Filling the Gap Between Lower- C^1 and Lower- C^2 Functions

Aris Daniilidis

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallès), Spain arisd@mat.uab.es, http://mat.uab.es/~arisd

Jérôme Malick

INRIA, Rhône-Alpes, 655 Avenue de l'Europe, Montbonnot, St Martin, 38334 Saint Ismier, France jerome.malick@inria.fr, http://www.inrialpes.fr/bipop/people/malick/

The classes of lower- $C^{1,\alpha}$ functions (0 < $\alpha \le 1$), that is, functions locally representable as a maximum of a compactly parametrized family of continuously differentiable functions with α -Hölder derivative, are hereby introduced. These classes form a strictly decreasing sequence from the larger class of lower- C^1 towards the smaller class of lower- C^2 functions, and can be analogously characterized via perturbed convex inequalities or via appropriate generalized monotonicity properties of their subdifferentials. Several examples are provided and a complete classification is given.

Keywords: Maximum function, lower- $C^{1,\alpha}$ function, α -weakly convex function, α -hypomonotone operator

1991 Mathematics Subject Classification: Primary 26B25; Secondary 49J52, 47H05

1. Introduction

Let U be an open subset of \mathbb{R}^n and $k \in \mathbb{N}^*$. A function $f: U \to \mathbb{R}$ is called lower- C^k (for short, LC^k), if for every $x_0 \in U$ there exist $\delta > 0$, a compact topological space S, and a jointly continuous function $F: B(x_0, \delta) \times S \to \mathbb{R}$ satisfying

$$f(x) = \max_{s \in S} F(x, s),$$
 for all $x \in B(x_0, \delta),$

and such that all derivatives of F up to order k with respect to x exist and are jointly continuous. It is easily seen that every such function is locally Lipschitz. In particular, LC^k functions provide a robust extension of both convexity and smoothness. For their role in optimization we refer to the survey [8] and to [19]; see also [17] for extensions in Hilbert spaces.

The class of LC^1 functions is first introduced by Spingarn in [22]. In that work, Spingarn shows that these functions are (Mifflin) semi-smooth and Clarke regular, and that are characterized by a generalized monotonicity property of their subgradients, called submonotonicity. Recently, in [5, Corollary 3], it has been pointed out that the class of LC^1 functions coincides with the class of locally Lipschitz approximately convex functions. We recall that a function $f: U \to \mathbb{R}$ is called approximately convex on U if for every $x_0 \in U$ and $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in B(x_0, \delta)$ and all $t \in [0, 1]$

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \varepsilon t(1-t)||x-y||. \tag{1}$$

ISSN 0944-6532 / \$2.50 © Heldermann Verlag

The above notion (introduced in [14], [15]) corresponds to a first order relaxation of convexity and is strongly related to the notion of α -paraconvexity studied in [11], [21]. A more general class – corresponding to the case that the ε of the above definition is always bounded below away from 0 – is recently considered in [16] for functions on the real line: these functions (which are not Clarke regular in general) are characterized by their local decomposability into a sum of a convex and a Lipschitz function. We refer also to [9] and [7] for related notions.

Shortly after Spingarn's work, the (smaller) class of LC^2 functions has been introduced and studied by Rockafellar [19]. In that work the following important results are established:

- for every $k \geq 2$, the class of LC^k functions coincides with the class of LC^2 functions;
- LC^2 are exactly the locally Lipschitz weakly convex functions.

We recall that a function $f: U \to \mathbb{R}$ is called *weakly convex* on U if for every $x_0 \in U$, there exist $\sigma > 0$ and $\delta > 0$ such that for all $x, y \in B(x_0, \delta)$ and $t \in (0, 1)$

$$f(tx + (1-t)y) < tf(x) + (1-t)f(y) + \sigma t(1-t)||x-y||^2.$$
(2)

Let us note that LC^2 functions are characterized by the fact that they are locally decomposable into a sum of a convex continuous function and a concave quadratic function (see [23], [19], [10] e.g.). The existence of a similar decomposition for the class of LC^1 functions remains open (see also Remark 3.6).

Remark 1.1 (terminology issues). We wish to draw the attention of the reader on some terminology issues: speaking about locally Lipschitz functions, the classes of weakly convex functions [23], of prox-regular (or proximal retract) functions [2] and of prime-lower nice functions [18] all coincide with the class of LC^2 functions. See also [1], [4], [18] and references therein for related topics.

In this paper, we consider the class of lower- $C^{1,\alpha}$ functions (in short, $LC^{1,\alpha}$), where $0 < \alpha \le 1$. Roughly speaking, these are LC^1 functions of the form $f(x) = \max_{s \in S} F(x, s)$ for which $\nabla_x F(., s)$ is α -Hölder (see exact definition in Section 2). We shall show that every such function is characterized by the α -hypomonotonicity (Definition 2.4) of its (Clarke) subdifferential and enjoys an alternative geometrical description as a $(1 + \alpha)$ -order perturbation of convexity (see Theorem 3.2). In particular, as the notation suggests, for $\alpha = 1$ we recover the class of LC^2 functions (see Remark 3.3).

2. Prerequisites and definitions

Let $f: U \to \mathbb{R}$ be a locally Lipschitz function defined in an open subset U of \mathbb{R}^n . For every $x_0 \in U$, the (Clarke) generalized derivative of f at x_0 is defined as follows:

$$f^{o}(x_{0};d) := \limsup_{(y,t)\to(x_{0},0+)} \frac{f(y+td) - f(y)}{t}, \text{ for all } d \in \mathbb{R}^{n}.$$

It follows (see [3, Proposition 2.1.1], for example) that $d \mapsto f^o(x_0; d)$ is a continuous sublinear functional, so that the Clarke subdifferential $\partial f(x_0)$ of f, that is, the set

$$\partial f(x_0) = \{ x^* \in \mathbb{R}^n : f^o(x_0; d) \ge \langle x^*, d \rangle, \, \forall d \in \mathbb{R}^n \}$$
 (3)

is nonempty. In particular, the multivalued operator $\partial f: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ given by (3) if $x \in U$ and being empty for $x \in \mathbb{R}^n \setminus U$ is called subdifferential of f. If f is a C^1 function then $\partial f(x) = {\nabla f(x)}$, for all $x \in U$. Natural operations in optimization (as for instance taking the maximum of an index family of differentiable functions) often lead to nonsmooth functions, in which case ∂f is used to substitute the derivative. We refer to the classical textbooks [3], [4] and [20] for details and applications to optimization.

In this work we study a particular class of maximum-type locally Lipschitz functions. Let us give the following definition.

Definition 2.1 (lower- $C^{1,\alpha}$ **function).** Let U be an open set of \mathbb{R}^n , and $0 < \alpha \le 1$. A locally Lipschitz function $f: U \to \mathbb{R}$ is called lower- $C^{1,\alpha}$ at $x_0 \in U$, if there exist a non-empty compact set S, positive constants $\delta, \sigma > 0$ and a continuous function $F: B(x_0, \delta) \times S \to \mathbb{R}$ which is differentiable with respect to the x-variable, such that

$$f(x) = \max_{s \in S} F(x, s),$$
 for all $x \in B(x_0, \delta),$

where $\nabla_x F(x,s)$ is (jointly) continuous and

$$||\nabla_x F(y,s) - \nabla_x F(x,s)|| \le \sigma ||y - x||^{\alpha}, \tag{4}$$

for all $x, y \in B(x_0, \delta)$ and all $s \in I(x) \cup I(y)$, where

$$I(x) = \{s^* \in S : f(x) = F(x, s^*)\}. \tag{5}$$

We say that f is lower- $C^{1,\alpha}$ on U (and we denote $f \in LC^{1,\alpha}$) if the above definition is fulfilled at every $x \in U$. Removing condition (4) from Definition 2.1 or setting $\alpha = 0$, we obtain the definition of the lower- C^1 function given in the introduction. Hence, the above definition is a strengthening of the lower- C^1 property. In Subsection 3.3 we provide an example of a LC^1 function that is not $LC^{1,\alpha}$ for any $\alpha > 0$ (see Proposition 3.7).

Similarly to Definition 2.1, the following notion strengthens the notion of approximate convexity defined in (1).

Definition 2.2 (\alpha-weakly convex function). Let U be a nonempty open subset of \mathbb{R}^n and $0 < \alpha \le 1$. A locally Lipschitz function $f: U \to \mathbb{R}$ is called α -weakly convex at $x_0 \in U$, if there exist $\sigma > 0$ and $\delta > 0$ such that for all $x, y \in B(x_0, \delta)$ and $t \in (0, 1)$

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) + \sigma t(1-t)||x-y||^{1+\alpha}.$$
 (6)

The function f is called α -weakly convex, if it is α -weakly convex at every $x \in U$.

Remark 2.3. Taking $\alpha=1$ in the above definition corresponds to the notion of weak convexity, see (2). On the other hand, the value $\alpha=0$ has no practical interest. It yields a notion which is strictly weaker than approximate convexity (since "for every $\varepsilon>0$ " has been replaced by "there exists $\sigma>0$ ") and which does not ensure the Clarke regularity of the function.

Finally we need the notion of α -hypomonotone operator, which lies strictly between submonotonicity and hypomonotonicity.

Definition 2.4 (\alpha-hypomonotone operator). Let U be a nonempty open subset of \mathbb{R}^n and $0 < \alpha \le 1$. A multivalued mapping $T: U \Rightarrow \mathbb{R}^n$ is called α -hypomonotone at $x_0 \in U$, if there exist $\sigma > 0$ and $\delta > 0$ such that for all $x, y \in B(x_0, \delta)$, $x^* \in \partial f(x)$ and $y^* \in \partial f(y)$ we have

$$\langle y^* - x^*, y - x \rangle \ge -\sigma ||y - x||^{1+\alpha}. \tag{7}$$

The operator T is called α -hypomonotone, if it is α -hypomonotone at every $x \in U$.

Remark 2.5. An analogous remark applies here. Setting $\alpha = 1$ we recover the notion of hypomonotonicity, while the value $\alpha = 0$ has no interest for our purposes.

3. Main results

In Subsection 3.1 we establish subdifferential and mixed characterizations of the class of lower- $C^{1,\alpha}$ functions, while in Subsection 3.2 we show the coincidence of that class with the class of locally Lipschitz α -weakly convex functions and give an epigraphical characterization. These results are in the spirit of [22], [5], [15] (for approximately convex functions) and of [19], [4], [2] (for weakly convex functions). We also quote [4] and [1] for a study of epigraphical properties of such functions.

In Subsection 3.3 we give a complete classification of the aforementioned classes and examples distinguishing them. We also present subclasses with a particular interest in optimization.

3.1. Subdifferential characterizations

The following result is an expected characterization of α -weak convexity.

Theorem 3.1 (characterizations). Let U be an open set of \mathbb{R}^n and $f: U \to \mathbb{R}$ a locally Lipschitz function. The following statements are equivalent:

- (i) f is α -weakly convex on U;
- (ii) ∂f is α -hypomonotone on U;
- (iii) for all $x_0 \in U$, there exist $\sigma, \delta > 0$ such that for all $x \in B(x_0, \delta)$, $x^* \in \partial f(x)$, and $u \in \mathbb{R}^n$ with $x + u \in B(x_0, \delta)$,

$$f(x+u) \ge |f(x) + \langle x^*, u \rangle - \sigma ||u||^{1+\alpha}. \tag{8}$$

Proof. (i) \Rightarrow (iii). Fix $x_0 \in U$, $\sigma > 0$, $\delta > 0$ given by Definition 2.2. Let us consider any $x \in B(x_0, \delta)$ and $u \in \mathbb{R}^n$ such that $x + u \in B(x_0, \delta)$. Then for $z \in B(x_0, \delta)$ sufficiently closed to x and such that $z + u \in B(x_0, \delta)$, one has

$$f(z+tu) \le t f(z+u) + (1-t)f(z) + \sigma t(1-t) ||u||^{1+\alpha}$$

or equivalently

$$\frac{f(z+tu) - f(z)}{t} \le f(z+u) - f(z) + \sigma(1-t) ||u||^{1+\alpha}$$

Taking the "limsup" when $z \to x$ and $t \to 0+$ in both sides, one gets

$$f^{o}(x;u) \leq f(x+u) - f(x) + \sigma ||u||^{1+\alpha}$$

which in view of (3) yields the result.

(iii) \Rightarrow (ii). Fix $x_0 \in U$, $\sigma > 0$, $\delta > 0$ and take any $x, y \in B(x_0, \delta)$, $x^* \in \partial f(x)$ and $y^* \in \partial f(y)$. Then one has

$$f(y) \ge f(x) + \langle x^*, y - x \rangle - \sigma ||x - y||^{1+\alpha}$$
 and $f(x) \ge f(y) + \langle y^*, x - y \rangle - \sigma ||x - y||^{1+\alpha}$

which by addition yields

$$\langle x^* - y^*, x - y \rangle \ge -2\sigma ||x - y||^{1+\alpha}.$$

This shows the α -hypomonotonicity of ∂f .

 $(ii) \Rightarrow (i)$. Suppose ∂f is α -hypomonotone and let $\sigma > 0$, $\delta > 0$ as in Definition 2.4. Fix $x_1, x_2 \in B(x_0, \delta)$ and for any $t \in (0, 1)$ set $x_t = tx_1 + (1 - t)x_2$ so that

$$x_t - x_1 = (1 - t)(x_2 - x_1)$$
 and $x_t - x_2 = t(x_1 - x_2)$. (9)

By the Lebourg mean value theorem (see [12] or [3, Theorem 2.3.7]), for every $i \in \{1, 2\}$ there exists $z_i \in [x_i, x_t]$ and $z_i^* \in \partial f(z_i)$ such that

$$f(x_t) = f(x_i) + \langle z_i^*, x_t - x_i \rangle. \tag{10}$$

Multiplying (10) respectively by t for i = 1 and by (1 - t) for i = 2 and adding the resulting inequalities we conclude in view of (9) that

$$f(x_t) = tf(x_1) + (1-t)f(x_2) - t(1-t)\langle z_1^* - z_2^*, x_1 - x_2 \rangle.$$
(11)

Since

$$\frac{x_1 - x_2}{||x_1 - x_2||} = \frac{z_1 - z_2}{||z_1 - z_2||},$$

the definition of α -hypomonotonicity implies

$$\langle z_1^* - z_2^*, x_1 - x_2 \rangle \ge -\sigma ||z_1 - z_2||^{\alpha} ||x_1 - x_2|| \ge -\sigma ||x_1 - x_2||^{1+\alpha},$$

so (11) yields

$$f(x_t) \le t f(x) + (1-t)f(y) + \sigma t(1-t)||x-y||^{1+\alpha}$$

which ends the proof.

Let us note that the property that f is locally Lipschitz is only used for the implication $(ii) \Rightarrow (i)$, in which the Lebourg mean value theorem for locally Lipschitz functions was needed. All other implications can be adapted to the case that f is lower semi-continuous and ∂f is its Clarke-Rockafellar subdifferential (we refer to [3] or [4] for the corresponding definition).

3.2. Coincidence of α -weakly convex and $LC^{1,\alpha}$ functions

Let us now show the coincidence of the classes of locally Lipschitz α -weakly convex functions (Definition 2.2) and of $LC^{1,\alpha}$ functions (Definition 2.1). This result comes to complete statements of similar nature, previously established in [5, Corollary 3] (for approximately convex functions) and in [19], [23] (for weakly convex functions).

Theorem 3.2 (coincidence result). Let U be a nonempty open subset of \mathbb{R}^n and let $0 < \alpha \leq 1$. Then a locally Lipschitz function $f: U \to \mathbb{R}$ is lower- $C^{1,\alpha}$ if and only if f is α -weakly convex.

Proof. (\Rightarrow). Let us assume that f is lower- $C^{1,\alpha}$ and let us fix any $x_0 \in U$. Then let us consider $\delta, \sigma > 0$, a nonempty compact set S and a continuous function F(x, s) according to the Definition 2.1 so that

$$f(x) = \max_{s \in S} F(x, s), \text{ for all } x \in B(x_0, \delta),$$

and

$$||\nabla F(y,s) - \nabla F(x,s)|| \le \sigma ||y - x||^{\alpha}, \tag{12}$$

for all $x, y \in B(x_0, \delta)$ and $s \in I(x) \cup I(y)$. Let $x \in B(x_0, \delta)$ and $u \in \mathbb{R}^n$ be such that $x + u \in B(x_0, \delta)$ and set y = x + u. Since S and I(x) are compact, it follows (see [20, Theorem 10.31]) that

$$\partial f(x) = \operatorname{co} \{ \nabla F(x, s), \ s \in I(x) \},$$

where co (A) denotes the convex hull of a set A. For any $x^* \in \partial f(x)$, by the Caratheodory theorem, there exist $\lambda_1, \ldots, \lambda_{n+1}$ in \mathbb{R}_+ with $\sum_i \lambda_i = 1$ and s_1, \ldots, s_{n+1} in I(x) such that

$$x^* = \sum_{i=1}^{n+1} \lambda_i \nabla F(x, s_i).$$

Applying for every $i \in \{1, ..., n+1\}$ the classical mean-value theorem to the differentiable function $x \longmapsto F(x, s_i)$ we obtain $z_i \in [x, y[$ such that

$$F(y, s_i) - F(x, s_i) = \langle \nabla F(z_i, s_i), y - x \rangle.$$

Since $s_i \in I(x)$, we have successively

$$f(y) \geq F(y, s_i)$$

$$= F(x, s_i) - \langle \nabla F(z_i, s_i), y - x \rangle$$

$$= f(x) + \langle \nabla F(x, s_i), y - x \rangle + \langle \nabla F(z_i, s_i) - \nabla F(x, s_i), y - x \rangle.$$

Multiplying by $\lambda_i \geq 0$ and adding the resulting inequalities for $i \in \{1, ..., n+1\}$ we obtain (recalling y = x + u) that

$$f(x+u) \ge f(x) + \langle x^*, u \rangle + \sum_{i=1}^{n+1} \lambda_i \langle \nabla F(z_i, s_i) - \nabla F(x, s_i), u \rangle.$$
 (13)

Since $s_i \in I(x)$ for $i \in \{1, ..., n+1\}$, relation (12) yields

$$\langle \nabla F(x, s_i) - \nabla F(z_i, s_i), u \rangle \leq \sigma ||u|| ||z_i - x||^{\alpha}.$$

Since $z_i \in [x, y]$ this yields

$$\langle \nabla F(x, s_i) - \nabla F(z_i, s_i), u \rangle \le \sigma ||u|| ||y - x||^{\alpha} = \sigma ||u||^{1+\alpha}.$$

Replacing into (13) we get

$$f(x+u) \geq f(x) + \langle x^*, u \rangle - \sigma ||u||^{1+\alpha},$$

so the assertion follows from Theorem 3.1 (iii) \Rightarrow (i).

(\Leftarrow). Conversely, let us assume f is α -weakly convex and let us consider $x_0 \in U$. Then for some $\sigma, \delta > 0$ and all $y, z \in B(x_0, \delta), z^* \in \partial f(z)$ we have

$$f(y) \ge |f(z) + \langle z^*, y - z \rangle - \sigma ||y - z||^{1+\alpha}. \tag{14}$$

Taking eventually $\tilde{\sigma} > \sigma$, we may assume that the above inequality is strict for all $y \neq z \in B(x_0, \delta)$ and all $z^* \in \partial f(z)$. Set

$$S = \left\{ (z, z^*) \in \mathbb{R}^n \times \mathbb{R}^n, \quad ||z - x_0|| \le \frac{\delta}{2}, \ z^* \in \partial f(z) \right\}$$

Since ∂f is locally bounded and has a closed graph (see [3, Proposition 2.1.5], for example) it follows that S is compact. Moreover, S is nonempty since it contains the set $\{x_0\} \times \partial f(x_0)$. Let us now define

$$F : B(x_0, \delta/2) \times S \longrightarrow \mathbb{R}$$
$$(x, (z, z^*)) \longmapsto F(x, (z, z^*)) := f(z) + \langle z^*, x - z \rangle - \sigma ||x - z||^{1+\alpha}.$$

Then for every $x \in B(x_0, \delta/2)$ and every $s = (z, z^*) \in S$ we have in view of (14) (and the choice of $\sigma > 0$) that

$$f(x) \ge F(x, (z, z^*))$$

with strict inequality whenever $x \neq z$. Thus for every $x \in B(x_0, \delta/2)$

$$f(x) = \max_{(z,z^*)\in S} F(x,(z,z^*)),$$

and

$$I(x) = \{x\} \times \partial f(x).$$

Note also that

$$\nabla_x F(x, (z, z^*)) = \begin{cases} z^* - \sigma(1+\alpha) ||x - z||^{\alpha - 1} (x - z) & \text{if } x \neq z \\ z^* & \text{if } x = z \end{cases}$$

Let now any $x, y \in B(x_0, \delta)$ and $s = (z, z^*) \in I(x) \cup I(y)$. It follows that $z \in \{x, y\}$. Let us suppose (with no loss of generality) that z = y. Then

$$||\nabla_x F(y,s) - \nabla_x F(x,s)|| = \sigma(1+\alpha) ||y-x||^{\alpha}.$$

Thus (4) of Definition 2.1 holds. To complete the proof, it suffices to check the continuity of $\nabla_x F(x,(z,z^*))$ on $B(x_0,\delta) \times S$. This is clear at every point $(x,(z,z^*))$ with $x \neq z$, so let us suppose that x=z, that is, $(x,(z,z^*))=(x,(x,z^*))$ and let $(x_n,(z_n,z_n^*))_{n\geq 1}$ be a sequence of $B(x_0,\delta) \times S$ converging to $(x,(x,z^*))$. For all $n \in \mathbb{N}$ such that $x_n \neq z_n$ we have

$$||\nabla_{x}F(x,(x,z^{*})) - \nabla_{x}F(x_{n},(z_{n},z_{n}^{*}))||$$

$$= ||z^{*} - z_{n}^{*} + \sigma(1+\alpha)||x_{n} - z_{n}||^{\alpha-1}(x_{n} - z_{n})||$$

$$\leq ||z^{*} - z_{n}^{*}|| + \sigma(1+\alpha)||x_{n} - z_{n}||^{\alpha}.$$

On the other hand, for all $n \in \mathbb{N}$ such that $x_n = z_n$ we have

$$||\nabla_x F(x, (x^*, z^*)) - \nabla_x F(x_n, (x_n, z_n^*))|| = ||z^* - z_n^*||.$$

Thus, it follows easily that

$$||\nabla_x F(x,(x,z^*)) - \nabla_x F(x_n,(z_n,z_n^*))|| \longrightarrow 0$$

as $(x_n, (z_n, z_n^*)) \longrightarrow (x, (x, z^*))$. This shows that $\nabla_x F$ is jointly continuous, so $f \in LC^{1,\alpha}$.

Remark 3.3 ($LC^{1,1} \equiv LC^2$). Taking $\alpha = 1$ in the above proof we obtain that the class of the lower- $C^{1,1}$ functions and of the locally Lipschitz weakly convex functions coincide. In view of the classical result of Rockafellar [19] (recalled in the introduction), we conclude that the classes $LC^{1,1}$ and LC^2 coincide.

Let us now provide a characterization of the epigraphs of $LC^{1,\alpha}$ functions, in terms of the truncated normal cone operator. We first recall the definition of the latter: if C is a nonempty subset of a Euclidean space \mathbb{R}^m $(m \in \mathbb{N}^*)$, then the (Clarke) normal cone of C at $u \in C$ is defined by

$$N_C(u) = \{ u^* \in \mathbb{R}^m : \langle u^*, v \rangle \le 0, \ \forall v \in T_C(u) \}, \tag{15}$$

where the Clarke tangent cone $T_C(u)$ is defined as follows:

$$v \in T_C(u) \iff \begin{cases} \forall \varepsilon > 0, \exists \delta > 0 \text{ such that} \\ \forall u' \in B(u, \delta) \cap C, \forall t \in]0, \delta[, (u' + tB(v, \varepsilon)) \cap C \neq \emptyset. \end{cases}$$
(16)

We put $N_C(u) = \emptyset$, whenever $u \notin C$. For any r > 0 we denote by $N_C^r(u)$ the truncated Clarke normal cone, that is,

$$N_C^r(u) = N_C(u) \cap B[0, r],$$

where B[0,r] denotes the closed ball in \mathbb{R}^m of center 0 and radius r. We further denote by

epi
$$f := \{(x, \beta) \in \mathbb{R}^{n+1} : \beta \ge f(x)\}$$

the epigraph of the function f defined on \mathbb{R}^n . By [3, p. 56], for all $u_0 = (x_0, f(x_0)) \in \text{epi } f$ we have

$$N_{\text{epi }f}(u_0) = \mathbb{R}^+(\partial f(x_0), -1).$$

Let us finally note that, if f is κ -Lipschitz on a ball B of \mathbb{R}^n , then for all x_1, x_2 in B, we have

$$||x_2 - x_1|| \le ||u_2 - u_1|| \le \sqrt{1 + \kappa^2} ||x_2 - x_1||,$$
 (17)

where $u_i := (x_i, f(x_i)), i \in \{1, 2\}$ and where we use the same notation to denote the Euclidean norm of the spaces \mathbb{R}^n and \mathbb{R}^{n+1} .

The following result is analogous to the ones established in [4, Section 5] (for LC^2 functions) and in [1, Theorem 4.1.4] (for LC^1 functions).

Corollary 3.4 (epigraphical characterization). Let $f: U \to \mathbb{R}$ be a locally Lipschitz function defined on an open subset U of \mathbb{R}^n . The following two assertions are equivalent:

- (i) the function f is lower- $C^{1,\alpha}$;
- (ii) the operator $N_{\text{epi }f}^1: \mathbb{R}^{n+1} \rightrightarrows \mathbb{R}^{n+1}$ is α -hypomonotone.

Proof. (i) \Rightarrow (ii) Let $u_0 \in \text{epi } f$. We can suppose without loss of generality that $u_0 = (x_0, f(x_0))$ for $x_0 \in U$ (otherwise $N_{\text{epi } f}(u)$ is reduced to $\{0\}$ for all u in a neighborhood of u_0 , so that (7) is clearly satisfied).

Let now $\kappa, \delta_1 > 0$ such that f is κ -Lipschitz on $B(x_0, \delta_1)$. By Theorem 3.2, the function f is weakly convex, so Theorem 3.1 (i) \Rightarrow (iii) yields that there exist $\delta_2 > 0$ and $\sigma > 0$ such that for all $x_1, x_2 \in B(x_0, \delta_2), x_1^* \in \partial f(x_1)$ and $x_2^* \in \partial f(x_2)$

$$f(x_2) - f(x_1) \ge \langle x_1^*, x_2 - x_1 \rangle - \sigma ||x_1 - x_2||^{1+\alpha}.$$
(18)

Set $\delta = \min\{\delta_1, \delta_2\}$ and take $u_1, u_2 \in B(u_0, \delta) \cap \text{epi } f$ (we use the same notation $B(u_0, \delta)$ to denote the ball of center u_0 and radius $\delta > 0$ in the space \mathbb{R}^{n+1}). In particular, u_1 has the form (x_1, β_1) with $\beta_1 \geq f(x_1)$. There are two cases:

- If $\beta_1 > f(x_1)$, then $N^1_{\text{epi }f}(u_1) = \{0\}$.
- If $\beta_1 = f(x_1)$, then

$$N_{\text{epi }f}^1(u_1) = \mathbb{R}^+(\partial f(x_1), -1) \cap B[0, 1].$$

So for every $u_1^* \in N^1_{\text{epi }f}(u_1)$, there exists $x_1^* \in \partial f(x_1)$ such that $u_1^* = \mu_1(x_1^*, -1)$. Note also that we can bound μ_1 uniformly. Since f is κ -Lipschitz on $B(x_0, \delta)$, one has $||x_1^*|| \leq \kappa$ (see [3, Proposition 2.1.2], for example). As $||u_1^*|| \leq 1$, one obtains $\mu_1 \leq (1 + \kappa^2)^{-\frac{1}{2}}$.

Since $\beta_2 \geq f(x_2)$, (18) implies

$$\langle (x_1^*, -1), (x_2 - x_1, \beta_2 - \beta_1) \rangle \le \sigma ||x_1 - x_2||^{1+\alpha}.$$

Here again we use the same notation for the scalar products in \mathbb{R}^n and in \mathbb{R}^{n+1} . In particular, $\langle (x, \alpha), (y, \beta) \rangle := \langle x, y \rangle + \alpha \beta$, for all $x, y \in \mathbb{R}^n$ and all $\alpha, \beta \in \mathbb{R}$.

In both cases, for every $u_1^* \in N^1_{\text{epi }f}(u_1)$ we have

$$\langle u_1^*, u_2 - u_1 \rangle \le (1 + \kappa^2)^{-\frac{1}{2}} \sigma ||x_1 - x_2||^{1+\alpha},$$

which in view of (17) yields

$$\langle u_1^*, u_2 - u_1 \rangle \le (1 + \kappa^2)^{-\frac{1}{2}} \sigma ||u_1 - u_2||^{1+\alpha}.$$

Interchanging the roles of u_1 and u_2 , for every $u_2^* \in N^1_{\text{epi }f}(u_2)$ we have

$$\langle u_2^*, u_2 - u_1 \rangle \ge -(1 + \kappa^2)^{-\frac{1}{2}} \sigma ||u_1 - u_2||^{1+\alpha}.$$

Substracting the last two equations, we get

$$\langle u_2^* - u_1^*, u_2 - u_1 \rangle \ge -2(1 + \kappa^2)^{-\frac{1}{2}} \sigma ||u_1 - u_2||^{1+\alpha},$$

324 A. Daniilidis, J. Malick / ... Between Lower- C^1 and Lower- C^2 Functions

which means that $N_{\text{epi }f}^1$ is α -hypomonotone.

 $(ii) \Rightarrow (i)$ Fix $x_0 \in U$ and set $u_0 = (x_0, f(x_0))$. Let δ_1 and σ such that for all $u_1, u_2 \in B(x_0, \delta_1)$, $u_1^* \in N^1_{\text{epi }f}(u_1)$ and $u_2^* \in N^1_{\text{epi }f}(u_2)$

$$\langle u_2^* - u_1^*, u_2 - u_1 \rangle \ge -\sigma ||u_1 - u_2||^{1+\alpha}.$$
 (19)

Let δ_2 and κ be such that f is κ -Lipschitz on $B(x_0, \delta_1)$ and set

$$\delta = \frac{\min\{\delta_1, \delta_2\}}{\sqrt{1 + \kappa^2}}.$$

Let $x_1, x_2 \in B(x_0, \delta)$, $x_1^* \in \partial f(x_1)$ and $x_2^* \in \partial f(x_2)$. For $i \in \{1, 2\}$, set $u_i = (x_i, f(x_i))$ and $u_i^* := (1 + \kappa^2)^{-\frac{1}{2}}(x_i^*, -1)$. Observe that $u_i \in B(u_0, \delta_1)$ and $u_i^* \in N^1_{\text{epi }f}(u_i)$. Thus (19) can be rephrased as

$$\langle (x_2^* - x_1^*, 0), (x_2 - x_1, f(x_2) - f(x_1)) \rangle \ge -\sigma(1 + \kappa^2)^{\frac{1}{2}} ||u_1 - u_2||^{1+\alpha}.$$

Using (17) we get

$$\langle x_2^* - x_1^*, x_2 - x_1 \rangle \ge -\sigma(1 + \kappa^2) ||x_1 - x_2||^{1+\alpha}.$$

Thus ∂f is α -hypomonotone. By Theorem 3.1 (ii) \Rightarrow (i) and Theorem 3.2, we conclude that f is $LC^{1,\alpha}$.

3.3. Classification

Let us fix a nonempty open subset U of \mathbb{R}^n and let us consider the following two particular classes of functions.

- (locally decomposable functions) We say that a locally Lipschitz function $f: U \to \mathbb{R}$ is locally decomposable on U as a sum of a convex function and a $C^{1,\alpha}$ function if for all $x_0 \in U$ there exists $\delta > 0$, a convex continuous function $k: B(x_0, \delta) \to \mathbb{R}$ and a $C^{1,\alpha}$ -function $h: B(x_0, \delta) \to \mathbb{R}$ (that is, h is differentiable with α -Hölder derivative) such that

$$f(x) = k(x) + h(x)$$
, for all $x \in B(x_0, \delta)$.

- (locally composite functions) We say that a locally Lipschitz function $f: U \to \mathbb{R}$ is locally composite on U, if for every $x_0 \in U$ there exists $\delta > 0$, a convex continuous function $g: \mathbb{R}^m \to \mathbb{R}$ and a $C^{1,\alpha}$ -function $G: B(x_0, \delta) \to \mathbb{R}^m$ such that

$$f(x) = g(G(x)), \text{ for all } x \in B(x_0, \delta).$$

This implies (see [20, p. 445], for example) that

$$\partial f(x) = \nabla G(x)^* \partial g(G(x)), \text{ for all } x \in B(x_0, \delta).$$

Proposition 3.5. Let $f: U \to \mathbb{R}$ be a locally Lipschitz function and $0 < \alpha \leq 1$. Consider the following conditions:

(i) f is locally decomposable on U as a sum of a convex continuous and a $C^{1,\alpha}$ function;

- (ii) f is locally composite on U with a convex continuous and a $C^{1,\alpha}$ function;
- (iii) f is a $LC^{1,\alpha}$ function.

Then
$$(i) \Longrightarrow (ii) \Longrightarrow (iii)$$
.

Proof. (i) \Longrightarrow (ii). Having a local decomposition f = k + h, set g(x,r) = k(x) + r for $(x,r) \in \mathbb{R}^n \times \mathbb{R}$ and G(x) = (x,h(x)) for $x \in \mathbb{R}$. It is straightforward to see that f(x) = g(G(x)), that G is $C^{1,\alpha}$ and that g is convex and continuous.

(ii) \Longrightarrow (iii). Let $x_0 \in U$, $\delta > 0$ and $g, h : B(x_0, \delta) \to \mathbb{R}$, g being convex continuous and $G \in C^{1,\alpha}(B(x_0, \delta))$ such that f(x) = g(G(x)) for all $x \in B(x_0, \delta)$. For all x near x_0 , one has

$$\partial f(x) = \nabla G(x)^* \partial g(G(x))$$

Since ∇G is α -Hölderian, let $\sigma > 0$ such that for all $x, y \in B(x_0, \delta)$

$$||\nabla G(y) - \nabla G(x)|| \le \sigma ||y - x||^{\alpha}. \tag{20}$$

Let $x, y \in B(x_0, \delta)$. For any $x^* \in \partial f(x)$, there exists $\zeta \in \partial g(G(x))$ such that $x^* = \nabla G(x)^* \zeta$. Since g is convex, it follows that

$$f(y) - f(x) = g(G(y)) - g(G(x)) \ge \langle \zeta, G(y) - G(x) \rangle. \tag{21}$$

Applying the mean value theorem to the function G on the segment [x, y] we obtain $z \in [x, y]$ such that

$$G(y) - G(x) = \nabla G(z)(y - x). \tag{22}$$

By (20), it holds

$$||\nabla G(z) - \nabla G(x)|| \le \sigma ||z - x||^{\alpha} \le \sigma ||y - x||^{\alpha}. \tag{23}$$

Thus by (21), (22) and (23), we can write

$$f(y) - f(x) \geq \langle \zeta, \nabla G(z)(y - x) \rangle$$

$$= \langle \zeta, \nabla G(x)(y - x) \rangle + \langle \zeta, (\nabla G(z) - \nabla G(x))(y - x) \rangle$$

$$\geq \langle \zeta, \nabla G(x)(y - x) \rangle - \sigma ||\zeta|| ||y - x||^{1+\alpha}$$

Moreover, there exists a constant $\kappa > 0$ which bounds uniformly the norm of every subgradient of the convex continuous function g near x_0 . Thus it holds

$$f(y) - f(x) \ge \langle x^*, y - x \rangle - \sigma \kappa ||y - x||^{1+\alpha},$$

and we can conclude by Theorem 3.1(iii) \Rightarrow (i) and Theorem 3.2.

Remark 3.6 (conjecture). A classical result of Rockafellar [19] (see also [23], [8]) asserts that every LC^2 function is decomposable as a sum of a convex continuous and a concave quadratic function. Moreover, in view of Remark 3.3, the classes $LC^{1,1}$ and LC^2 coincide. Thus, in case $\alpha = 1$, the three assertions of Proposition 3.5 are then equivalent. It is not known if an analogous equivalence holds for the classes of LC^1 and $LC^{1,\alpha}$ functions.

Let us now give an example of a LC^1 function f, which does not belong to any of the classes $LC^{1,\alpha}$ for $\alpha > 0$. More precisely, we have the following proposition.

Proposition 3.7.

$$\bigcup_{0 \le \alpha \le 1} LC^{1,\alpha} \subsetneq LC^1$$

Proof. The inclusion follows directly from Definition 2.1. To see that the inclusion is strict, let us consider the function $f: \mathbb{R} \to \mathbb{R}$ defined as follows:

$$f(x) = -\int_0^x g(t) dt,$$

where

$$g(t) = \begin{cases} 0 & t \le 0\\ \frac{1}{|\ln t|} & t > 0. \end{cases}$$

It is easily seen that g is continuous on \mathbb{R} , so that f is of class C^1 . In particular, $f \in LC^1$. Note also that f(0) = 0 and f'(0) = 0.

Let us prove that for any $\alpha > 0$ the function f does not belong to the class $LC^{1,\alpha}$. Indeed, suppose towards a contradiction that there exists $\alpha > 0$ such that $f \in LC^{1,\alpha}$. Then by Theorem 3.2 and Theorem 3.1 (i) \Rightarrow (iii) there exist $\sigma, \delta > 0$ such that for all $x \in (0,1)$,

$$f(x) \ge -\sigma |x|^{1+\alpha}.$$

Set now $\phi(x) = f(x) + \sigma |x|^{1+\alpha}$. Then the function ϕ is C^1 , non-negative and $\phi(0) = 0$. It follows easily that there exists a sequence $(x_n)_{n\geq 1}$ of positive real numbers converging to 0 such that $\phi'(x_n) \geq 0$. (Indeed, if for some $\delta > 0$ we have $\phi'(x) < 0$ for all $x \in (0, \delta)$, then ϕ should necessarily take negative values.) We compute $\phi'(x) = (1+\alpha)\sigma x^{\alpha} - g(x)$ for x > 0. Then we have for all n > 0

$$(1+\alpha)\sigma \ge \frac{1}{x_n^{\alpha} |\ln x_n|}.$$

Since $\alpha > 0$ the right-hand side tends to $+\infty$ when n grows. We thus obtain a contradiction. It follows that

$$f \in C^1 \setminus \bigcup_{\alpha > 0} LC^{1,\alpha},$$

which proves the assertion.

Let us complete our classification with the following proposition.

Proposition 3.8.

$$LC^2 \subsetneq \bigcap_{0 < \alpha < 1} LC^{1,\alpha}$$

Proof. Since every LC^2 function is a fortiori $LC^{1,\alpha}$ for all $0 < \alpha < 1$, the inclusion holds. To see that the inclusion is strict, let us consider the function

$$f(x) = \int_0^x g(t) dt$$
, for all $x \in \mathbb{R}$,

where

$$g(t) = \begin{cases} 0 & t \le 0 \\ t \ln t & t > 0. \end{cases}$$

Then g is continuous on \mathbb{R} and clearly not Lipschitz around t=0. Let us show that, for any $0<\alpha<1$, g is α -Hölderian in a neighborhood of 0. To this end, take x,y sufficiently small to ensure that are inside a neighborhood of 0 in which g is decreasing. We can suppose without loss of generality that y< x. We may suppose x>0 (else the condition of α -Hölderianity is trivially fulfilled), and we distinguish three cases.

Case 1. $y \leq 0$. Then we can write

$$\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} = \frac{x|\ln x|}{|x - y|^{\alpha}} \le \frac{x|\ln x|}{x^{\alpha}} = x^{1-\alpha}|\ln x|. \tag{24}$$

Case 2. 0 < y < x/2. In this case 0 > g(y) > g(x) so that

$$\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} \le \frac{|g(x)|}{|x/2|^{\alpha}} \le 2^{\alpha} |\ln x| x^{1-\alpha}.$$
(25)

Case 3. x/2 < y < x. Applying the mean-value theorem for the function g to the segment [x,y] (where g is C^{∞}) we obtain $z \in [x,y]$ such that

$$\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} \le (|\ln z| + 1)|x - y|^{1 - \alpha} \le (|\ln \frac{x}{2}| + 1)x^{1 - \alpha}.$$
 (26)

In all cases (24)-(26), the quantity $|x-y|^{-\alpha}|g(x)-g(y)|$ is bounded when x and y are sufficiently close to 0. Thus, there exist $\delta>0$ and M>0 such that for all $x,y\in]-\delta,\delta[$ with $x\neq y$ we have

$$\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} \le M.$$

This means that g is α -Hölderian on $]-\delta,\delta[$.

It follows that f is C^1 on \mathbb{R} and locally $C^{1,\alpha}$ around 0, for any $0 < \alpha < 1$. We us prove that f is not LC^2 around 0. To this end, let us assume, towards a contradiction, that there exists $\delta > 0$ such that ∂f is hypomonotone on $B(x_0, \delta)$. Since f is C^1 , we have $\partial f(x) = \{g(x)\}$ for all $x \in \mathbb{R}$, and in particular $\partial f(0) = \{0\}$. Then for all $\sigma > 0$ and $x \in B(x_0, \delta)$,

$$x g(x) \ge -\sigma |x|^2$$
.

This implies

$$\ln x \ge -\sigma$$
 for all $0 < x < \delta$,

which is a clear contradiction.

Let us resume the results in the following diagram.

$$LC^{\infty} = \underset{(2 < k < +\infty)}{LC^k} = LC^2 = LC^{1,1} \subsetneq \underset{(0 < \alpha < 1)}{LC^{1,\alpha}} \subsetneq LC^1$$

$$\bigcup_{0 < \alpha < 1} LC^{1,\alpha} \subsetneq LC^1$$

$$LC^2 \subsetneq \bigcap_{0 < \alpha < 1} LC^{1,\alpha}$$

Acknowledgements. The authors are indebted to R. McCann, N. Hadjisavvas and L. Thibault for useful discussions.

References

- [1] D. Aussel, A. Daniilidis, L. Thibault: Subsmooth sets: functional characterizations and related concepts, Trans. Amer. Math. Soc., to appear.
- [2] F. Bernard, L. Thibault: Uniform prox-regularity of functions and epigraphs in Hilbert spaces, preprint 25p, Montpellier (2002).
- [3] F.H. Clarke: Optimization and Nonsmooth Analysis, Wiley Interscience, New York (1983).
- [4] F.H. Clarke, R. Stern, P. Wolenski: Proximal smoothness and the lower- C^2 property, J. Convex Analysis 2 (1995) 117–144.
- [5] A. Daniilidis, P. Georgiev: Approximate convexity and submonotonicity, J. Math. Anal. Appl. 291 (2004) 292–301.
- [6] P. Georgiev: Submonotone mappings in Banach spaces and applications, Set-Valued Analysis 5 (1997) 1–35.
- [7] J.-W. Green: Approximately convex functions, Duke Math. J. 19 (1952) 499–504.
- [8] J.-B. Hiriart-Urruty: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions, in: Convexity and Duality in Optimization, Lecture Notes in Econom. Math. Systems 256 (1984) 37–70.
- [9] D.-H. Hyers, S.-M. Ulam: Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952) 821–828.
- [10] R. Janin: Sur des multiapplications qui sont des gradients généralisés, C. R. Acad. Sci. Paris 294 (1982) 117–119.
- [11] A. Jourani: Subdifferentiability and subdifferential monotonicity of γ -paraconvex functions, Control Cybernet. 25 (1996) 721–737.
- [12] G. Lebourg: Generic differentiability of Lipschitzian functions, Trans. Amer. Math. Soc. 256 (1979) 125–144.
- [13] C. Malivert, J.-P. Penot, M. Thera: Minimisation d'une fonction régulière sur un fermé non-régulier et non-convexe d'un espace de Hilbert, C. R. Acad. Sci. Paris, Sér. A 286 (1978) 1191–1193.

- [14] H. V. Ngai, D. T. Luc, M. Thera: On ε -convexity and ε -monotonicity, in: Calculus of Variations and Differential Equations, A. Ioffe et al. (eds.), Research Notes in Mathematical Series, Chapman & Hall (1999) 82–100.
- [15] H. V. Ngai, D. T. Luc, M. Thera: Approximate convex functions, J. Nonlinear Convex Analysis 1 (2000) 155–176.
- [16] Z. Pales: On approximately convex functions, Proc. Amer. Math. Soc. 131 (2003) 243–252.
- [17] J.-P. Penot: Favorable Classes of Mappings and Multimappings in Nonlinear Analysis and Optimization, J. Convex Analysis 3 (1996) 97–116.
- [18] R. Poliquin, R. T. Rockafellar: Prox-regular functions in variational analysis, Trans. Amer. Math. Soc. 348 (1996) 1805–1838.
- [19] R. T. Rockafellar: Favorable classes of Lipschitz continuous functions in subgradient optimization, in: Non-Differentiable Optimization, E. Nurminski (ed.), Pergamon Press, New York (1982).
- [20] R. T. Rockafellar, R. Wets: Variational Analysis, Grundlehren der Mathematischen Wissenschaften 317, Springer (1998).
- [21] S. Rolewicz: On the coincidence of some subdifferentials in the class of $\alpha(\cdot)$ -paraconvex functions, Optimization 50 (2001) 353–363.
- [22] J. E. Spingarn: Submonotone subdifferentials of Lipschitz functions, Trans. Amer. Math. Soc. 264 (1981) 77–89.
- [23] J.-P. Vial: Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983) 231–259.