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1. Introduction

Let U be an open subset of R® and k € N* A function f : U — R is called lower-C* (for
short, LC*), if for every xy € U there exist § > 0, a compact topological space S, and a
jointly continuous function F': B(xzg,d) x S — R satisfying

flz) = max F(z,s), for all z € B(xo,9),

and such that all derivatives of F' up to order k£ with respect to = exist and are jointly
continuous. It is easily seen that every such function is locally Lipschitz. In particular,
LC* functions provide a robust extension of both convexity and smoothness. For their
role in optimization we refer to the survey [8] and to [19]; see also [17] for extensions in
Hilbert spaces.

The class of LC! functions is first introduced by Spingarn in [22]. In that work, Spingarn
shows that these functions are (Mifflin) semi-smooth and Clarke regular, and that are
characterized by a generalized monotonicity property of their subgradients, called sub-
monotonicity. Recently, in [5, Corollary 3], it has been pointed out that the class of LC!
functions coincides with the class of locally Lipschitz approximately convex functions. We
recall that a function f: U — R is called approzimately conver on U if for every xq € U
and € > 0, there exists § > 0 such that for all z, y € B(z,d) and all ¢ € [0, 1]

flr+ (1 =t)y) <if(x) + (1 =1)f(y) +et(l =)z —yl| (1)
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The above notion (introduced in [14], [15]) corresponds to a first order relaxation of
convexity and is strongly related to the notion of a-paraconvexity studied in [11], [21]. A
more general class — corresponding to the case that the € of the above definition is always
bounded below away from 0 — is recently considered in [16] for functions on the real line:
these functions (which are not Clarke regular in general) are characterized by their local
decomposability into a sum of a convex and a Lipschitz function. We refer also to [9] and
[7] for related notions.

Shortly after Spingarn’s work, the (smaller) class of LC? functions has been introduced
and studied by Rockafellar [19]. In that work the following important results are estab-
lished:

—  for every k > 2, the class of LC* functions coincides with the class of LC? functions;
—  LC? are exactly the locally Lipschitz weakly convex functions.

We recall that a function f : U — R is called weakly convex on U if for every zy € U,
there exist o > 0 and ¢ > 0 such that for all z,y € B(zo,d) and t € (0,1)

flte+ (L= t)y) < tf(2) + (L= 0)f(y) + ot(l = t)llz — yll” (2)

Let us note that LC? functions are characterized by the fact that they are locally de-
composable into a sum of a convex continuous function and a concave quadratic function
(see [23], [19], [10] e.g.). The existence of a similar decomposition for the class of LC*
functions remains open (see also Remark 3.6).

Remark 1.1 (terminology issues). We wish to draw the attention of the reader on
some terminology issues: speaking about locally Lipschitz functions, the classes of weakly
convex functions [23], of prox-regular (or proximal retract) functions [2] and of prime-
lower nice functions [18] all coincide with the class of LC? functions. See also [1], [4], [18]
and references therein for related topics.

In this paper, we consider the class of lower-C® functions (in short, LC'%), where
0 < a < 1. Roughly speaking, these are LC! functions of the form f(z) = max,cs F(z, s)
for which V,F(.,s) is a-Holder (see exact definition in Section 2). We shall show that
every such function is characterized by the a-hypomonotonicity (Definition 2.4) of its
(Clarke) subdifferential and enjoys an alternative geometrical description as a (1 + «)-
order perturbation of convexity (see Theorem 3.2). In particular, as the notation suggests,
for & = 1 we recover the class of LC? functions (see Remark 3.3).

2. Prerequisites and definitions

Let f : U — R be a locally Lipschitz function defined in an open subset U of R". For
every xg € U, the (Clarke) generalized derivative of f at z is defined as follows:

f°(xo;d) := limsup fly +td) — f(y)
(y,t)—(z0,0+) t

, forall d € R™.

It follows (see [3, Proposition 2.1.1], for example) that d — f°(zo;d) is a continuous
sublinear functional, so that the Clarke subdifferential 0f(zg) of f, that is, the set

0f (1) = {z* € R™ : f*(xo;d) > (a*,d), Vd € R"} (3)
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is nonempty. In particular, the multivalued operator 9f : R" = R" given by (3) if
x € U and being empty for x € R" \ U is called subdifferential of f. If f is a C*
function then 0f(z) = {V f(z)}, for all x € U. Natural operations in optimization (as for
instance taking the maximum of an index family of differentiable functions) often lead to
nonsmooth functions, in which case df is used to substitute the derivative. We refer to
the classical textbooks [3], [4] and [20] for details and applications to optimization.

In this work we study a particular class of maximum-type locally Lipschitz functions. Let
us give the following definition.

Definition 2.1 (lower-C'= function). Let U be an open set of R”, and 0 < a < 1.
A locally Lipschitz function f : U — R is called lower-C*® at x, € U, if there exist
a non-empty compact set S, positive constants 0,0 > 0 and a continuous function F' :
B(zg,0) x S — R which is differentiable with respect to the x-variable, such that

f(z) = maxF(x,s), for all z € B(xo,9),

s€S
where V,F(x,s) is (jointly) continuous and
Vo E(y, ) = Vol (2, 8)[| < olly — (| (4)
for all z,y € B(x,0) and all s € I(x) U I(y), where

I(x)={s"€S: f(x) = F(x,s)}. (5)

We say that f is lower-C''® on U (and we denote f € LCH®) if the above definition is
fulfilled at every = € U. Removing condition (4) from Definition 2.1 or setting oo = 0, we
obtain the definition of the lower-C! function given in the introduction. Hence, the above
definition is a strengthening of the lower-C' property. In Subsection 3.3 we provide an
example of a LC! function that is not LCH® for any a > 0 (see Proposition 3.7).

Similarly to Definition 2.1, the following notion strengthens the notion of approximate
convexity defined in (1).

Definition 2.2 (a-weakly convex function). Let U be a nonempty open subset of R"
and 0 < a < 1. A locally Lipschitz function f : U — R is called a-weakly convex at
xo € U, if there exist 0 > 0 and ¢ > 0 such that for all x,y € B(zo,d) and t € (0,1)

fltz + (1= t)y) < tf(@) + (1= t)f(y) + ot(l = t)|lz — y[|". (6)
The function f is called a-weakly convex, if it is a-weakly convex at every x € U.

Remark 2.3. Taking o = 1 in the above definition corresponds to the notion of weak
convexity, see (2). On the other hand, the value a = 0 has no practical interest. It yields
a notion which is strictly weaker than approximate convexity (since “for every e > 0” has
been replaced by “there exists o > 0”) and which does not ensure the Clarke regularity
of the function.

Finally we need the notion of a-hypomonotone operator, which lies strictly between sub-
monotonicity and hypomonotonicity.



318 A. Daniilidis, J. Malick / ... Between Lower-C' and Lower-C* Functions

Definition 2.4 (a-hypomonotone operator). Let U be a nonempty open subset of
R™ and 0 < o < 1. A multivalued mapping T': U = R" is called a-hypomonotone at
xo € U, if there exist o > 0 and 6 > 0 such that for all z,y € B(xo,d), 2* € df(x) and
y* € df(y) we have

(y"—a"y—x) > —olly— =l (7)

The operator T is called a-hypomonotone, if it is a-hypomonotone at every = € U.

Remark 2.5. An analogous remark applies here. Setting o = 1 we recover the notion of
hypomonotonicity, while the value o = 0 has no interest for our purposes.

3. Main results

In Subsection 3.1 we establish subdifferential and mixed characterizations of the class
of lower-C® functions, while in Subsection 3.2 we show the coincidence of that class
with the class of locally Lipschitz a-weakly convex functions and give an epigraphical
characterization. These results are in the spirit of [22], [5], [15] (for approximately convex
functions) and of [19], [4], [2] (for weakly convex functions). We also quote [4] and [1] for
a study of epigraphical properties of such functions.

In Subsection 3.3 we give a complete classification of the aforementioned classes and
examples distinguishing them. We also present subclasses with a particular interest in
optimization.

3.1. Subdifferential characterizations
The following result is an expected characterization of a-weak convexity.

Theorem 3.1 (characterizations). Let U be an open set of R" and f : U — R a locally
Lipschitz function. The following statements are equivalent:

(i) f is a-weakly conver on U;

(ii) Of is a-hypomonotone on U;

(#3) for all xy € U, there exist 0,5 > 0 such that for all © € B(zo,9), * € 0f(z), and
u € R™ with x +u € B(x,0),

[l +u) = fl)+ (2" u) —olful| (8)

Proof. (i) = (¢41). Fix o € U, 0 > 0, § > 0 given by Definition 2.2. Let us consider
any « € B(xo,d) and u € R” such that z+u € B(zg,d). Then for z € B(x, ) sufficiently
closed to x and such that z +u € B(xg,d), one has

flz+tu) <tf(z+u)+ (1 —1t)f(2) 4+ ot(l—t)]|ul/™

or equivalently

TEXIZTE < fepa)— £ 4ot - o)l

Taking the “limsup” when z — x and ¢ — 0+ in both sides, one gets

folru) < flo+u)— flz)+oljul)
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which in view of (3) yields the result.

(2i¢) = (i2). Fix 29 € U, 0 > 0, § > 0 and take any x,y € B(xg,0), z* € df(x) and
y* € f(y). Then one has

fy) = fle)+(a*y —a)—olle —y|[T  and  f(z) > fy)+(y"z —y)—ollz -yl
which by addition yields

(@ =y —y) > =20||z —y[|""
This shows the a-hypomonotonicity of df.

(2¢) = (4). Suppose Of is a-hypomonotone and let ¢ > 0, § > 0 as in Definition 2.4. Fix
T1, T2 € B(xg,d) and for any ¢t € (0,1) set z; = taq + (1 — )2 so that

xp—x1=(1—t)(rg —x1) and =z —xg = t(z1 — x2). 9)

By the Lebourg mean value theorem (see [12] or [3, Theorem 2.3.7]), for every i € {1,2}
there exists z; € [z;, ;[ and zF € 0f(z;) such that

f(w) = i) + (27, =), (10)

Multiplying (10) respectively by ¢ for ¢ = 1 and by (1 — ¢) for ¢ = 2 and adding the
resulting inequalities we conclude in view of (9) that

fla) =tf (1) + (1 =) f (22) — t(1 — ) (2] — 23,21 — 22). (11)
Since
Tr1 — T2 _ 21 — 29
oy — ol 21 — 22|

the definition of a-hypomonotonicity implies

(27— 25,01 — m) > —ollz1 — 2| "] |21 — @al| = =0 ||z — o],
so (11) yields
1+«
fla) < tf(e)+ (1 =0)f(y) + at(l =) [lz —y[|,
which ends the proof. O

Let us note that the property that f is locally Lipschitz is only used for the implica-
tion (i7) = (i), in which the Lebourg mean value theorem for locally Lipschitz functions
was needed. All other implications can be adapted to the case that f is lower semi-
continuous and Jf is its Clarke-Rockafellar subdifferential (we refer to [3] or [4] for the
corresponding definition).

3.2. Coincidence of a-weakly convex and LC"* functions

Let us now show the coincidence of the classes of locally Lipschitz a-weakly convex func-
tions (Definition 2.2) and of LC"* functions (Definition 2.1). This result comes to com-
plete statements of similar nature, previously established in [5, Corollary 3] (for approxi-
mately convex functions) and in [19], [23] (for weakly convex functions).



320 A. Daniilidis, J. Malick / ... Between Lower-C' and Lower-C* Functions

Theorem 3.2 (coincidence result). Let U be a nonempty open subset of R™ and let
0 < a < 1. Then a locally Lipschitz function f : U — R is lower-C%* if and only if f is
a-weakly convew.

Proof. (=). Let us assume that f is lower-C'® and let us fix any 2y € U. Then let us
consider §,0 > 0, a nonempty compact set S and a continuous function F'(z, s) according
to the Definition 2.1 so that

f(z) = max F(x,s), forall x € B(zo,J),

seSs

and
IVF(y,s) = VF(z,s)|| < olly— 2| (12)

for all x,y € B(x,0) and s € I(z) U I(y). Let x € B(x,0) and v € R" be such that
T+ u € B(xy,0) and set y = x + u. Since S and I(z) are compact, it follows (see [20,
Theorem 10.31]) that

Of(x) =co{VF(x,s), s€I(x)},

where co (A) denotes the convex hull of a set A. For any 2* € df(x), by the Caratheodory
theorem, there exist Ay,..., A\, in Ry with Y5, \; =1 and sq,..., 5,41 in I(z) such that

n+1
= Z NV E(x,s;).
i=1
Applying for every i € {1,...,n+1} the classical mean-value theorem to the differentiable
function  — F(x,s;) we obtain z; € [z, y[ such that
F(y7 Si) - F(l’, Si) - <VF(ZM Si): Yy — ZL‘>

Since s; € I(z), we have successively

fly) > Fly,si)
= F(x,s) — (VF(zi,8),y —x)
= f(z)+(VF(x,s),y —x)+ (VF(2,8) — VF(x,8),y — x).

»

Multiplying by A; > 0 and adding the resulting inequalities for i € {1,...,n + 1} we
obtain (recalling y = = + u) that

n+1
Flo+u) > f@) + (0 u)+ S A (VF(z1, ) — VE(@,51), 0). (13)
i=1
Since s; € I(z) for i € {1,...,n+ 1}, relation (12) yields
(VE(z,8) = VF(2i,8:),u) < olul| |z — =[|".
Since z; € [z, y] this yields

(VF(x,s) = VF(zi,5:),0) < ollull ly —||* = oul".
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Replacing into (13) we get
flatu) > fx)+ (2", u) = ofjul[ 7,
so the assertion follows from Theorem 3.1 (iii)=(i).

(«=). Conversely, let us assume f is a-weakly convex and let us consider o € U. Then
for some o0, > 0 and all y, z € B(x,0), z* € df(z) we have

fly) = f()+ (" y —2) —olly — 2| (14)

Taking eventually 6 > o, we may assume that the above inequality is strict for all y #

z € B(xo,0) and all 2* € 0f(z). Set

S = {(z,z*) ER"XR", ||z — x| <

N S

, 2" € 8f(Z)}

Since f is locally bounded and has a closed graph (see [3, Proposition 2.1.5], for example)
it follows that S is compact. Moreover, S is nonempty since it contains the set {xg} x
Of(xp). Let us now define

F : B(x,0/2) x S — R
($,<Z,Z*)) — F(QJ,(Z,Z*)) = f(Z) + <Z*,QZ _Z> —O'HSC _ZHH_Q'

Then for every = € B(xy,d/2) and every s = (z,2*) € S we have in view of (14) (and the
choice of o > 0) that

flz) = Fz,(z,27))
with strict inequality whenever x # z. Thus for every = € B(zg,d/2)

f(z) = (Zfil%ﬁsF(x’ (2,27)),

and
I(2) = {} x 0f(@).
Note also that

F—o(l+a)|lz -z (@—2) if x#z

V. () =

z if =z

Let now any x,y € B(xo,0) and s = (z,2%) € I(x) U I(y). It follows that z € {x,y}. Let
us suppose (with no loss of generality) that z = y. Then

Vo F(y, ) = Vo F(2,5)[| = o(1+ ) [ly — x|,

Thus (4) of Definition 2.1 holds. To complete the proof, it suffices to check the continuity
of V. F(z,(z,2*)) on B(xy,0) x S. This is clear at every point (z, (2, z*)) with x # z, so
let us suppose that z = z, that is, (z,(z,2%)) = (z, (z,2")) and let (z,, (20, 2))n>1 be a
sequence of B(xg,d) x S converging to (z, (z,2*)). For all n € N such that z,, # z, we
have

IV (x, (2,27) = V F(an, (20, 2,))

|2* = 2" + o1+ a)||z, — 2ol | N — 2n) I

< =zl + o1+ a)lon — |
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On the other hand, for all n € N such that x,, = 2, we have
IV, P, (27, 2%)) = ¥, F (@, (2 2| = 12* = 7).
Thus, it follows easily that
IV F(, (2, 2%)) = Vo F (@, (20, 25))|] — 0

as (T, (2n,25)) — (x,(x,2)). This shows that V,F is jointly continuous, so f €
Lche, O

Remark 3.3 (LC*' = LC?). Taking o = 1 in the above proof we obtain that the class
of the lower-C'*! functions and of the locally Lipschitz weakly convex functions coincide.

In view of the classical result of Rockafellar [19] (recalled in the introduction), we conclude
that the classes LC™! and LC? coincide.

Let us now provide a characterization of the epigraphs of LC™* functions, in terms of
the truncated normal cone operator. We first recall the definition of the latter: if C' is a
nonempty subset of a Euclidean space R™ (m € N*), then the (Clarke) normal cone of C'
at u € C' is defined by

No(u) ={u" e R™: (u*,v) <0, Yv € Te(u)}, (15)
where the Clarke tangent cone T¢(u) is defined as follows:

Ve > 0,46 > 0 such that

' € Blu,6) N C, ¥t €)0,5, ( +tBw,e))nC 20, 16

v € Te(u) <:>{

We put Ne(u) = ), whenever u ¢ C. For any r > 0 we denote by N/, (u) the truncated
Clarke normal cone, that is,

N{(u) = Ne(u) N B[0, 7],

where B[0,r] denotes the closed ball in R™ of center 0 and radius r. We further denote
by

epi f = {(z,0) R : 3 > f(x)}
the epigraph of the function f defined on R™. By [3, p. 56], for all ug = (xo, f(x0)) € epi f
we have

Nepi f(u0> = R—i—(@f(xO)) _1)

Let us finally note that, if f is x-Lipschitz on a ball B of R”, then for all z1,z5 in B, we
have

|22 — ]| < lug — ] < V14 K2 [[zg — 2], (17)
where u; == (x4, f(2;)), i € {1,2} and where we use the same notation to denote the

Euclidean norm of the spaces R® and R™"*.

The following result is analogous to the ones established in [4, Section 5] (for LC? func-
tions) and in [1, Theorem 4.1.4] (for LC' functions).
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Corollary 3.4 (epigraphical characterization). Let f: U — R be a locally Lipschitz
function defined on an open subset U of R™. The following two assertions are equivalent:

(i) the function f is lower-C1*;

(i) the operator N ; : R*™ = R™"! is a-hypomonotone.

Proof. (i) = (¢%) Let up € epi f. We can suppose without loss of generality that uy =
(2o, f(xo)) for xy € U (otherwise Nep; f(u) is reduced to {0} for all w in a neighborhood
of ug, so that (7) is clearly satisfied).

Let now k,d; > 0 such that f is k-Lipschitz on B(zg, ;). By Theorem 3.2, the function f
is weakly convex, so Theorem 3.1 (i)=-(iii) yields that there exist d; > 0 and ¢ > 0 such
that for all x1, 29 € B(xg,02), 7 € 0f(x1) and x5 € Of(x2)

Fm) = fla1) = (2], 22 — 1) — 0|21 — 22| (18)

Set 0 = min{dy, d2} and take uy,us € B(ug,d) Nepi f (we use the same notation B(ug,d)
to denote the ball of center ug and radius § > 0 in the space R"™!). In particular, u; has
the form (z1, 3;) with 3; > f(z1). There are two cases:

o If B > f(x1), then NJ; ;(uy) = {0}.
If 51 = f(x1), then
Nay f(ur) = R*(0f (1), —1) N B[0, 1.
So for every u} € N}

epi f(u1), there exists x7 € Jf(x1) such that uj = p(z], —1).
Note also that we can bound g uniformly. Since f is k-Lipschitz on B(z,0), one
has ||z5|| < k (see [3, Proposition 2.1.2], for example). As |[|uj|| < 1, one obtains

< (14 K2)"2.
Since By > f(z2), (18) implies

(w7, =1), (z2 — 21, B2 = B1)) < of|a1 — o]

Here again we use the same notation for the scalar products in R” and in R**!. In
particular, ((z, a), (y, 3)) := (z,y) + af, for all z,y € R™ and all o, § € R.

In both cases, for every uj € Nj; ;(u1) we have

(whus —wr) < (14 K220z — a7,

which in view of (17) yields

(Wfus —ur) < (14 K%) 20 jug — ua]|.

Interchanging the roles of u; and us, for every uj € N} epi f(u2) we have

(U3, up = wr) = —(1+#%) 20l jur — usf|*.

Substracting the last two equations, we get

(uy —uj,ug —up) > =2(1+k ) 20Hu —u2\|1+a
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which means that N!

epi f 18 a-hypomonotone.

(2¢) = (¢) Fix xp € U and set ug = (wo, f(z0)). Let §; and o such that for all uy,uy €

B(xg, 1), uj € Nelpi f(ul) and uj; € Nclpif(UQ)

(0 — iy p — wn) = —ojur — ], (19)
Let d; and x be such that f is k-Lipschitz on B(xg,d;) and set

min{él, 52}

0= )
N

Let 21,29 € B(x0,9), 7 € 0f(x1) and x5 € 0f(xq). For i € {1,2}, set u; = (z;, f(x;))
and ! := (1+r2)"2(z*, —1). Observe that u; € B(ug, 6,) and u} € N s(ug). Thus (19)
can be rephrased as

(@5 — @7,0), (w2 — 21, f(22) = f(21))) = —0(1+ ) ?[Jus — usf|*.

Using (17) we get

(e — a2 — 21) 2 —o(L4 &) |1 — ol

Thus Jf is a-hypomonotone. By Theorem 3.1 (ii)=-(i) and Theorem 3.2, we conclude
that f is LC1, O]

3.3. Classification

Let us fix a nonempty open subset U of R™ and let us consider the following two particular
classes of functions.

— (locally decomposable functions) We say that a locally Lipschitz function f: U —
R is locally decomposable on U as a sum of a convex function and a O function if for
all zp € U there exists § > 0, a convex continuous function k : B(zp,0) — R and a
Clfunction h : B(zg,d) — R (that is, h is differentiable with a-Holder derivative) such
that

f(z) = k(z) + h(z), for all x € B(xo,0).

— (locally composite functions) We say that a locally Lipschitz function f: U — R
is locally composite on U, if for every xy € U there exists § > 0, a convex continuous
function g : R™ — R and a C"*-function G : B(xq,d) — R™ such that

f(z) =g(G(x)), forall z € B(x,9).
This implies (see [20, p. 445], for example) that
Of(z) = VG(2)*0g(G(x)), for all x € B(xg,J).

Proposition 3.5. Let f : U — R be a locally Lipschitz function and 0 < o < 1. Consider
the following conditions:

(1) f is locally decomposable on U as a sum of a convex continuous and a C** function;
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(i)  f is locally composite on U with a convexr continuous and a CY function;
(71) f is a LCY™ function.

Then (i) = (ii) = (iii).
Proof. (i)=>(ii). Having a local decomposition f = k + h, set g(z,r) = k(z) + r for

(x,r) € R" x R and G(z) = (z,h(z)) for x € R. It is straightforward to see that
f(x) = g(G(x)), that G is C1® and that g is convex and continuous.

(il)==(iii). Let gy € U, 6 > 0 and g,h : B(zo,0) — R, g being convex continuous and
G € CY*(B(xy,9)) such that f(z) = g(G(x)) for all z € B(xq,d). For all z near zg, one
has

0f (z) = VG(z)"09(G(x))
Since V@G is a-Holderian, let o > 0 such that for all z,y € B(xy, )

IVG(y) = VG ()| < ally — || (20)

Let x,y € B(xg,0). For any z* € 0f(x), there exists ( € Jg(G(z)) such that z* =
VG(x)*¢. Since g is convex, it follows that

fly) = f(x) = 9(G(y)) — 9(G(x)) = ((, G(y) — G(x)). (21)

Applying the mean value theorem to the function G on the segment [z,y] we obtain
z € [z, y[ such that
Gy) — G(x) = VG(2)(y — ). (22)

By (20), it holds
IVG(2) = VG (2)|| < of|z — z]|" < olly —=[|". (23)
Thus by (21), (22) and (23), we can write

fy) = f(x)

v

((, VG(2)(y — x))
= ((VG(z)(y —2)) + (¢, (VG(2) = VG(2))(y — 7))
> (¢, VG(2)(y —2)) —oll¢ll lly — =/

Moreover, there exists a constant £ > 0 which bounds uniformly the norm of every
subgradient of the convex continuous function g near xy. Thus it holds

fly) = f2) > a*y =) —onlly — ||,
and we can conclude by Theorem 3.1(iii)=(i) and Theorem 3.2. O

Remark 3.6 (conjecture). A classical result of Rockafellar [19] (see also [23], [8]) as-
serts that every LC? function is decomposable as a sum of a convex continuous and a
concave quadratic function. Moreover, in view of Remark 3.3, the classes LC'! and LC?
coincide. Thus, in case a = 1, the three assertions of Proposition 3.5 are then equiva-
lent. It is not known if an analogous equivalence holds for the classes of LCO! and LCH
functions.
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Let us now give an example of a LC! function f, which does not belong to any of the
classes LC™* for o > 0. More precisely, we have the following proposition.
Proposition 3.7.

U L' ¢ Lt

0<a<1

Proof. The inclusion follows directly from Definition 2.1. To see that the inclusion is
strict, let us consider the function f : R — R defined as follows:

where
o 0 t<0
git)=9 1 ;o

|Int|

It is easily seen that ¢ is continuous on R, so that f is of class C'. In particular, f € LC".
Note also that f(0) =0 and f’(0) = 0.

Let us prove that for any a > 0 the function f does not belong to the class LC'*. Indeed,
suppose towards a contradiction that there exists o > 0 such that f € LC*®. Then by
Theorem 3.2 and Theorem 3.1 (i)=-(iii) there exist o, > 0 such that for all x € (0,1),

fl@) = —o |zl

Set now ¢(z) = f(x) + o]z |***. Then the function ¢ is C'!, non-negative and ¢(0) = 0.
It follows easily that there exists a sequence (x,),>1 of positive real numbers converging
to 0 such that ¢'(x,) > 0. (Indeed, if for some ¢ > 0 we have ¢'(x) < 0 for all z € (0,0),
then ¢ should necessarily take negative values.) We compute ¢'(z) = (1 4+ a)oz® — g(z)
for x > 0. Then we have for all n > 0

1

1 > —.
(1+a)o ,® |Inz,|

Since o > 0 the right-hand side tends to +00 when n grows. We thus obtain a contradic-
tion. It follows that

fect\|Jrct,

a>0

which proves the assertion. Il

Let us complete our classification with the following proposition.

Proposition 3.8.
Lc* ¢ () e

0<axl

Proof. Since every LC? function is a fortiori LCM* for all 0 < a < 1, the inclusion holds.
To see that the inclusion is strict, let us consider the function

flz) = / g(t) dt, for all z € R,
0
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where
0 t<0
g(t)_{ tint t>0.

Then g is continuous on R and clearly not Lipschitz around ¢t = 0. Let us show that, for
any 0 < a < 1, g is a-Holderian in a neighborhood of 0. To this end, take x,y sufficiently
small to ensure that are inside a neighborhood of 0 in which ¢ is decreasing. We can
suppose without loss of generality that y < x. We may suppose x > 0 (else the condition
of a-Holderianity is trivially fulfilled), and we distinguish three cases.

Case 1. y < 0. Then we can write

_ 1 |
9() —g@)| _ ollne] _ aflna] _ oy (24)
o=yl " le—ylr T e

Case 2. 0 <y < z/2. In this case 0 > g(y) > g(z) so that

l9(x) = 9| _ lg(=)]

< < 2% Inx|at ™. (25)
|z —ylo /2]

Case 3. /2 < y < x. Applying the mean-value theorem for the function g to the segment
[z, y] (where g is C*°) we obtain z € [z,y] such that

l9(z) — g(y)|

T
< (|lmzl+1 a:—yl_o‘g In =+ 1)zt 26
DI < (sl 1) e =y < ([ g+ 1) (26)

In all cases (24)-(26), the quantity |z — y|~® |g(x) — g(y)| is bounded when z and y are
sufficiently close to 0. Thus, there exist § > 0 and M > 0 such that for all z,y €] — 4, 0]
with = # y we have

l9(x) — g(y)]

< M.
|z — y|*

This means that g is a-Hdélderian on | — 4, d].

It follows that f is C! on R and locally C1* around 0, for any 0 < o < 1. We us prove
that f is not LC? around 0. To this end, let us assume, towards a contradiction, that
there exists & > 0 such that df is hypomonotone on B(zg,d). Since f is C', we have
Of(z) = {g(x)} for all x € R, and in particular 9f(0) = {0}. Then for all & > 0 and
x € B(x,0),

rg(x) > —o|z|?

This implies
Inx > —0c forall0 <z <,

which is a clear contradiction. O
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Let us resume the results in the following diagram.

LC® = LC* = LC*= L[CY ¢ LC™ ¢ LC!

(2<k<+00) (0<ax1)

U LCY ¢ LC?

O<a<1

LC* ¢ ) LC'™

0<a<l

Acknowledgements. The authors are indebted to R. McCann, N. Hadjisavvas and L. Thibault
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