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1. Introduction

Given a metric space X, A(6= ∅) ⊆ X and f : X −→ R, the optimal value or simply
the value of the minimization problem (f, A) minimizing f over A is v(f, A) = inf{f(x) :
x ∈ A}. For many practical and theoretical reasons it is often of interest to study the
continuous dependence of the optimal value of a minimization problem under various
perturbations of the constraint set. By varying the constraint set continuously with
respect to various hyperspace topologies, several authors have studied the continuity of
the value function and their results were obtained mainly by assuming some nice properties
on the objective function [3, 8, 11, 12, 13, 17, 18, 21-23]. Our major objective in this
paper is to establish the equivalence of continuity of the value function with respect to
some hyperspace topologies and certain properties of the space on which the minimization
problem is defined.

The necessary and sufficient conditions for upper semicontinuity of the value function
have already been observed in [22, Theorem 3.3], and these conditions do not involve any
special properties of the space. In Section 3, we provide necessary and sufficient conditions
for lower semicontinuity of the value function in terms of some properties of the space.
Sufficient conditions for continuity of the value function then follow from the results of
Section 3 and Theorem 3.3 of [22]. However, characterizing the space through continuity
of the value function is more involved, which is discussed in Section 4.
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2. Notations and Preliminaries

Let X be a metric space. If x ∈ X, A(6= ∅) ⊆ X, B(6= ∅) ⊆ X and ε > 0, we write d(x,A)
for inf{d(x, a) : a ∈ A}, d(A,B) for inf{d(a, b) : a ∈ A, b ∈ B}, e(A,B) for sup{d(a,B) :
a ∈ A}, Bε(A) for {x ∈ X : d(x,A) < ε} and Bε(A) for {x ∈ X : d(x,A) ≤ ε}. C(X)
(resp. CB(X)) denotes the class of all nonempty closed (resp. nonempty closed bounded)
subsets of X. In case X is a normed linear space, we denote by CC(X) (resp. CCB(X),
WK(X)) the class of all nonempty closed convex (resp. nonempty closed convex bounded,
nonempty weakly compact) subsets of X. For a normed linear space X, the closed unit
ball {x ∈ X : ‖x‖ ≤ 1} is denoted by BX and the set {f ∈ X∗ : ‖f‖ = 1} is denoted
by SX∗ , where X∗ is the dual of X. In the sequel, X will denote a metric space unless
we consider convex subsets or weakly compact subsets of X, in which case X will be a
normed linear space.

We now recall various notions of convergence of nonempty closed and nonempty closed
convex sets [5, 22]. Let X1(6= ∅) ⊆ C(X) and X2(6= ∅) ⊆ C(X). We define the topological
convergence on X1 induced by X2 (and hence a hyperspace topology τ(X2) on X1 induced
by X2) as follows: Given A ∈ X1 and a net (Ai)i∈I in X1, where I is a directed set,

Ai → A with respect to τ(X2) iff d(Ai, C) → d(A,C) for all C ∈ X2.

By taking X2 as C(X) (resp. CB(X)), we get the convergence in the proximal (resp.
bounded proximal) topology on X1. If X1 ⊆ CC(X), then by taking X2 as CC(X)
(resp. CCB(X)), we get the convergence in the linear (resp. slice) topology on X1.

We also recall [5] that the Mosco topology on CC(X) is defined as the topology having
the following family of sets as its subbase:

{V − : V norm open }, {(Kc)+ : K weakly compact },

where

V − = {E ∈ CC(X) : E ∩ V 6= ∅},
(Kc)+ = {E ∈ CC(X) : E ⊆ Kc},

and Kc denotes the complement of K in X.
For any normed linear space X, the Mosco topology on CC(X) is compatible [5, Theo-
rem 5.4.6] with a fundamental notion of sequential convergence introduced by U. Mosco
[19]. Moreover if X is reflexive, the Mosco topology is obtained by taking X1 ⊆ CC(X)
and X2 = WK(X) in the above presentation of topological convergences [5, Proposition
5.4.15].

The Attouch-Wets topology on C(X) is the topology that C(X) inherits from C(X,R),
the class of all real-valued continuous functions on X, equipped with the topology of
uniform convergence on bounded subsets of X, under the identification A ↔ d(·, A).
The sequential convergence under the Attouch-Wets topology can be described in the
following convenient way [2], [5, Corollary 3.1.8]. Given A, An ∈ C(X) (n ∈ N :=
{1, 2, ...}), An → A in the Attouch-Wets topology iff for each ρ > 0, hausρ(An, A) → 0,
where for all C, D ∈ C(X) and for all ρ > 0,

hausρ(C,D) = max{e(C ∩ ρBX , D), e(D ∩ ρBX , C)}.
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The following facts comparing some of the hyperspace topologies are well-known [5, 22]
and are recorded here for later use. The Attouch-Wets topology on C(X) is stronger
than the bounded proximal topology and on CC(X), the bounded proximal topology is
stronger than the slice topology which in turn is stronger than the Mosco topology. The
slice topology coincides with the Mosco topology on CC(X) iff X is reflexive. But even
if X is reflexive, the Attouch-Wets topology on CC(X) may be strictly stronger than
the bounded proximal topology and the bounded proximal topology on CC(X) may be
strictly stronger than the slice topology. However, if X happens to be finite-dimensional,
all the four topologies mentioned above coincide on CC(X).

The following condition on X1 (resp. X2) will be referred to as the enlargement condition
on X1 (resp. X2):

Whenever A ∈ X1 (resp. A ∈ X2), Bε(A) ∈ X1 (resp. Bε(A) ∈ X2) for all ε > 0.

For a given function f : X −→ R and α ∈ R, the sublevel set of f at height α is
lev (f, α) = {x ∈ X : f(x) ≤ α}. The function f is said to be inf-bounded (resp. weakly
inf-compact, quasi-convex) if lev (f, α) is bounded (resp. weakly compact, convex) for each
α ∈ R.

3. Lower Semicontinuity of the Value Function

The following result concerning the upper semicontinuity of the value function is in The-
orem 3.3 of [22].

Theorem 3.1. Let X be a metric space and (Ai)i∈I ⊆ C(X), A ∈ C(X). The following
assertions are equivalent.

(i) lim sup d(Ai, C) ≤ d(A,C) for all C ∈ C(X).

(ii) lim sup d(x,Ai) ≤ d(x,A) for all x ∈ X.

(iii) lim sup v(f, Ai) ≤ v(f, A) for every upper semicontinuous function f : X −→ R.

We note here that the upper semicontinuity of f in the above mentioned result is essential.
In fact, given f : X −→ R, each of the following two statements implies that f is upper
semicontinuous.

(i) lim sup v(f, Ai) ≤ v(f, A) for every net (Ai)i∈I ⊆ C(X) and for every A ∈ C(X)
satisfying lim sup d(Ai, C) ≤ d(A,C) for all C ∈ C(X).

(ii) lim sup v(f, Ai) ≤ v(f, A) for every net (Ai)i∈I ⊆ C(X) and for every A ∈ C(X)
satisfying lim sup d(x,Ai) ≤ d(x,A) for all x ∈ X.

On the contrary, if f is not upper semicontinuous at x0 ∈ X, then there exist α ∈ R and
a sequence (xn) in X converging to x0 such that f(x0) < α and f(xn) ≥ α for all n ∈ N.
Considering An = {xn} (n ∈ N) and A = {x0}, we find that d(An, C) → d(A,C) for all
C ∈ C(X) and d(x,An) → d(x,A) for all x ∈ X. However v(f, A) < α ≤ v(f, An) for all
n ∈ N.

Theorem 3.1 deals with the upper semicontinuity of the value function for upper semi-
continuous functions. The following result is crucial for obtaining conditions for lower
semicontinuity of the value function for lower semicontinuous functions. (As in the case
of upper semicontinuity mentioned above, we have to consider lower semicontiuous func-
tions in order to obtain lower semicontinuity of the value function.)
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Theorem 3.2. Let X1(6= ∅) ⊆ C(X) and X2(6= ∅) ⊆ C(X) satisfy the enlargement
condition. Then the following conditions are equivalent.

(i) Whenever A ∈ X1, E ∈ X2 and d(A,E) = 0, then A ∩ E 6= ∅.
(ii) v(f, ·) : (X1, τ(X2)) −→ [−∞,∞) is lower semicontinuous for every

f : X −→ R with lev (f, α) ∈ X2 for all α > v(f,X).

Proof. (i) ⇒ (ii): Let f : X −→ R be such that lev (f, α) ∈ X2 for all α > v(f,X)
and let A0 ∈ X1. If v(f, A0) = −∞, then v(f, ·) is lower semicontinuous at A0. Suppose
that v(f, A0) > −∞ and that v(f, ·) is not lower semicontinuous at A0. Then there
exist α, β ∈ R and a net (Ai)i∈I in X1 converging to A0 with respect to τ(X2) such that
v(f, Ai) ≤ α < β < v(f, A0) for all i ∈ I. This implies that lev (f, β)∩Ai 6= ∅ for all i ∈ I.
Hence d(Ai, lev (f, β)) = 0 for all i ∈ I. So we get d(A0, lev (f, β)) = 0 and therefore by
(i), lev (f, β) ∩ A0 6= ∅, which is a contradiction.

(ii) ⇒ (i): If (i) is not true, there exist A ∈ X1, E ∈ X2 such that d(A,E) = 0 and
A ∩ E = ∅. By the enlargement condition on X2, Bn(E) ∈ X2 for all n ∈ N. Define
f : X −→ R by

f(x) =

{

0 if x ∈ E,
n if x ∈ Bn(E) \Bn−1(E), n = 1, 2, ...

Clearly lev (f, α) ∈ X2 for all α > v(f,X) = 0. If An = B 1
n
(A) for n = 1, 2, ..., then

An ∈ X1 and An → A with respect to τ(X2). (In fact, An → A in the proximal topology
on C(X).)

However, v(f, A) > 0 and v(f, An) = 0 for all n ≥ 2. Hence v(f, ·) is not lower semicon-
tinuous. This completes the proof.

Applying the previous result to several known hyperspace topologies, we will obtain char-
acterizations of some spaces in terms of lower semicontinuity of the value function. These
are mentioned in the Corollaries 3.3, 3.4 and 3.5 below.

We need the following definitions.

A metric space is called a UC space [1, 5] if each continuous function on it with values in
an arbitrary metric space is uniformly continuous. It can be shown [1, 5] that a metric
space X is a UC space iff whenever A and B are disjoint nonempty closed subsets of X,
then there exists ε > 0 such that Bε(A) ∩Bε(B) = ∅.
A metric space such that every continuous function on it with values in an arbitrary
metric space is uniformly continuous on bounded sets is called a boundedly UC space
[6, 14]. A metric space X is a boundedly UC space iff whenever A and B are disjoint
nonempty closed subsets of X with one of them bounded, then there exists ε > 0 such
that Bε(A) ∩Bε(B) = ∅ [6].

We refer to [1, 5, 6, 14, 20] for several characterizations of UC and boundedly UC spaces.

Corollary 3.3. The following statements are equivalent.

(i) X is a UC space.

(ii) v(f, ·) is a lower semicontinuous function in the proximal topology on C(X) for
every lower semicontinuous function f : X −→ R.
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Proof. Take X1 = X2 = C(X) in Theorem 3.2.

Corollary 3.4. The following assertions are equivalent.

(i) X is a boundedly UC space.

(ii) v(f, ·) is a lower semicontinuous function in the proximal topology on CB(X) for
every lower semicontinuous function f : X −→ R.

(iii) v(f, ·) is a lower semicontinuous function in the bounded proximal topology on C(X)
for every lower semicontinuous inf-bounded function f : X −→ R.

Proof. Take X1 as CB(X) (resp. C(X)) and X2 as C(X) (resp. CB(X)) in Theorem
3.2.

Corollary 3.5. For a Banach space X, the following statements are equivalent.

(i) X is reflexive.

(ii) v(f, ·) is a lower semicontinuous function in the slice topology on CC(X) for every
quasi-convex lower semicontinuous inf-bounded function f : X −→ R.

(iii) v(f, ·) is a lower semicontinuous function in the linear topology on CCB(X) for
every quasi-convex lower semicontinuous function f : X −→ R.

Proof. Take X1 as CC(X) (resp. CCB(X)) and X2 as CCB(X) (resp. CC(X)) in The-
orem 3.2 and use the fact [15, p. 161] that a Banach space X is reflexive iff whenever A
and B are disjoint nonempty closed convex subsets of X with one of them bounded, then
there exists ε > 0 such that Bε(A) ∩Bε(B) = ∅.

4. Continuity of the Value Function

The following two programs related to the continuity of the value function on a given
subclass of C(X) for a given class of functions arise naturally.

(I) Characterizing certain property of the space X in terms of continuity of v(f, ·) with
respect to a given hyperspace topology.

(II) For a givenX, characterizing the hyperspace topology in terms of continuity of v(f, ·).
Such programs are not completely independent of each other and are not entirely original.
For example, we refer to [10] for (I) for the Mosco topology and to [8, 21, 22] for (II) for
several known hyperspace topologies. The main aim of this section is to discuss (I) for
some of the important hyperspace topologies, like the Attouch-Wets topology, the slice
topology and the bounded proximal topology. We also briefly discuss (II) in this section.

The following result giving continuity of the value function in reflexive spaces follows as
a direct consequence of Theorem 3.1 of [21].

Theorem 4.1. If X is a reflexive space, then v(f, ·) is continuous in the Mosco topology
on CC(X) for each quasi-convex continuous inf-bounded function f : X −→ R.

We note here that the reflexivity of X in the above mentioned result is essential. In fact,
if X is not reflexive, then there exist C0, Cn ∈ CC(X) (n ∈ N) such that Cn → C0 in
the Mosco topology, but lim d(x0, Cn) fails to exist for some x0 ∈ X [10]. Consider the
continuous convex inf-bounded function f : X −→ R, where f(x) = ‖x − x0‖ for all
x ∈ X. Then v(f, Cn) = d(x0, Cn) for all n ∈ N, so lim v(f, Cn) does not exist.
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The above argument shows that the following result, which is stronger than the converse
of Theorem 4.1, is in fact true.

Theorem 4.2. If v(f, ·) is a continuous function in the Mosco topology on CC(X) for
every convex continuous inf-bounded function f : X −→ R, then X is reflexive.

Theorem 4.1 and Theorem 4.2 together characterize the reflexivity of X in terms of the
continuity of v(f, ·) under the Mosco topology on CC(X) for quasi-convex continuous
inf-bounded function f : X −→ R. The following theorem, which is the main result of
this paper, provides a similar characterization of reflexivity of a Banach space X for three
important hyperspace topologies on CC(X), namely, the slice topology, the bounded
proximal topology and the Attouch-Wets topology. Although these three topologies may
be distinct even in reflexive spaces (as noted in Section 2), this theorem shows that the
continuity of the value function under each of them is equivalent to the reflexivity of the
underlying space.

Theorem 4.3. For a Banach space X, the following statements are equivalent.

(i) X is reflexive.

(ii) v(f, ·) is a continuous function in the Mosco topology on CC(X) for every quasi-
convex continuous inf-bounded function f : X −→ R.

(iii) v(f, ·) is a continuous function in the slice topology on CC(X) for every quasi-convex
continuous inf-bounded function f : X −→ R.

(iv) v(f, ·) is a continuous function in the bounded proximal topology on CC(X) for
every quasi-convex continuous inf-bounded function f : X −→ R.

(v) v(f, ·) is a continuous function in the Attouch-Wets topology on CC(X) for every
quasi-convex continuous inf-bounded function f : X −→ R.

Proof. Although (i) ⇒ (ii) is just the Theorem 4.1 mentioned above, we give here
another argument using the results of Section 3. The upper semicontinuity of v(f, ·)
follows from Theorem 3.1 and the lower semicontinuity of v(f, ·) follows from Corollary
3.5, since the slice topology coincides with the Mosco topology on CC(X) if X is reflexive.

Using the comparisons of hyperspace topologies given in Section 2, the implications (ii) ⇒
(iii) ⇒ (iv) ⇒ (v) follow immediately.

(v) ⇒ (i): If X is not reflexive, then by the James theorem [16], there exists f ∈ SX∗

such that f does not attain its norm on BX . So BX ∩H = ∅, where H = {x ∈ X : f(x) =
1}. Using the Bishop-Phelps theorem [9], we can choose fn ∈ SX∗ (n ∈ N) such that
f−1
n (1)∩BX 6= ∅ for all n ∈ N and ‖fn− f‖ → 0. Clearly f−1

n (1), f−1(1) ∈ CC(X) for all
n ∈ N and it is shown in [5, Theorem 3.4.1] that f−1

n (1) → f−1(1) in the Attouch-Wets
topology.

We construct below a quasi-convex continuous inf-bounded function h : X −→ R such
that lim v(h, f−1

n (1)) 6= v(h, f−1(1)).

Define h : X −→ R by

h(x) = max{g(x), d(x,BX)}, x ∈ X,

where for x ∈ X,

g(x) =

{

d(x,BX)
d(x,BX)+d(x,H)

if f(x) ≤ 1,

1 if f(x) > 1.
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Note that the function g : X −→ R is continuous, g(x) = 0 for all x ∈ BX and g(x) = 1
for all x ∈ H. We show that g is quasi-convex.

Let 0 ≤ α < 1, x1, x2 ∈ lev (g, α) and λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1. Using Ascoli’s
formula [5, Theorem 1.1.2], we obtain

d(λ1x1 + λ2x2, H) = 1− f(λ1x1 + λ2x2)

= λ1[1− f(x1)] + λ2[1− f(x2)]

= λ1d(x1, H) + λ2d(x2, H).

Given t0 > 0, the function t 7−→ t
t+t0

(t ≥ 0) is increasing, so using the convexity of the
function x 7−→ d(x,BX) (x ∈ X), we have

g(λ1x1 + λ2x2) ≤
λ1d(x1, BX) + λ2d(x2, BX)

λ1d(x1, BX) + λ2d(x2, BX) + λ1d(x1, H) + λ2d(x2, H)
.

Since
d(x1, BX) ≤ α[d(x1, BX) + d(x1, H)]

and
d(x2, BX) ≤ α[d(x2, BX) + d(x2, H)],

we get g(λ1x1 + λ2x2) ≤ α. In case α ≥ 1, we have lev (g, α) = X. Therefore g is
quasi-convex.

It follows that the function h is quasi-convex continuous inf-bounded such that h(x) = 0
for all x ∈ BX and h(x) ≥ 1 for all x ∈ H. Moreover v(h, f−1

n (1)) = 0 for all n ∈ N and
v(h, f−1(1)) = 1. Consequently v(h, ·) is not continuous in the Attouch-Wets topology on
CC(X).

We note that in the previous result the convexity conditions on the constraint sets and
the objective function play a crucial role. In Corollary 4.6, we will show that without any
convexity conditions on the constraint sets and the objective function, the continuity of
the value function under the Attouch-Wets topology forces the underlying normed linear
space to be finite-dimensional. On the other hand, it follows from Theorem 3.6 of [7] and
Lemma 7.5.3 of [5] that for any normed linear space X, v(f, ·) is a continuous function in
the Attouch-Wets topology on CC(X) for every convex continuous inf-bounded function
f : X −→ R. Thus the quasi-convexity condition on the objective function in Theorem
4.3 is appropriate for characterizing reflexivity of the space.

The next two theorems characterize UC and boundedly UC spaces in terms of continuity
of the value function.

Theorem 4.4. The following statements are equivalent.

(i) X is UC (resp. boundedly UC).

(ii) v(f, ·) is a continuous function in the proximal topology on C(X) (resp. CB(X))
for every continuous function f : X −→ R.

Proof. (ii) ⇒ (i): If X is not a UC space then there exist nonempty disjoint closed
subsets A and B of X such that B 1

n
(A) ∩ B 1

n
(B) 6= ∅ for n = 1, 2, ... For n = 1, 2, ...,
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choose xn ∈ B such that d(xn, A) <
1
n
. The function f : X −→ R defined by

f(x) = max{g(x), d(x,A)} (x ∈ X),

where

g(x) =
d(x,B)

d(x,A) + d(x,B)
(x ∈ X),

is continuous, f(x) = 1 for all x ∈ A and f(xn) = d(xn, A) for all n ∈ N. Consider the
closed sets An = A ∪ {xn} for all n ∈ N. Clearly An → A in the proximal topology.
However v(f, A) = 1 and lim v(f, An) = 0.

If X is not boundedly UC then we may choose the set A in above to be bounded and
repeat the above argument.

The proof of (i) ⇒ (ii) follows from Theorem 3.1, Corollary 3.3 and Corollary 3.4.

Theorem 4.5. The following assertions are equivalent.

(i) X is boundedly UC.

(ii) v(f, ·) is a continuous function in the bounded proximal topology on C(X) for every
continuous inf-bounded function f : X −→ R.

(iii) v(f, ·) is a continuous function in the Attouch-Wets topology on C(X) for every
continuous inf-bounded function f : X −→ R.

Proof. The proof of (i) ⇒ (ii) follows from Theorem 3.1 and Corollary 3.4.

The implication (iii) ⇒ (i) can be proved as in Theorem 4.4 by taking the set A to
be bounded. In this case An → A in the Attouch-wets topology and f becomes inf-
bounded.

We remark that the implication (i) ⇒ (ii) of Theorem 4.4 for the case of UC space also
follows directly from Theorem 7.2 of [22] and the implication (i) ⇒ (ii) of Theorem 4.5
also follows directly from Theorem 9.2 of [22]. The implication (i) ⇒ (ii) of Theorem
4.4 for the case of UC space is also proved in Proposition 3.2 of [8] and the implication
(i) ⇒ (ii) of Theorem 4.5 can also be obtained from Proposition 3.5 of [8].

Since a normed linear space is boundedly UC iff it is finite-dimensional, the following
corollary is immediate from Theorem 4.5.

Corollary 4.6. For a normed linear space X, the following assertions are equivalent.

(i) X is finite-dimensional.

(ii) v(f, ·) is a continuous function in the Attouch-Wets topology on C(X) for every
continuous inf-bounded function f : X −→ R.

We now discuss (II) mentioned at the beginning of this section.

For reflexive spaces the following characterization of the Mosco topology in terms of
continuity of the value function is provided in Theorem 3.1 of [21].

Theorem 4.7. If X is a reflexive space, then the Mosco topology τ(WK(X)) is the weak-
est topology on CC(X) for which

v(f, ·) : (CC(X), τ(WK(X))) −→ R
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is continuous for each continuous weakly inf-compact function f : X −→ R.

The following result will provide similar characterizations for other topologies such as
proximal and bounded proximal.

Theorem 4.8. Let X1(6= ∅) ⊆ C(X) and X2(6= ∅) ⊆ C(X) satisfy the enlargement con-
dition. Suppose that A ∩ E 6= ∅ whenever A ∈ X1, E ∈ X2 and d(A,E) = 0. Then τ(X2)
is the weakest topology on X1 such that v(f, ·) is continuous on X1 for every continuous
function f : X −→ R such that lev (f, α) ∈ X2 for all α > v(f,X).

Proof. The continuity of v(f, ·) with respect to τ(X2) for every continuous function f :
X −→ R with lev (f, α) ∈ X2 for all α > v(f,X), follows from Theorem 3.1 together with
(i) ⇒ (ii) of Theorem 3.2.

To show that τ(X2) is the weakest such topology on X1, we note the following:

For a fixed C ∈ X2, define f(x) = d(x,C) for all x ∈ X. Then f is continuous, lev (f, α) =
Bα(C) ∈ X2 for all α > v(f,X) and v(f, A) = d(A,C) for all A ∈ X1.

Taking suitable X1 and X2, we obtain the following corollary.

Corollary 4.9. Let X be a UC space (resp. boundedly UC space). Then the proxi-
mal topology (resp. bounded proximal topology) is the weakest topology on C(X) such
that v(f, ·) is continuous for every continuous (resp. continuous inf-bounded) function
f : X −→ R.

We remark that Corollary 4.9 is not new and it follows from Theorem 7.2 and Theorem 9.2
of [22]. Corollary 4.9 can also be obtained from a unified result given in Proposition 3.5
of [8]. Moreover it is easy to see that Theorem 4.7 is also a consequence of Theorem 4.8.
A stronger result than Theorem 4.7 is contained in Proposition 9.5 of [22]. In fact, such
interesting characterizations of other known hyperspace topologies in terms of continuity
of the value function can be found in [8, 22]. Similar characterizations of topologies on
certain classes of functions have been explored in [4].
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