, h) ∈ G(b, ω) = GC implies bih > 0.

Lemma 3.1. For all C ∈ C, there exists an algebraic mapping πC from BC to R`
++ such

that for all (b, ω) ∈ ΩC , for all ν = 1, . . . , n, pν(b, ω) is proportional to πCν(b).

Proof. For each ν = 1, . . . , n, let hν ∈ HC
ν . From the definition of a connected compo-

nent, for each h ∈ HC
ν , there exists q consumers, i1, . . . , iq and q − 1 goods, h1, . . . , hq−1

such that for each k = 1, . . . , q,

hk−1 and hk ∈ C(ik)

where h0 = hν and hq = h.
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We now define the mapping πC as follows. For each b ∈ BC , for each ν = 1, . . . , n, for
each h ∈ HC

ν ,

(πC(b))h =

{

1 if h = hν

∏q
k=1

bikhk

bikhk−1
if h 6= hν .

Note that the above formula is well defined since b ∈ BC and hk−1 ∈ C(ik) implies
bikhk−1

> 0.

Let (b, ω) ∈ ΩC . Recalling the fact that GC = G(b, ω) and the definition of δ(bi, p), for
each k = 1, . . . , q:

bikhk−1

phk−1
(b, ω)

=
bikhk

phk
(b, ω)

.

Thus, for all ν = 1, . . . , n,

pν(b, ω) = phν (b, ω)πCν(b)

which ends the proof of the lemma.

We now define a matrix, which will play a key role in the computation of the equilibrium
price.

Definition 3.2. For all C ∈ C, for all (b, ω) ∈ BC × (R`
+)

m, the n× n matrix TC(b, ω) is
defined by:

tCνµ(b, ω) =











πCν(b) · (
∑

i/∈IC
ν

ων
i ) if ν = µ

−πCµ(b) · (
∑

i∈IC
ν

ωµ
i ) if ν 6= µ.

For all ν̄ ∈ {1, . . . , n} the matrix TC
ν̄ (b, ω) is the submatrix of TC(b, ω) obtained by

suppressing the ν̄-th column and the ν̄-th row.

Lemma 3.3. For all C ∈ C, for all (b, ω) ∈ ΩC , for all ν̄ ∈ {1, . . . , n} the matrix TC
ν̄ (b, ω)

is of full rank, that is n − 1. Moreover, all the elements of the matrix
(

TC
ν̄ (b, ω)

)−1
are

non-negative.

The proof of this lemma use the following technical lemma, which is proved in Appendix.

Lemma 3.4. Let T be a n×n matrix such that for all i, tii ≥ 0, for all i, j, i 6= j, tij ≤ 0,
and, for all j,

∑n
i=1 tij = 0. We assume that for all N ⊂ {1, . . . , n}, N 6= {1, . . . , n},

there exist i /∈ N and j ∈ N , such that tij < 0. Then for all i, the sub-matrix T i of T
obtained by suppressing the ith column and the ith row is regular. Moreover, the elements
of the inverse of the matrix T i are non-negative.

Proof of Lemma 3.3. Let C ∈ C, and (b, ω) ∈ ΩC . Since (b, ω) is in U , Proposition 2.2
implies that the economy L(c, ω) with cih = bih if h ∈ δ(bi, p(b, ω)) = C(i) and 0 if not,
has no self sufficient subset. Note that if i ∈ IC

ν , cih > 0 implies that h ∈ HC
ν . Note also

that tCνµ(b, ω) = 0 if and only if
∑

i∈IC
ν
ωµ
i = 0.

It suffices to show that TC(b, ω) satisfies the assumptions of Lemma 3.4. One easily checks
that TC(b, ω) satisfies the sign conditions of Lemma 3.4 on their elements. Furthermore,
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∑n
ν=1 t

C
νµ(b, ω) = πCµ(b) · (−

∑

ν 6=µ

∑

i∈IC
ν
ωµ
i +

∑

i/∈IC
µ
ωµ
i ) = 0 since (ICν )

n
ν=1 is a partition

of I.

Let N ⊂ {1, . . . , n}, N 6= {1, . . . , n}. Since ∪ν∈NIC
ν is not self-sufficient for L(c, ω), there

exists i /∈ ∪ν∈NIC
ν and h ∈ ∪ν∈NHC

ν such that ωih > 0. Consequently, there exists µ /∈ N
such that i ∈ IC

µ and ν ∈ N such that h ∈ HC
ν . One easily checks that tCµν < 0.

We now extend the previous result to the elements on the boundary of ΩC but in the
interior for (R`

+)
2 of U denoted int U .

Lemma 3.5. For all C ∈ C, for all (b, ω) ∈ Ω̄C ∩ int U , for all ν̄ ∈ {1, . . . , n}, the
matrix TC

ν̄ (b, ω) is of full rank, that is n − 1. Moreover, all the elements of the matrix
(

TC
ν̄ (b, ω)

)−1
are non-negative.

Proof. Let (b, ω) ∈ Ω̄C ∩ int U . Let (bq, ωq) be a sequence of ΩC , which converges to
(b, ω). Let xq an equilibrium allocation of the economy L(bq, ωq). Since the normal-
ized equilibrium price is continuous on U (See, Bonnisseau, Florig and Jofré [2]), and
δ(bqi , p(b

q, ωq)) is constant equal to C(i), one deduces that C(i) ⊂ δ(bi, p(b, ω)) for all i.
These inclusions imply that b ∈ BC .

Since (ωq) converges to ω, the sequence (xq) is bounded. Hence, it has a converging
subsequence, which converges to x ∈ (R`

+)
m. From Bonnisseau, Florig and Jofré [2], x

is an equilibrium allocation of L(b, ω). From the definition of the demand, xq
ih = 0 if

h /∈ δ(bqi , p(b
q, ωq)) = C(i). Consequently, xih = 0 if h /∈ δ(bqi , p(b

q, ωq)) = C(i). We now
consider the auxiliary economy L(bt, ω) where bt is defined as follows. btih = bih − t if
h ∈ δ(bi, p(b, ω)) \ C(i) and btih = bih otherwise. For t small enough, (bt, ω) satisfies our
basic assumptions (A1) and (A2). Furthermore, one remarks that x is an equilibrium
allocation of L(bt, ω) associated to the price p(b, ω) since xih = 0 for the commodities in
δ(bi, p(b, ω)) \C(i). Hence, since δ(bti, p(b, ω)) = C(i) for all i and (b, ω) ∈ int U , one gets
(bt, ω) ∈ ΩC for t small enough. Since the mapping πCν only depends on the element bih
with h ∈ C(i), one deduces that TC(b, ω) = TC(bt, ω). Hence the previous lemma leads
to the conclusion.

Now, we can state the main result of this section.

Proposition 3.6. For all C ∈ C, for all (b, ω) ∈ ΩC, p is an equilibrium price vector
of L(b, ω) if and only if there exists λ ∈ Rn

++ in the kernel of TC(b, ω) such that for all
ν ∈ {1, . . . , n}, pν = λνπ

Cν(b).

This result gives an explicit formula to compute the equilibrium price vector. Actually,
when we have no information about the equilibrium price vector, this result gives a finite
number of possibilities for the equilibrium price vector. This number may be large since
it is of the same level than the number of correspondences from I to L. Nevertheless, if
we know the correspondence C which is associated with the economy L(b, ω), that is we
know the commodities desired by the consumers at equilibrium, then one has a unique
formula.

Proof of Proposition 3.6. Let (b, ω) ∈ ΩC . From Lemma 3.1, we deduce that there
exists λ(b, ω) ∈ Rn

++ such that pν(b, ω) = λν(b, ω)π
Cν(b) for all ν. We now show that
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λ(b, ω) belongs to the kernel of TC(b, ω). For this, we use Walras law, that is the value of
the equilibrium allocation of each consumer is equal to the value of his initial endowment
and the market clearing equation, that is, the sum of the equilibrium allocations is equal
to the sum of the initial endowments. Furthermore, we use the fact that the equilibrium
allocation of a consumer in the component IC

ν is positive only for the commodities in HC
ν .

Let (x, p(b, ω)) be an equilibrium of L(b, ω). For all i ∈ I, p(b, ω) · xi = p(b, ω) · ωi.
Furthermore, recalling the fact that GC = G(b, ω), one has, for all ν = 1, . . . , n and all

h ∈ HC
ν , xih = 0 if i /∈ IC

ν . Consequently,
∑

i∈IC
ν

xih =
m
∑

i=1

ωih. For all h /∈ HC
ν ,

∑

i∈IC
ν

xih = 0.

One then deduces that

p(b, ω) ·
∑

i∈IC
ν

xi = p(b, ω) ·
∑

i∈IC
ν

ωi =
n

∑

µ=1

λµ(b, ω)π
Cµ(b) ·





∑

i∈IC
ν

ωµ
i



 .

On the other hand,

p(b, ω) ·
∑

i∈IC
ν

xi = pν(b, ω) ·
∑

i∈IC
ν

xν
i

= pν(b, ω) ·
m
∑

i=1

ων
i

= λν(b, ω)π
Cν(b) ·

m
∑

i=1

ων
i .

From the above equalities, one deduces that for all ν = 1, . . . , n,

λν(b, ω)π
Cν(b) ·

m
∑

i=1

ων
i =

n
∑

µ=1

λµ(b, ω)π
Cµ(b) ·





∑

i∈IC
ν

ωµ
i





or equivalently,

−
∑

µ6=ν

λµ(b, ω)π
Cµ(b) ·





∑

i∈IC
ν

ωµ
i



+ λν(b, ω)π
Cν(b) ·





m
∑

i=1

ων
i −

∑

i∈IC
ν

ων
i



 = 0.

Since
m
∑

i=1

ων
i −

∑

i∈IC
ν

ων
i =

∑

i/∈IC
ν

ων
i , one has:

TC(b, ω)λ(b, ω) = 0.

Conversely, we remark that the rank of TC(b, ω) is n− 1 since the sum of the columns is
zero and the matrix TC

ν̄ (b, ω) is regular by Lemma 3.3. Therefore, the kernel of TC(b, ω)
is a one dimensional subspace of Rn. If λ is a positive element of the kernel of TC(b, ω),
then λ is positively proportional to λ(b, ω). Hence, the vector p defined by pν = λνπCν(b)
is positively proportional to p(b, ω). Consequently, p is an equilibrium price vector of
L(b, ω).
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In the following corollary, we give an explicit formula when a good is chosen as numéraire.

Corollary 3.7. Let h ∈ {1, . . . , `} be the commodity chosen as numéraire. For all C ∈ C,
let ν̄ ∈ {1, . . . , n} such that h ∈ HC

ν̄ . Then, for all (b, ω) ∈ ΩC , the equilibrium price vector
p(b, ω) of L(b, ω) which satisfies ph(b, ω) = 1, is given by the following formula:

pν̄(b, ω) =
1

πC
h (b)

πCν̄(b)

and for all ν 6= ν̄,
pν(ω) = λν(b, ω)π

Cν(b),

where (λν(b, ω))ν 6=ν̄ is defined by:

(λν(b, ω))ν 6=ν̄ = − 1

πC
h (b)

(

TC
ν̄ (b, ω)

)−1
(tCνν̄(b, ω))ν 6=ν̄ .

When a commodity is chosen as numéraire, the mapping which gives the unique equilib-
rium price vector, is algebraic since it is an algebraic combination of πC which is algebraic
and λν which is also algebraic since the matrix TC (hence (TC

ν̄ )−1) is algebraic. This can
be deduced from general results of algebraic geometry. However, the explicit formula is
not a byproduct of this general approach.

In the following corollary, we extend the above result to Ω̄C ∩ int U since the formula
given in Corollary 3.7 is well defined on this set as it is shown in Lemma 3.5.

Corollary 3.8. Let h ∈ {1, . . . , `} and for all C ∈ C, let ν̄ ∈ {1, . . . , n} such that h ∈ HC
ν̄ .

For all C ∈ C, for all (b, ω) ∈ Ω̄C ∩ int U , the equilibrium price vector p(b, ω) of L(b, ω),
which satisfies ph(b, ω) = 1 is given by the formula of Corollary 3.7.

Proof of Corollaries 3.7 and 3.8. The proofs of Corollaries 3.7 and 3.8 are the same
as the one of Corollaries 3.1 and 3.2 in Bonnisseau, Florig and Jofré ([3]). Note that they
are a direct consequence of Proposition 3.6, the continuity of the equilibrium price vector
on U and the fact that TC

ν̄ (b, ω) is of full rank on Ω̄C ∩ int U .

4. Lipschitz behavior of equilibrium prices

In this section, we apply the results of the previous section to get two complementary
results on the behavior of the equilibrium prices. First, we show that they are locally
Lipschitz continuous on the interior of U and then, we prove that they are never locally
Lipschitz continuous on the boundary.

Proposition 4.1. When a commodity is chosen as numéraire, the normalized equilibrium
price mapping p(., .) is locally Lipschitz continuous on int U .

Proof. From Corollary 3.8, the mapping p(., .) is locally Lipschitz continuous on Ω̄C ∩
int U as the restriction of a non degenerated algebraic mapping and (Ω̄C)C∈C̄ ∩ int U is a
finite closed covering of int U .
Therefore, Proposition 4.1 is a direct consequence of the following result. Its proof is left
to the reader.
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Lemma 4.2. Let U be a locally convex subset of a finite dimensional Euclidean space E,
which means that each element of U has a convex neighborhood. Let F1, . . . , Fn, n closed
(for the topology of U) subsets of U such that U = ∪n

k=1Fk. For all k = 1, . . . , n, let fk
be a locally Lipschitz continuous mapping from Fk to a finite Euclidean space G. For all
x ∈ U , let K(x) = {k ∈ {1, . . . , n} | x ∈ Fk}. We assume that for all x ∈ U , for all
k, k′ ∈ K(x), fk(x) = fk′(x). Let f be the mapping from U to G, defined by f(x) = fk(x)
for some k ∈ K(x). Then, f is locally Lipschitz continuous on U .

The end of the section is devoted to the study of the price at the elements on the boundary
of U . We first give an example, which shows that U is not always open. Actually, this
example shows a stronger fact. For fixed utilities, the set of endowments with a unique
equilibrium price vector is not always open. The example given in Introduction shows that
U may not be closed. We consider an economy with four consumers and four commodities,
b1 = (1, 0, 0, 0), ω1 = (0, 1, 0, 0), b2 = (0, 1, 1, 0), ω2 = (1, 0, 0, 0), b3 = (1, 0, 1, 0), ω3 =
(0, 0, 0, 1), b4 = (0, 0, 0, 1), ω4 = (0, 0, 1, 0). Note that {t(1, 1, 1, 1)|t > 0} ∈ P (b, ω) and
therefore by Proposition 2.2, (b, ω) ∈ U .
For λ > 0, let ωλ with ωλ

1 = (0, 1 + λ, 0, 0), ωλ
2 = ω2, ωλ

3 = ω3 and ωλ
4 = ω4. Let

pλ = (1 + λ, 1, 1, 1), qλ = (1 + λ, 1, 1 + λ, 1 + λ) For all λ > 0, pλ and qλ are equilibrium
price of L(b, ωλ), and therefore (b, ωλ) 6∈ U .
We now show that the equilibrium price is not locally Lipschitz continuous at (b, ω). The
following construction illustrates the general proof given below. Let ε > 0 small enough.
Let ω̄λε with ω̄λε

1 = (ε, 1+λ−(3+λ)ε, ε, ε), ω̄λε
2 = (1−ε, (1+λ)ε, 0, 0), ω̄λε

3 = (0, ε, 0, 1−ε)
and ω̄λε

4 = (0, ε, 1 − ε, 0). Since pλ · (ωλ
i − ω̄λε

i ) = 0 for all i,
∑4

i=1 ω
λ
i − ω̄λε

i = 0, and
ω̄λε
1 ½ 0, pλ is the unique equilibrium price vector of (b, ω̄λε).

Let now ω̃λε with ω̃λε
1 = (ε, 1 + λ − 3(1 + λ)ε, ε, ε), ω̃λε

2 = (1 − ε, (1 + λ)ε, 0, 0), ω̃λε
3 =

(0, (1 + λ)ε, 0, 1 − ε) and ω̃λε
4 = (0, (1 + λ)ε, 1 − ε, 0). Since qλ · (ωλ

i − ω̃λε
i ) = 0 for all i,

∑4
i=1 ω

λ
i − ω̃λε

i = 0, and ω̃λε
1 ½ 0, qλ is the unique equilibrium price vector of (b, ω̃λε).

Taken a neighbourhood of (b, ω), we can choose λ and ε small enough to get (b, ω̄λε) and
(b, ω̃λε) in this neighbourhood. Now, by reducing ε, we can obtain ‖(b, ω̄λε) − (b, ω̃λε)‖
as small as we want, whereas the equilibrium prices remains constant equal to pλ and qλ.
So, the equilibrium price is not Lipschitz continuous in this neighborhood of (b, ω).

We now prove two lemmata, from which one easily deduces that the equilibrium price is
not locally Lipschitz continuous around an economy in U , which is not in the interior.

Lemma 4.3. Let (b, ω) ∈ U . Then, there exists r > 0 such that (B((b, ω), r)∩ (R`
+)

2m) ⊂
W.

Proof. We first remark that there exists r̄ > 0 such that for all (b′, ω′) ∈ B((b, ω), r̄) ∩
(R`

+)
2m), the two basic Assumptions (A1) and (A2) are satisfied. Then, if the result is not

true, there exists a sequence of economy (bq, ωq) with no equilibrium and which satisfies
Assumptions (A1) and (A2). From Gale [15], for all q, there exists a super self sufficient
subset Iq in L(bq, ωq), that is a self sufficient subset such that there exists h ∈ L with
∑

i∈Iq bih = 0 and
∑

i∈Iq ωih > 0. Since the set of subsets of {1, . . . ,m} is finite, taking a
subsequence allows us to assume that Iq is constant equal to J . For all h ∈ {1, . . . , `}, if
∑

i∈J bih > 0, then
∑

i∈J b
q
ih > 0 for q large enough. Since J is self sufficient,

∑

i/∈J ω
q
ih = 0

and at the limit,
∑

i/∈J ωih = 0. Hence J is self sufficient for the economy L(b, ω). This
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implies that J is self sufficient for the economy L(c, ω) with cih = bih if h ∈ δ(bi, p(b, ω))
and 0 otherwise. From Proposition 2.2, this contradicts the fact that (b, ω) ∈ U .

Lemma 4.4. Let (b, ω) ∈ W \ U . Then, for all equilibrium price p ∈ R`
++, there exists a

transfer τ ∈ (R`)m such that:

for all t > 0 small enough, ω+ tτ ∈ (R`
+)

m and there exists i0 such that ωi0 + tτi0 ∈ R`
++;

∑m
i=1 τi = 0 and for all i, p · τi = 0;

Consequently, for all t > 0 small enough, p is the unique equilibrium of the economy
L(b, ω + tτ).

Proof. When an economy has at least one equilibrium, Proposition 2.2 implies that the
equilibrium price is unique (up to multiplication) if one consumer has a strictly positive
endowment. Indeed, a self-sufficient set must contain this consumer. Furthermore, since
this set is not super self-sufficient and since the endowment of the set is strictly positive,
this set must own the whole endowment hence every consumer belongs to this set, which
shows that there is no proper self-sufficient set whatever are the preferences.

Let (b, ω) ∈ W \ U . From our basic assumption (A1), we assume without any loss of
generality that ω1 6= 0. From the previous remark, there exists h such that ω1h = 0, and,
since ω1 6= 0, there exists a commodity h1 such that ω1h1 > 0. Using our basic assumption
(A1), for each commodity h such that ω1h = 0, there exists a consumer ih 6= 1 such that
ωihh > 0. We denote by ÝI = {i | ∃h, i = ih} and for all i ∈ ÝI, H(i) = {h | i = ih}. For all
t > 0, we now consider the initial endowment ωt defined as follows.

ωt
1h = ω1h if ω1h > 0 and h 6= h1;

ωt
1h = t if ω1h = 0;

ωt
1h1

= ω1h1 −
t
∑

h|ω1h=0 ph

ph1
;

for all i > 1, for all h 6= h1, ω
t
ih = ωih if i 6= ih; For all h such that ω1h = 0, ωt

ihh
= ωihh− t.

For all i /∈ ÝI, ωt
ih1

= ωih1 .

For all i ∈ ÝI, ωt
ih1

= ωihh1 +
t
∑

h∈H(i) ph

ph1
.

For all t > 0 such that t < ωihh for all h satisfying ω1h = 0 and t <
ph1

∑

h|ω1h=0 ph
ω1h1 ,

ωt ∈ (R`
+)

m,
∑m

i=1 ω
t
i =

∑m
i=1 ωi and for all i, p ·ωt

i = p ·ωi and finally, ωt
1 ∈ R`

++. Thus, p
is an equilibrium price vector of L(b, ωt) and it is unique since one consumer has a strictly
positive endowment.

The following result concludes our study.

Proposition 4.5. Let (b, ω) ∈ U \ int U . Then, the equilibrium price is not locally Lips-
chitz continuous at (b, ω).

Proof. The goods h is chosen as numéraire. Let (b, ω) ∈ U \ int U . Then there exists a
sequence (bν , ων) ∈ W \U , which converges to (b, ω). Since (bν , ων) /∈ U , the economy has
at least two different normalized equilibrium price vectors pν and qν . From the previous
lemma, for all ν, there exists ω̄ν and ω̃ν such that (bν , ω̄ν) and (bν , ω̃ν) belong to U , pν
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is the normalized equilibrium price of L(bν , ω̄ν), qν is the normalized equilibrium price of
L(bν , ω̃ν), and ‖ω̄ν −ων‖ ≤ ‖pν − qν‖/ν and ‖ω̃ν −ων‖ ≤ ‖pν − qν‖/ν. Since (bν , ω̄ν) and
(bν , ω̃ν) converge to (b, ω), this implies that the equilibrium price is not locally Lipschitz
continuous since ‖pν − qν‖ ≥ (ν/2)‖ω̄ν − ω̃ν‖.

Appendix

We give the proof of Lemma 3.4. Let T i the sub-matrix of T obtained by suppressing
the ith column and ith row. Let us assume that it is non regular. Then, there exists
(λk)k 6=i 6= 0 in the kernel of the transpose of T i. For all j 6= i,

∑

k 6=i λktkj = 0. By

considering λ or −λ, we can assume that λ̄ = maxk 6=i{λk} > 0. Let N = {j 6= i | λj = λ̄}.
Let j ∈ N . We now prove that for all k /∈ N , tkj = 0. Indeed, if k /∈ N and k 6= i, tkj ≤ 0
and λk < λj = λ̄. Consequently, λktkj ≥ λ̄tkj with a strict inequality if tkj < 0. Thus,
0 =

∑

k 6=i λktkj ≥ λ̄
∑

k 6=i tkj = −λ̄tij ≥ 0. The last equality comes from the fact that
∑n

k=1 tkj = 0. This implies that the two inequalities are actually equalities and, thus,
tkj = 0 for all k /∈ N and k 6= i and tij = 0.

But this property contradicts the assumption on T since the above property is true for
all j ∈ N . Hence T i is regular.

It remains to prove that (T i)−1 has non-negative elements. Note that for any ε > 0, the
matrix obtained by adding ε to the elements on the diagonal of T i is strictly diagonal
dominant. Thus, the elements of its inverse are non-negative (see, for example, Varga
[17]). Going to the limit, one deduces the desired result.
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