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In this paper we examine the structure of extremals of variational problems with continuous integrands
f : Rn×Rn → R1 which belong to a complete metric space of functions. Our results deal with the turnpike
properties of variational problems. To have this property means that the solutions of the problems are
determined mainly by the integrand, and are essentially independent of the choice of interval and endpoint
conditions.
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1. Introduction

The study of turnpike properties of variational and optimal control problems has recently
been a rapidly growing area of research. These problems arise in engineering [16, 17],
in models of economic growth [1, 2, 4, 5, 6, 7] and in the theory of thermodynamical
equilibrium for materials [13]. In this paper we analyse the structure of solutions of the
variational problems

∫ T2

T1

f(z(t), z′(t))dt → min, z(T1) = x, z(T2) = y, (P )

z : [T1, T2] → Rn is an absolutely continuous function,

where T1 ≥ 0, T2 > T1, x, y ∈ Rn and f : Rn ×Rn → R1 belongs to a space of integrands
described below.

The main results in this paper deal with the so-called turnpike property of the variational
problems (P). To have this property means, roughly speaking, that the solutions of the
problems (P) are determined mainly by the integrand (cost function), and are essentially
independent of the choice of interval and endpoint conditions.

Turnpike properties are well known in mathematical economics. The term was first coined
by Samuelson in 1948 (see [11]) where he showed that an efficient expanding economy
would spend most of the time in the vicinity of a balanced equilibrium path (also called
a von Neumann path). This property was further investigated for optimal trajectories
of models of economic dynamics (see, for example, [1, 2, 4-10, 15] and the references
mentioned there). In control theory turnpike properties were studied in [16, 17] for linear
control systems with convex integrands.
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Let us now define the space of integrands. Denote by | · | the Euclidean norm in Rn. Let
a be a positive constant and let ψ : [0,∞) → [0,∞) be an increasing function such that
ψ(t) → +∞ as t → ∞.

Denote by A the set of all continuous functions f : Rn × Rn → R1 which satisfy the
following assumptions:

A(i) for each x ∈ Rn the function f(x, ·) : Rn → R1 is convex;

A(ii) f(x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for each (x, u) ∈ Rn ×Rn;

A(iii) for each M, ε > 0 there exist Γ, δ > 0 such that

|f(x1, u1)− f(x2, u2)| ≤ εmax{f(x1, u1), f(x2, u2)}

for each u1, u2, x1, x2 ∈ Rn which satisfy

|xi| ≤ M, |ui| ≥ Γ (i = 1, 2),max{|x1 − x2|, |u1 − u2|} ≤ δ.

It is an elementary exercise to show that an integrand f = f(x, u) ∈ C1(R2n) belongs to A

if f satisfies assumptions A(i), A(ii) and there exists an increasing function ψ0 : [0,∞) →
[0,∞) such that for each x, u ∈ Rn

max{|∂f/∂x(x, u)|, |∂f/∂u(x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|).

For the set A we consider the uniformity which is determined by the following base:

E(N, ε, λ) = {(f, g) ∈ A × A : |f(x, u)− g(x, u)| ≤ ε

for each x, u ∈ Rn satisfying |x|, |u| ≤ N

and (|f(x, u)|+ 1)(|g(x, u)|+ 1)−1 ∈ [λ−1, λ]

for each x, u ∈ Rn satisfying |x| ≤ N},

where N > 0, ε > 0, λ > 1 [3]. The space of integrands A was introduced in [12].

Clearly, the uniform space A is Hausdorff and has a countable base. Therefore A is
metrizable (by a metric ρ). It was shown in [14, Proposition 2.2] that the uniform space
A is complete. The metric ρ induces in M a topology.

Let f ∈ A. We consider functionals of the form

If (T1, T2, x) =

∫ T2

T1

f(x(t), x′(t))dt (1)

where −∞ < T1 < T2 < ∞ and x : [T1, T2] → Rn is an absolutely continuous (a.c.)
function.

For each y, z ∈ Rn and each pair of numbers T1, T2 ∈ R1 satisfying T1 < T2 we set

U f (T1, T2, y, z) = inf{If (T1, T2, x) : x : [T1, T2] → Rn

is an a.c. function satisfying x(T1) = y, x(T2) = z}. (2)

It is not difficult to see that −∞ < U f (T1, T2, y, z) < ∞ for each y, z ∈ Rn and each
T1 ∈ R1, T2 > T1.
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For any a.c. function x : [0,∞) → Rn we set

J(x) = lim inf
T→∞

T−1If (0, T, x). (3)

Of special interest is the minimal long-run average cost growth rate

µ(f) = inf{J(x) : x : [0,∞) → Rn is an a.c. function}. (4)

Clearly −∞ < µ(f) < ∞.

For each x ∈ Rn, A ⊂ Rn set

d(x,A) = inf{|x− y| : y ∈ A}.

Denote by M(f) the set of all locally absolutely continuous (a.c.) functions v : R1 → Rn

such that

sup{|v(t)| : t ∈ R1} < ∞ (5)

and that for each T1 ∈ R1, T2 > T1,

If (T1, T2, v) = U f (T1, T2, v(T1), v(T2)). (6)

Set

D(f) = ∪{v(R1) : v ∈ M(f)}. (7)

In [18, Theorem 1.1] we established the following result.

Theorem 1.1. Let f ∈ A. Then M(f) 6= ∅ and D(f) is a bounded closed subset of Rn.

If a function f : R2n → R1 is strictly convex, differentiable and satisfies a growth condition,
and ȳ ∈ Rn is a unique solution of the minimization problem f(z, 0) → min, z ∈ Rn, then
optimal solutions of problem (P) spend most of time in a neighborhood of ȳ. Following
the tradition, the point ȳ is called the turnpike. If the function f is nonconvex, then
the problem is more difficult. In [12] we studied the structure of extremals of nonconvex
variational problems (P) with integrands f ∈ A. More precisely, in [12] we proved the
existence of a subset F ⊂ A which is a countable intersection of open everywhere dense
subsets of A such that each integrand f ∈ F has a turnpike property which is an analog
of the classical turnpike property for convex problems. We showed that for a generic
integrand f ∈ A there exists a nonempty compact set H(f) ⊂ Rn such that the following
property holds:

For each ε > 0 there exists a constant L > 0 such that if v is a solution of problem (P),
then for most of t ∈ [T1, T2] the set v([t, t + L]) is equal to H(f) up to ε with respect to
the Hausdorff metric.

Note that for a generic integrand f ∈ A the turnpike H(f) is a nonempty compact subset
of Rn which is not necessarily a singleton. It should be mentioned that there exists
f ∈ A which do not has this turnpike property. In [18] for any f ∈ A we showed that
approximate solutions of problem (P) spend most of time in a neighborhood of D(f).

Namely, we established the following result.
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Theorem 1.2 (18, Theorem 1.2). Let f ∈ A and M, ε > 0. Then there exist δ, L > 0
and a neighborhood U of f in A such that for each g ∈ U , each number T ≥ 2L and each
a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ M, Ig(0, T, v) ≤ U g(0, T, v(0), v(T )) + δ

the inequality d(v(t),D(f)) ≤ ε holds for all t ∈ [L, T − L].

In this paper with any f ∈ A we associate a nonempty closed subset K(f) ⊂ D(f) and
show that approximate solutions of problem (P) spend most of time in a neighborhood
of K(f). We construct an example of f ∈ A such that K(f) 6= D(f). Thus the results of
the present paper are improvements of the main results of [18].

In [12, Proposition 1.1] we obtained the following useful result.

Proposition 1.3. For any a.c. function x : [0,∞) → Rn either

If (0, T, x)− Tµ(f) → ∞ as T → ∞

or
sup{|If (0, T, x)− Tµ(f)| : T ∈ (0,∞)} < ∞. (8)

If an a.c. function x : [0,∞) → Rn satisfies (8), then x is called an (f)-good function. It
was shown in [14, Theorem 1.1] that for each z ∈ Rn there exists an (f)-good function
Z : [0,∞) → Rn satisfying Z(0) = z.

For every x ∈ Rn set

πf (x) = inf{lim inf
T→∞

[If (0, T, v)− µ(f)T ]: v : [0,∞) → Rn (9)

is an a.c. function satisfying v(0) = x.}.

It follows from Theorems 8.1 and 8.2 and Proposition 7.3 of [12] that πf : Rn → R1 is a
continuous function such that

lim
|x|→∞

πf (x) = ∞. (10)

In view of Theorems 8.1 and 8.2 of [12]

U f (0, T, x, y)− Tµ(f)− πf (x) + πf (y) ≥ 0 (11)

for each T > 0 and each x, y ∈ Rn.

This inequality implies that for each interval D = [T1, T2] where T1 ∈ R1 and T2 > T1 and
each a.c. function v : D → Rn

Λf (D, v) := If (T1, T2, v)− (T2 − T1)µ(f)− πf (v(T1)) + πf (v(T2)) ≥ 0. (12)

Denote by N (f) the set of all a.c. functions v : R1 → Rn such that

sup{|v(t)| : t ∈ R1} < ∞ (13)

and that
If (T1, T2, v) = (T2 − T1)µ(f) + πf (v(T1))− πf (v(T2)) (14)
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for each T1 ∈ R1, T2 > T1. Set

K(f) = ∪{v(R1) : v ∈ N (f)}. (15)

It follows from (12)-(14) that

N (f) ⊂ M(f), K(f) ⊂ D(f). (16)

The next two theorems are our main results.

Theorem 1.4. Let f ∈ A. Then the set N (f) 6= ∅ and K(f) is a closed subset of Rn.

Theorem 1.5. Let f ∈ A and let M0,M1, ε be positive numbers. Then there exist a
positive number l and a natural number q such that for each T ≥ l and each a.c. function
v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ M0, I
f (0, T, v) ≤ U f (0, T, v(0), v(T )) +M1

there is a finite number of closed intervals [bi, ci], i = 1, . . . , p such that

p ≤ q and ci ≤ bi+1 for all integers i satisfying 1 ≤ i < p,

0 ≤ ci − bi ≤ l, i = 1, . . . , p

and
d(v(t),K(f)) ≤ ε for all t ∈ [0, T ] \ ∪p

i=1[bi, ci].

Note that Theorems 1.2 and 1.5 and some other auxiliary results in the sequel are stated
for intervals [T1, T2] with T1 = 0. Since integrands f ∈ A do not depend on t these results
are valid without this assumption.

The paper is organized as follows. In the second section we present several auxiliary
results. In the third section we prove Theorem 1.4. Theorem 1.5 is proved in Section 4.
In Section 5 we consider an example of f ∈ A such that K(f) 6= D(f).

2. Preliminary results

We denote by mes(E) the Lebesgue measure of a Lebesgue measurable set E ⊂ Rq and
by Card(A) the cardinality of a set A.

We need the following results.

Proposition 2.1 (12, Theorem 8.3). Let f ∈ A. Then for every x ∈ Rn there exists
an (f)-good function v : [0,∞) → Rn such that v(0) = x and the equality

If (T1, T2, v) = (T2 − T1)µ(f) + πf (v(T1))− πf (v(T2))

is true for each T1 ≥ 0, T2 > T1.

Proposition 2.2 (14, Proposition 2.5). Assume that f ∈ A, M1 > 0, −∞ < T1 <
T2 < ∞, xi : [T1, T2] → Rn, i = 1, 2, . . . is a sequence of a.c. functions such that

If (T1, T2, xi) ≤ M1, i = 1, 2, . . .
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Then there exist a subsequence {xik}∞k=1 and an a.c. function x : [T1, T2] → Rn such that

If (T1, T2, x) ≤ M1, xik(t) → x(t) as k → ∞ uniformly in [T1, T2] and

x′
ik
→ x′ as k → ∞ weakly in L1(Rn; (T1, T2)).

Proposition 2.3 (14, Theorem 1.3). Let f ∈ A and M1,M2, c be positive numbers.
Then there exists S > 0 such that for each T1 ∈ R1, T2 ∈ [T1+c,∞) and each a.c. function
v : [T1, T2] → Rn satisfying

|v(T1)|, |v(T2)| ≤ M1, I
f (T1, T2, v) ≤ U f (T1, T2, v(T1), v(T2)) +M2

the following relation holds:

|v(t)| ≤ S, t ∈ [T1, T2].

Proposition 2.4 (12, Theorem 6.1). Assume that f ∈ A. Then the mapping (T1, T2,
x, y) → U f (T1, T2, x, y) is continuous for T1 ∈ R1, T2 ∈ (T1,∞), x, y ∈ Rn.

Proposition 2.5 (14, Corollary 2.1). For each f ∈ A, each pair of numbers T1, T2

satisfying T1 < T2 and each z1, z2 ∈ Rn there exists an a.c. function x : [T1, T2] → Rn

such that x(Ti) = zi, i = 1, 2 and If (T1, T2, x) = U f (T1, T2, z1, z2).

3. Proof of Theorem 1.4

First we show that N (f) 6= ∅. By Proposition 2.1 there exists an (f)-good function
v : [0,∞) → Rn such that

If (0, T, v) = Tµ(f) + πf (v(0))− πf (v(T )) for each T > 0. (17)

Since v is an (f)-good function the inequality (8) is valid. In view of (17) and (8)

sup{|πf (v(T ))| : T ∈ (0,∞)} < ∞. (18)

Combined with (10) the inequality (18) implies that

sup{|v(T )| : T ∈ [0,∞)} < ∞. (19)

For each natural number i define

vi(t) = v(t+ i), t ∈ [−i,∞). (20)

Let k be a natural number. It follows from (20), (17) and (19) that the sequence
{If (−k, k, vi}∞i=k is bounded. Combined with Proposition 2.2 this implies that there exist
a subsequence {viq}∞q=1 of {vi}∞i=1 and an a.c. function w : R1 → Rn such that for each
natural number k

viq → w as q → ∞ uniformly on [−k, k], (21)

v′iq → w′ as q → ∞ weakly in L1(Rn, (−k, k)),

If (−k, k, w) ≤ lim infq→∞ If (−k, k, viq).
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Let k be a natural number. In view of (21), (20), (17) and the continuity of πf

If (−k, k, w) ≤ lim inf
q→∞

If (−k, k, viq)

≤ lim inf
q→∞

[2kµ(f) + πf (viq(−k))− πf (viq(k))]

= 2kµ(f) + πf (w(−k))− πf (w(k)).

Together with (12) this inequality implies that

If (−k, k, w) = 2kµ(f) + πf (w(−k))− πf (w(k)) (22)

for each integer k ≥ 1.

Since D → Λf (D,w) is an additive nonnegative set function it follows from (22) and (12)
that

If (T1, T2, w) = (T2 − T1)µ(f) + πf (w(T1))− πf (w(T2)) (23)

for each T1 ∈ R1, T2 > T1. (19), (20) and (21) imply that

sup{|w(t)| : t ∈ R1} < ∞.

Combined with (23) this inequality implies that w ∈ N (f). Therefore N (f) 6= ∅.
Let us show that the set K(f) is closed. Since the set D(f) is bounded it follows from
(16) that there is d0 > 0 such that

|z| ≤ d0 for all z ∈ K(f). (24)

Assume that
{zi}∞i=1 ⊂ K(f), z = lim

i→∞
zi. (25)

For each integer i ≥ 1 there is ui ∈ N (f) such that zi ∈ ui(R
1). We may assume without

loss of generality that
ui(0) = zi, i = 1, 2, . . . (26)

Inequality (24) implies that

|ui(t)| ≤ d0 for all t ∈ R1 and each integer i ≥ 1. (27)

Since ui ∈ N (f) for all integers i ≥ 1 we have that for each pair of natural numbers i, k

If (−k, k, ui) = 2kµ(f) + πf (ui(−k))− πf (ui(k)). (28)

It follows from (28) and (27) that for each natural number k the sequence {If (−k, k, ui)}∞i=1

is bounded. Combined with Proposition 2.2 this implies that there exist a subsequence
{uiq}∞q=1 of {ui}∞i=1 and an a.c. function h : R1 → Rn such that for each natural number
k

uiq → h as q → ∞ uniformly in [−k, k], (29)

u′
iq → h′ as q → ∞ weakly in L1(Rn; (−k, k)),

If (−k, k, h) ≤ lim infq→∞ If (−k, k, uiq).
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By (29), (26) and (25)
h(0) = lim

q→∞
uiq(0) = lim

q→∞
ziq = z. (30)

Relations (29) and (27) imply that

|h(t)| ≤ d0 for all t ∈ R1. (31)

In view of (29), (14) and the continuity of πf for each natural number k

If (−k, k, h) ≤ lim inf
q→∞

If (−k, k, uiq)

= lim inf
q→∞

[2kµ(f) + πf (uiq(−k))− πf (uiq(k))]

= 2kµ(f) + πf (h(−k))− πf (h(k)).

Together with (12) this relation implies that

If (−k, k, h) = 2kµ(f) + πf (h(−k))− πf (h(k)) for all integers k ≥ 1. (32)

Since D → Λf (D, h) is an additive nonnegative set function it follows from (32) and (12)
that

If (T1, T2, h) = (T2 − T1)µ(f) + πf (h(T1))− πf (h(T2))

for each T1 ∈ R1, T2 > T1. Combined with (31) this equality implies that h ∈ N (f). By
this inclusion and (30) z ∈ K(f). Therefore K(f) is closed. This completes the proof of
Theorem 1.4.

4. Proof of Theorem 1.5

Note that the set K(f) is bounded and choose a number d0 such that

|z| ≤ d0 for all z ∈ K(f). (33)

Lemma 4.1. Let M0, ε > 0. Then there exist l0, δ > 0 such that for each T ≥ 2l0 and
each a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ M0, (34)

If (0, T, v) ≤ Tµ(f) + πf (v(0))− πf (v(T )) + δ (35)

the following inequality holds:

d(v(t),K(f)) ≤ ε for all t ∈ [l0, T − l0]. (36)

Proof. Let us assume the converse. Then for each natural number i there exist Ti ≥ 2i,
an a.c. function vi : [0, Ti] → Rn which satisfies

|vi(0)|, |vi(Ti)| ≤ M0, (37)

If (0, Ti, vi) ≤ Tiµ(f) + πf (vi(0))− πf (vi(Ti)) + i−1 (38)

and
ti ∈ [i, Ti − i] (39)
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such that
d(vi(ti),K(f)) > ε. (40)

Relations (38) and (11) imply that for all integers i ≥ 1

If (0, Ti, vi) ≤ U f (0, Ti, vi(0), vi(Ti)) + i−1. (41)

In view of (41), (37) and Proposition 2.3 there exists S0 > 0 such that

|vi(t)| ≤ S0 for each t ∈ [0, Ti] and each integer i ≥ 1. (42)

For each natural number i define

ui(t) = vi(t+ ti), t ∈ [−ti, Ti − ti]. (43)

(39) implies that for each integer i ≥ 1

−ti ≤ −i < i ≤ Ti − ti. (44)

By (43) and (38) for each integer i ≥ 1

If (−ti, Ti − ti, ui)− Tiµ(f)− πf (ui(−ti)) + πf (ui(Ti − ti))

= If (0, Ti, vi)− Tiµ(f)− πf (vi(0)) + πf (vi(Ti)) ≤ i−1. (45)

It follows from (43) and (42) that

|ui(t)| ≤ S0 for each t ∈ [−ti, Ti − ti] and each integer i ≥ 1. (46)

Relations (43) and (40) imply that

d(ui(0),K(f)) > ε. (47)

Let k be a natural number. By (45), (12), (46) and (44) the sequence {If (−k, k, ui)}∞i=k

is bounded. Combined with Proposition 2.2 this implies that there exist a subsequence
{uiq}∞q=1 of {ui}∞i=1 and an a.c. function u : R1 → Rn such that for each natural natural
number k

uiq → u as q → ∞ uniformly in [−k, k], (48)

u′
iq → u′ as q → ∞ weakly in L1(Rn; (−k, k)),

If (−k, k, u) ≤ lim infq→∞ If (−k, k, uiq).

Relations (48) and (46) imply that

|u(t)| ≤ S0 for all t ∈ R1. (49)

In view of (48), (45) and (12) for each natural number k

If (−k, k, u) ≤ lim inf
q→∞

If (0, k, uiq)

≤ lim inf
q→∞

[2kµ(f) + πf (uiq(−k))− πf (uiq(k)) + i−1
q ]

= 2kµ(f) + πf (u(−k))− πf (u(k)).
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Combined with (12) this implies that

If (−k, k, u) = 2kµ(f) + πf (u(−k))− πf (u(k)) (50)

for each natural number k. Since D → Λf (D, u) is an additive nonnegative set function
it follows from (50) and (12) that

If (T1, T2, u) = (T2 − T1)µ(f) + πf (u(T1))− πf (u(T2))

for each T1 ∈ R1, T2 > T1. Together with (49) this implies that u ∈ N (f) and u(0) ∈ K(f).
On the other hand it follows from (48) and (47) that d(u(0),K(f)) ≥ ε. The contradiction
we have reached proves Letmma 4.1.

Lemma 4.2. Let M0,M1 > 0. Then there exists M2 > 0 such that for each T ≥ 4 and
each a.c. function v : [0, T ] → Rn satisfying

|v(0)|, |v(T )| ≤ M0, I
f (0, T, v) ≤ U f (0, T, v(0), v(T )) +M1 (51)

the inequality
If (0, T, v)− Tµ(f)− πf (v(0)) + πf (v(T )) ≤ M2 (52)

holds.

Proof. Choose w ∈ N (f). By Proposition 2.4 there is D0 > 0 such that

|U f (0, 1, z1, z2)| ≤ D0 for each z1, z2 ∈ Rn satisfying (53)

|z1|, |z2| ≤ d0 +M0.

There is D1 > 0 such that

|πf (z)| ≤ D1 for each z ∈ Rn satisfying |z| ≤ d0 +M0. (54)

Assume that T ≥ 4 and an a.c. function v : [0, T ] → Rn satisfies (51). Consider an
a.c. function u : [0, T ] → Rn such that

u(0) = v(0), u(T ) = v(T ), u(t) = w(t), t ∈ [1, T − 1],

If (0, 1, u) ≤ U f (0, 1, v(0), w(1)) + 1, If (T − 1, T, u) ≤ U f (T − 1, T, w(T − 1), v(T )) + 1.
(55)

It follows from (55) and (51) that

If (0, T, u)− Tµ(f)− πf (u(0)) + πf (u(T ))

−[If (0, T, v)− Tµ(f)− πf (v(0)) + πf (v(T ))]

= If (0, T, u)− If (0, T, v) ≥ U f (0, T, v(0), v(T ))− If (0, T, v) ≥ −M1. (56)

In view of the relation w ∈ N (f), (55), (51), (33) and (54)

If (0, T, u)− Tµ(f)− πf (u(0)) + πf (u(T ))

= If (0, T, u)− Tµ(f)− πf (u(0)) + πf (u(T ))

−[If (0, T, w)− Tµ(f)− πf (w(0)) + πf (w(T ))]

≤ If (0, T, u)− If (0, T, w) + 4D1

= If (0, 1, u) + If (1, T − 1, w) + If (T − 1, T, u)− If0, T, w) + 4D1

≤ U f (0, 1, v(0), w(1)) + 1 + U f (T − 1, T, w(T − 1), v(T )) + 1

−U f (0, 1, w(0), w(1))− U f (T − 1, T, w(T − 1), w(T )) + 4D1. (57)
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Relations (33), (51), (53) and (57) imply that

If (0, T, u)− Tµ(f)− πf (u(0)) + πf (u(T )) ≤ 4D0 + 4D1 + 2. (58)

By (56) and (58)

If (0, T, v)− Tµ(f)− πf (v(0)) + πf (v(T ))

≤ M1 + If (0, T, u)− Tµ(f)− πf (u(0)) + πf (u(T ))

≤ M1 + 4D0 + 4D1 + 2.

Thus (52) holds with
M2 = M1 + 4D0 + 4D1 + 2.

Lemma 4.2 is proved.

Completion of the proof of Theorem 1.5 By Proposition 2.3 there is S0 > 0 such
that the following property holds:

(P1) For each T ≥ 1 and each a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ M0, I
f (0, T, v) ≤ U f (0, T, v(0), v(T )) +M1 (59)

the following inequality holds:

|v(t)| ≤ S0, t ∈ [0, T ]. (60)

By Lemma 4.1 there exist l0 > 4, δ0 ∈ (0, 1) such that the following property holds:

(P2) For each T ≥ 2l0 and each a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ S0,

If (0, T, v) ≤ Tµ(f) + πf (v(0))− πf (v(T )) + δ0 (61)

the following inequality holds:

d(v(t),K(f)) ≤ ε for all t ∈ [l0, T − l0]. (62)

By Lemma 4.2 there exists M2 > 1 such that the following property holds:

(P3) For each T ≥ 4 and each a.c. function v : [0, T ] → Rn satisfying (51) the inequality
(52) holds.

Choose a natural number
q > 3(2 + δ−1

0 (M2 + 1)) (63)

and set
l = 2l0. (64)

Assume that T ≥ l and an a.c. function v : [0, T ] → Rn satisfies

|v(0)|, |v(T )| ≤ M0,

If (0, T, v) ≤ U f (0, T, v(0), v(T )) +M1. (65)
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By property (P1), (64) and (65) the inequality (60) holds. In view of property (P3), (64),
the choice of l0, (65), (51) and (52)

If (0, T, v)− Tµ(f)− πf (v(0)) + πf (v(T )) ≤ M2. (66)

By induction we can construct a finite sequence of numbers {ti}pi=0 ⊂ [0, T ] such that

t0 = 0, tp = T, ti < ti+1 for each integer i satisfying 0 ≤ i ≤ p− 1

and that for each integer i satisfying 0 ≤ i < p− 1 the following relations hold:

If (ti, ti+1, v)− (ti+1 − ti)µ(f)− πf (v(ti)) + πf (v(ti+1)) = δ0, (67)

If (tp−1, tp, v)− (tp − tp−1)µ(f)− πf (v(tp−1)) + πf (v(tp)) ≤ δ0.

It follows from (66), (12) and (67) that

M2 ≥ If (0, T, v)− Tµ(f)− πf (v(0)) + πf (v(T ))

=

p−1
∑

i=0

[If (ti, ti+1, v)− (ti+1 − ti)µ(f)− πf (v(ti)) + πf (v(ti+1))] ≥ δ0(p− 1)

and

p− 1 ≤ M2/δ0, p ≤ 1 +M2δ
−1
0 . (68)

Set

A = {[ti, ti+1] : 0 ≤ i ≤ p− 1 and ti+1 − ti ≤ 2l0}
∪{[ti, ti + l0], [ti+1 − l0, ti+1] : 0 ≤ i ≤ p− 1 and ti+1 − ti > 2l0}. (69)

In view of (69), (68) and (63)

Card(A) ≤ 3p ≤ 3(1 +M2δ
−1
0 ) ≤ q. (70)

Clearly if a set e ∈ A, then

mes(e) ≤ 2l0 = l. (71)

Assume that

τ ∈ [0, T ] \ ∪{e : e ∈ A}. (72)

Relations (72) and (69) imply that there is j ∈ {0, . . . , p− 1} such that

τ ∈ [tj + l0, tj+1 − l0]. (73)

It follows from (73), (67), (60) and property (P2) with the restriction of v to the interval
[tj, tj+1] that

d(v(τ),K(f)) ≤ ε.

This completes the proof of Theorem 1.5.
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5. An example

Let ψ(t) = t, t ∈ [0,∞). Define

f(x, u) = |x|2|x− e|2 + |u|2, x, u ∈ Rn (74)

where e = (1, 1, . . . , 1) ∈ Rn. It is easy to see that f ∈ A with some positive constant a.
Clearly

µ(f) = 0, πf (0) = πf (e) = 0. (75)

In this section we will prove the following result.

Theorem 5.1. D(f) 6= K(f) = {0, e}.

We preface the proof of Theorem 5.1 by several auxiliary results.

Lemma 5.2. Let w ∈ N (f). Then either w(t) = 0 for all t ∈ R1 or w(t) = e for all
t ∈ R1.

Proof. By the definition of N (f)

sup{|w(t)| : t ∈ R1} < ∞, (76)

If (T1, T2, w) = (T2 − T1)µ(f) + πf (w(T1))− πf (w(T2)) (77)

for each T1 ∈ R1, T2 > T1.

First we show that there exist z1 ∈ {0, e} and a strictly increasing sequence {ti}∞i=0 of real
numbers such that

lim
i→∞

ti = ∞ and lim
i→∞

w(ti) = z1. (78)

Let us assume the converse. Then there are ε > 0 and t0 ∈ R1 such that

|w(t)|, |w(t)− e| ≥ ε for all t ≥ t0. (79)

Inequality (79) implies that

f(w(t), w′(t)) ≥ ε4 for all t ≥ t0.

In view of this inequality, (75) and (76) for each t ≥ t0

If (t0, t, w)− (t− t0)µ(f)− πf (w(t0)) + πf (w(t))

≥ ε4(t− t0)− πf (w(t0)) + πf (w(t)) → ∞ as t → ∞.

This contradicts (77). The contradiction we have reached shows that there exists a strictly
increasing sequence {ti}∞i=0 of real numbers and z1 ∈ {0, e} such that (78) is valid.

Analogously we can show that there exist a strictly decreasing sequence {τi}∞i=0 of real
numbers and z2 ∈ {0, e} such that

lim
i→∞

τi = −∞, lim
i→∞

w(τi) = z2. (80)

We may assume without loss of generality that

ti > 0, τi < 0 for all integers i ≥ 1.
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By (77), (75), (80), (78) and continuity of πf for each integer i ≥ 1

If (τi, ti, w) = (ti − τi)µ(f) + πf (w(τi))− πf (w(ti))

= πf (w(τi))− πf (w(ti)) → 0 as i → ∞.

Together with (74) this implies that f(w(t), w′(t)) = 0 for almost every t ∈ R1. This
completes the proof of Lemma 5.2.

Lemma 5.3. Let ε ∈ (0, 4−1), l > 0 and M0 > 0. Then there exists L > l such that for
each T ≥ L, each a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ M0, I
f (0, T, v) ≤ U f (0, T, v(0), v(T )) + 1 (81)

and each s ∈ [0, T − L] there are

τ ∈ [s, s+ L− l] and z ∈ {0, e} (82)

such that
|v(t)− z| ≤ ε for all t ∈ [τ, τ + l]. (83)

Proof. By Theorem 1.5 and Lemma 5.2 there exist a natural number q and a real number
l0 > 0 such that for each T ≥ l0 and each a.c. function v : [0, T ] → Rn which satisfies (81)
the following property holds:

(P4) there exists a finite number of intervals [bi, ci], i = 1, . . . , p where p ≤ q such that

ci ≤ bi+1 for each integer i satisfying 1 ≤ i < p,

0 ≤ ci − bi ≤ l0, i = 1, . . . , p,

d(v(t), {0, e}) ≤ ε for all t ∈ [0, T ] \ ∪p
i=1[bi, ci].

Set
L = (l0 + 3l + 1)q. (84)

Assume that T ≥ L, an a.c. function v : [0, T ] → Rn satisfies (81) and s ∈ [0, T −L]. Let
a sequence of intervals [bi, ci], i = 1, . . . , p be as guaranteed by property (P4). We show
that there is τ ∈ [s, s+ L− l] such that

[τ, τ + l] ∩ [bi, ci] = ∅, i = 1, . . . , p.

Let us assume the converse. Then for each t ∈ [s, s + L − l] there is i ∈ {1, . . . , p} such
that

[t, t+ l] ∩ [bi, ci] 6= ∅

and t ∈ [bi − l, ci + l]. Therefore

[s, s+ L− l] ⊂ ∪p
i=1[bi − l, ci + l]

and

L− l ≤
p

∑

i=1

[ci − bi + 2l]. (85)
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Inequality (85) and property (P4) imply that

L ≤ l + q(2l + l0).

This contradicts (84). The contradiction we have reached proves that there is

τ ∈ [s, s+ L− l] (86)

for which

[τ, τ + l] ∩ [bi, ci] = ∅, i = 1, . . . , p. (87)

By property (P4), (87) and (86)

d(v(t), {0, e}) ≤ ε for all t ∈ [τ, τ + l]. (88)

We show that there is z ∈ {0, e} such that

|v(t)− z| ≤ ε for all t ∈ [τ, τ + l]. (89)

Let us assume the converse. Then it follows from (88) and the inequality ε < 4−1 that
there are

t1, t2 ∈ [τ, τ + l], z1, z2 ∈ {0, e} (90)

such that

t1 < t2, z1 6= z2, |v(ti)− zi| < ε, i = 1, 2. (91)

By the mean-value theorem, (91) and the inequality ε < 1/4 there is ξ ∈ (t1, t2) such that

|v(ξ)− z1| = 1/2. (92)

Relations (92) and (88) imply that

|v(ξ)− z2| ≤ ε < 4−1. (93)

In view of (83)

|v(ξ)− z2| ≥ |z2 − z1| − |z1 − v(ξ)| ≥ n1/2 − 1/2 ≥ 1/2,

a contradiction. The contradiction we have reached proves that there is z ∈ {0, e} such
that (89) holds. Lemma 5.3 is proved.

Lemma 5.4. Let i be a natural number. Then there exist T ≥ 2i, an a.c. function
v : [0, T ] → Rn and a number τ such that

i ≤ τ ≤ T − i, (94)

|v(0)|, |v(T )| ≤ 2n+ 1, (95)

If (0, T, v) ≤ U f (0, T, v(0), v(T )) + i−1, (96)

|v(τ)|, |v(τ)− e| ≥ 2−1. (97)
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Proof. There is
δ ∈ (0, (4i)−1) (98)

such that
|U f (0, 1, y1, y2)| ≤ (8i)−1 (99)

for each y1 ∈ Rn satisfying d(y1, {0, e}) ≤ 4δ and each y2 ∈ Rn satisfying |y2 − y1| ≤ 4δ.

By Lemma 5.3 there exists
L > 4(i+ 2) (100)

such that the following property holds:

(P5) For each T ≥ L, each a.c. function v : [0, T ] → Rn which satisfies

|v(0)|, |v(T )| ≤ 2n+ 1, If (0, T, v) ≤ U f (0, T, v(0), v(T )) + 1 (101)

and each S ∈ [0, T − L] there is τ ∈ [S, S + L− 4(i+ 2)] and z ∈ {0, e} such that

|v(t)− z| ≤ δ, t ∈ [τ, τ + 4(i+ 2)]. (102)

Fix
T > 8L. (103)

By Proposition 2.5 there exists an a.c. function v : [0, T ] → Rn such that

v(0) = 0, v(T ) = e, If (0, T, v) = U f (0, T, 0, e). (104)

Relation (104) and the mean-value theorem imply that there is T0 ∈ (0, T ) such that

|v(T0)| = 2−1. (105)

In view of (105)

|v(T0)− e| ≥ |e− 0| − |0− v(T0)| ≥ n1/2 − 2−1 ≥ 2−1. (106)

There are three cases:
i ≤ T0 ≤ T − i; (107)

T0 < i; (108)

T0 > T − i. (109)

If (107) is valid, then by (104), (110), (106) and (107) the assertion of the lemma holds.

Assume that (108) is valid. It follows from (103), (104) and property (P5) that there exist

τ ∈ [T − L, T − 4(i+ 2)], z ∈ {0, e} (110)

such that
|v(t)− z| ≤ δ, t ∈ [τ, τ + 4(i+ 2)]. (111)

By (104), (100) and Propositon 2.5 there exists an a.c. function u : [0, T ] → Rn such that

u(t) = 0, t ∈ [0, i+ 1], u(i+ 1 + t) = v(t), t ∈ (0, τ ],

u(t) = v(t), t ∈ [i+ 2 + τ, T ],

If (i+ 1 + τ, i+ 2 + τ, u) = U f (i+ 1 + τ, i+ 2 + τ, v(τ), v(i+ 2 + τ)). (112)
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Relations (112) and (104) imply that

u(0) = 0, u(T ) = e. (113)

In view of (108), (100) and (103)

i < T0 + i+ 1 < 2i+ 1 < L− i < T − i. (114)

By (103), (100) and (108)

T − L > 7L > 4(i+ 2) > T0. (115)

It follows from (112), (115), (105), (110) and (106) that

u(T0 + i+ 1) = v(T0),

|u(T0 + i+ 1)|, |u(T0 + i+ 1)− e| ≥ 2−1,

|u(T0 + i+ 1)− z| ≥ 2−1. (116)

By (112), (111), (110) and the choice of δ (see (99))

If (i+ 1 + τ, i+ 2 + τ, u) = U f (i+ 1 + τ, i+ 2 + τ, v(τ), v(i+ 2 + τ)) ≤ (8i)−1. (117)

Relations (112), (74) and (114) imply that

If (0, T, u)− If (0, T, v) = If (0, i+ 1, u) + If (i+ 1, τ + i+ 1, u)

+If (i+ 1 + τ, i+ 2 + τ, u) + If (i+ 2 + τ, T, u)− If (0, T, v)

≤ If (0, τ, v) + (8i)−1 + If (i+ 2 + τ, T, v)− If (0, T, v)

≤ (8i)−1 − If (τ, i+ 2 + τ, v) ≤ (8i)−1

and
If (0, T, u) ≤ If (0, T, v) + (8i)−1.

Combined with (104) and (112) this inequality implies that

If (0, T, u) ≤ U f (0, T, u(0), u(T )) + (8i)−1.

Therefore if (108) holds, then the assertion of the lemma holds with v = u and τ = T0+i+1
(see (113), (100), (116) and (114)). Analogously we can show that if (109) is true, then
the assertion of the lemma holds. This completes the proof of Lemma 5.4.

Completion of the proof of Theorem 5.1 In order to prove the theorem it is sufficient
to show the existence of v ∈ M(f) such that

v(R1) 6= {0, e}.

By Lemma 5.4 for each natural number i there exists Ti ≥ 2i, an a.c. function vi : [0, Ti] →
Rn and

τi ∈ [i, Ti − i] (118)

such that
|vi(0)|, |vi(Ti)| ≤ 2n+ 1, (119)
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If (0, Ti, vi) ≤ U f (0, Ti, vi(0), vi(Ti)) + i−1, (120)

|vi(τi)|, |vi(τi)− e| ≥ 2−1. (121)

It follows from (119), (120) and Proposition 2.3 that there exists S > 0 such that

|vi(t)| ≤ S for all t ∈ [0, Ti] and all integers i ≥ 1. (122)

Let i ≥ 1 be an integer. The inclusion (118) implies that

[−i, i] ⊂ [−τi, Ti − τi]. (123)

Define

ui(t) = vi(t+ τi), t ∈ [−τi, Ti − τi]. (124)

In view of (124), (122) and (120)

|ui(t)| ≤ S, t ∈ [−τi, Ti − τi], (125)

If (−τi, Ti − τi, ui) ≤ U f (−τi, Ti − τi, ui(−τi), ui(−τi + Ti)) + i−1. (126)

It follows from (125) and (126) that for each natural number k the sequence {If (−k, k,
ui)}∞i=k is bounded. Combined with Proposition 2.2 this implies that there exist a sub-
sequence {uiq}∞q=1 and an a.c. function u : R1 → Rn such that for each natural number
k

uiq → u as q → ∞ uniformly on [−k, k], (127)

u′
iq → u′ as q → ∞ weakly in L1(Rn, (−k, k)),

If (−k, k, u) ≤ lim infq→∞ If (−k, k, uiq).

Relations (121), (124), (127) and (125) imply that

|u(0)|, |u(0)− e| ≥ 2−1, (128)

|u(t)| ≤ S, t ∈ R1. (129)

By (127) and (126) for each natural number k

If (−k, k, u) ≤ lim inf
q→∞

If (−k, k, uiq)

≤ lim inf
q→∞

(U f (−k, k, uiq(−k), uiq(k)) + i−1)

= U f (−k, k, u(−k), u(k)).

Together with (129) this relation implies that u ∈ M(f). In view of (124) u(0) 6∈ {0, e}.
Theorem 5.1 is proved.
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