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Consider a set-valued operator mapping points of a real Banach space into convex and weak* closed
subsets of the dual space. It is shown that such operators can be investigated via the notion of a form. In
particular, continuity, monotonicity, maximal monotonicity, and coerciveness are considered. Moreover,
a calculus of forms is derived. Having established the above connections, a probably new sum theorem
in nonreflexive Banach spaces is proved, and a Browder-type theorem for forms is given.
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1. Introduction

A prominent example of a set-valued map is the subdifferential of a lower semicontinuous,
convex, and proper functional p : E → IR := [−∞,+∞], defined by

∂p(x) := {x′ ∈ E ′ | 〈x′, x− x〉 ≤ p(x)− p(x) for all x ∈ E}.

Here and throughout this paper, let E denote a real Banach space with dual E ′, and
K ⊂ E a convex and closed subset. The starting point of our analysis is the connection
between support functionals, and convex and weak* closed subsets given by Hörmander’s
theorem, compare [22] and [1].

Theorem 1.1 (Hörmander).

• Let M be a nonempty, convex, and weak* closed subset of E ′. Then the support
functional σM(x) := supx′∈M 〈x′, x〉 is proper, sublinear, and lower semicontinuous.
Moreover, M = ∂σM(0).

• Suppose p : E → IR is proper, sublinear, and lower semicontinuous. Then the set
Mp := ∂p(0) is nonempty, convex, and weak* closed, moreover σMp = p.

• If M1 and M2 are two nonempty, convex, and weak* closed subsets of E ′, then
M1 = M2 if and only if σM1 = σM2.

If we restrict ourselves to operators T : K → P(E ′) that map into convex and weak*
closed subsets of the dual, then we can associate to each set Tx a support functional.
A mapping h : K × E → IR is called form if there is a nonempty set D ⊂ K such
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that for all x ∈ {D there holds h(x, ·) = −∞; for all x ∈ D the functional h(x, ·) is
lower semicontinuous, and sublinear; and h(x, 0) = 0. We call the set Dom h := D
the domain of h. Using Hörmander’s theorem we can show a one-to-one correspondence
between forms and weak* closed-valued, and convex-valued operators. For simplicity we
call these operators formidable. To be more precise, let T : K → P(E ′) be a formidable
operator. Then its form is given by h(x, y) = supx′∈Tx 〈x′, y〉. On the other hand, suppose
h : K × E → IR is a form. Then the associated operator is recovered by Tx = ∂2h(x, 0),
where ∂2h(x, 0) denotes the subdifferential of h(x, ·) at 0.
Phelps [14] used a form-like approach to investigate the set of points where a maximal
monotone operator is single-valued, Simons [23] proved a sum theorem in nonreflexive
Banach space, and in Hu and Papageorgiou [10] one finds some general observations on
support functionals representing set-valued maps.

Example 1.2. Let p : E → IR be a convex, proper, and lower semicontinuous functional.
Moreover, let dom p := {x ∈ E | p(x) < ∞} be open. Then the form of ∂p is given by
δ+p(x, y), which is the right hand sided GÝateaux differential of p at x in direction y.

We call a form h : K × E → IR monotone if for all x, y ∈ Dom h

h(x, y − x) + h(y, x− y) ≤ 0.

The form is called maximal monotone if the associated operator T := ∂2h(·, 0) as an
operator T : K → P(E ′) is maximal monotone. One can also define different notions of
monotonicity in a similar manner, compare [12].

In [16, 13] a representation of maximal monotone operators via a (modified) subdifferential
of a concave-convex function is given. Representation of operators via bifunctionals can
be found in [12, 29], and references therein. For a different approach compare [7, 19]. Our
next step is a calculus rule.

Proposition 1.3. Suppose T, S : K → P(E ′) are monotone and formidable operators,
and h, k are their associated forms. Moreover, let the following constraint qualification be
fulfilled

int dom T ∩ dom S 6= ?. (α)

Then
[T + S](x) = ∂2[h+ k](x, 0). (1)

Equation (1) is necessary for the maximal monotonicity of T + S since the operator
∂2[h+ k](·, 0) is a monotone extension of T +S. The constraint qualification (α) ensures,
with the help of the monotonicity of T and S, that the sum of the convex and weak*
closed sets Tx and Sx is again convex and weak* closed, hence is representable by a
support functional. The proposition is proved with the sum theorem for subdifferentials.

Theorem 1.4. Suppose p, q : E → IR are proper, convex, and lower semicontinuous.
Moreover, assume that int dom p ∩ dom q 6= ?. Then we have

∂[p+ q](x) = ∂p(x) + ∂q(x) for all x ∈ E.

The theorem states that ∂p + ∂q remains maximal monotone. A proof can be found in
[20] and [11]. As one might expect, there is a generalization for arbitrary S and T .
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Theorem 1.5 (Rockafellar [17]). Suppose that E is a reflexive Banach space, T, S : E
→ P(E ′) are maximal monotone and

int dom T ∩ dom S 6= ?. (α)

Then T + S is maximal monotone.

Looking at our calculus rules, (α) implies that T + S still maps into weak* closed and
convex subsets of E ′, which is necessary for the maximal monotonicity of T + S. On the
other hand, it also implies that T is ‖·‖-weak* upper semicontinuous on a subset of E.
This is a strong assumption. Simons gives an overview how this condition can be relaxed,
including his results, and a discussion of examples in [23] and [24]. Our sum theorem is
inspired by [26]. In that paper one finds the following theorem: Suppose p : E → IR is
proper, lower semicontinuous and convex, and T : E → E ′ is monotone. Assume further
cl dom p ⊂ dom T . Moreover, let T be hemicontinuous on cl dom p, and dom ∂p be
closed. Then ∂p+ T : E → P(E ′) is maximal monotone. We can show:

Theorem 1.6. Suppose p : E → IR is a proper, convex, and lower semicontinuous func-
tional, T : E → P(E ′) is a maximal monotone operator. Furthermore, suppose that
D := cl dom p ⊂ int dom T . If dom (∂p) is closed, then ∂p+ T is maximal monotone.

This generalizes a result of Simons, compare [23, Theorem 41.1]. The theorem is proved
in three steps. First of all we show that every pair (x, f) ∈ E×E ′ which is monotonically
related to ∂p+ T , i. e. for every (y, g) ∈ gra (∂p+ T ) we have 〈f, x− y〉+ 〈g, y − x〉 ≥ 0,
must satisfy x ∈ dom ∂[p+ T ]. Then we reduce the statement to a variational inequality,
which we finally solve with the upper semicontinuity of T . Nonreflexive sum theorems,
using a different sum, are investigated in [2, 18, 19, 27, 28].

In the remainder of the paper, we will see how the form gives a natural proof of a Browder-
type theorem in the context of forms. First of all we reduce the solvability of an operator
inclusion to a variational inequality. To solve it, we will modify [10, Lemma III.2.13 and
Theorem III.2.14 ]. Our approach differs from [10] as the authors first solve a perturbed
problem f ∈ (T + εJ)xε and then argue on ε → 0. Instead, we solve f ∈ Tx directly.

We assume that the reader is familiar with monotone operator theory and nonsmooth
analysis, as in e.g. [3, 10, 14, 21, 30].

Let us finally fix some notation. We denote the power set of E ′ by P(E ′), the weak closure
of a set A ⊂ E with clw A, the convex hull of A by co A, the closed convex hull of A by
co A. The domain of T : K → P(E ′) is defined by dom T := {x ∈ K | Tx 6= ?}, the
graph of T is defined as the set gra T := {(x, f) ∈ K ×E ′ | f ∈ Tx}. Moreover, the polar
of A ⊂ E ′ is defined by A◦ := {x ∈ E | 〈x′, x〉 ≤ 1 for all x′ ∈ A}.

2. The Form of an Operator

Proposition 2.1. Let T : K → P(E ′) be such that Tx is convex and weak* closed for all
x ∈ dom T . Then there is a unique form h : K × E → IR, for which

Tx = ∂2h(x, 0).
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The domain D of h equals dom T . If further Tx is weak* compact for x ∈ D, then h(x, ·)
is continuous on E and dom h(x, ·) = E. Moreover, if T is single-valued at x ∈ dom T ,
then h(x, ·) is linear.

Proof. The proposition follows from Hörmander’s theorem. Let x ∈ dom T , then there
exists a unique support function

σTx(y) := sup
x′∈Tx

〈x′, y〉 .

Moreover, the set Tx is recovered by Tx = ∂σTx(0). Let us define

h(x, y) := sup
x′∈Tx

〈x′, y〉 . (2)

Then h is the unique form of T , and we have Tx = ∂2h(x, 0). Furthermore Dom h =
dom T , because sup? = −∞. Suppose now that the set Tx is weak* compact, then
the supremum in (2) is attained, hence h(x, ·) = maxx′∈Tx 〈x′, ·〉. This shows that
dom h(x, ·) = E. Moreover, as a lower semicontinuous and convex functions is continuous
on the interior of its domain we have that h(x, ·) is continuous on E, see e. g. Chapter 2
of [4]. Finally, if Tx is only a point, then

h(x, y) = sup
x′∈Tx

〈x′, y〉 = 〈Tx, y〉 ,

which shows that h(x, ·) is linear.

Corollary 2.2. Suppose that T : K → P(E ′) admits a form h. Then we have

f ∈ Tx ⇔ f ∈ ∂2h(x, 0) ⇔ 〈f, x̃〉 ≤ h(x, x̃) for all x̃ ∈ E.

It is well known that a maximal monotone operator is weak* closed-valued and convex-
valued. Thus, it admits a unique form. Now we show that the definition of a monotone
form is a good one.

Lemma 2.3. Suppose T : K → P(E ′) is a formidable operator with form h. The operator
T is monotone if and only if h is monotone.

Proof. Suppose that T is monotone, then we have for all x, y ∈ dom T

sup
f∈Tx

〈f, y − x〉 ≤ inf
g∈Ty

〈g, y − x〉 .

Therefore, we deduce h(x, y − x) ≤ −h(y, x− y). The other direction is trivial.

Now we take a closer look at maximal monotonicity of a form. Let us call a pair (x, f) ∈
K × E ′ monotonically related to h if (x, f) is monotonically related to the associated
operator ∂2h(·, 0) : K → P(E ′). Our first result is the next lemma.

Lemma 2.4. Let h : K × E → IR be a monotone form with domain D.

(i) The form h is maximal monotone if and only if for every pair (x, f) ∈ K × E ′ for
which holds f 6∈ ∂2h(x, 0) there is y ∈ D such that 〈f, x− y〉 < h(y, x− y).
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(ii) If h is maximal monotone and (x, f) ∈ K × E ′ is such that for all y ∈ D we have
〈f, x− y〉 ≥ h(y, x− y), then f ∈ ∂2h(x, 0).

Proof. (i) Let h be maximal monotone, and let (x, f) ∈ K × E ′ be such a pair. Then
(x, f) is not monotonically related to h, thus there are y ∈ D and g ∈ ∂2h(y, 0) such that
〈f, x− y〉+ 〈g, y − x〉 < 0. From Corollary 2.2 it follows

〈f, x− y〉 < 〈g, x− y〉 ≤ h(y, x− y).

For the converse, suppose that (x, f) ∈ K × E ′ and f 6∈ ∂2h(x, 0). Then there is y ∈ D
such that 〈f, x− y〉 < h(y, x− y). In particular, there is g ∈ Ty for which holds

〈f, x− y〉 < 〈g, x− y〉 ≤ h(y, x− y),

and hence 〈f, x− y〉 + 〈g, y − x〉 < 0. Thus, (x, f) is not monotonically related to h.
Therefore, h is maximal monotone.

(ii) Let (x, f) ∈ K × E be such that for all y ∈ D we have

〈f, x− y〉 ≥ h(y, x− y).

Thus, for any y ∈ D and any g ∈ ∂2h(y, 0) it holds

〈f, x− y〉 ≥ h(y, x− y) ≥ 〈g, x− y〉.

This shows that (x, f) is monotonically related to h. By maximal monotonicity of h we
have f ∈ ∂2h(x, 0).

Suppose that h is a form with domain D ⊂ K and f ∈ E ′. We set:

A1(f) :=
⋂

y∈E

{x ∈ D | 〈f, y − x〉 ≤ h(x, y − x)}

A2(f) :=
⋂

y∈D

{x ∈ K |h(y, x− y) ≤ 〈f, x− y〉}

If h is a monotone form, then for any f ∈ E ′ we have A1(f) ⊂ A2(f). Indeed, for
x ∈ A1(f) we obtain by monotonicity of h that for each y ∈ D

〈f, y − x〉+ h(x, y − x) ≤ 〈f, y − x〉 − h(y, x− y) ≤ 0

and thus x ∈ A2(f). The set A1(f) contains all x ∈ D for which f ∈ ∂2h(x, 0). On the
other hand, A2(f) collects all x ∈ K such that (x, f) is monotonically related to h. If
these sets coincide, then h is maximal monotone by definition. One might look at A1(f)
and A2(f) as the primal and dual solution set of a variational inequality, which coincide
if the form is maximal monotone.

Proposition 2.5. Let h : K × E → IR be a monotone form. Then the following are
equivalent:

(a) The associated operator T := ∂2h(·, 0) is maximal monotone.

(b) For all f ∈ E ′ we have A1(f) = A2(f).
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Proof. (a) ⇒ (b) Since A1(f) ⊂ A2(f) we have to establish only the opposite inclusion.
Let x ∈ A2(f), then for all y ∈ D

h(y, x− y) ≤ 〈f, x− y〉.

By Lemma 2.4 (ii) we obtain that x ∈ D and f ∈ ∂2h(x, 0). Thus, 〈f, x̃〉 ≤ h(x, x̃) for all
x̃ ∈ E. Setting x̃ = y − x yields x ∈ A1(f).

(b) ⇒ (a) Let (x, f) ∈ K × E ′ be such that f 6∈ ∂2h(x, 0). Then x 6∈ A1(f) and since
A1(f) = A2(f), x 6∈A2(f). Therefore, there exists y ∈ D such that

〈f, y − x〉+ h(y, x− y) > 0.

We obtain the assertion from Lemma 2.4 (i).

Corollary 2.6. Suppose h : K × E → IR is a monotone form, and f ∈ E ′. Then

⋂

y∈D

{x ∈ D | 〈f, y − x〉 ≤ h(x, y − x)} ⊂
⋂

y∈D

{x ∈ K | h(y, x− y) ≤ 〈f, x− y〉}.

If the form h is maximal monotone, then we have equality.

Corollary 2.7. Let h : K×E → IR be a maximal monotone form, and f ∈ E ′. Then the
following are equivalent.

• f ∈ ∂2h(x, 0).

• x ∈ A1(f).

• x ∈ A2(f).

Lemma 2.8. Let T : K → P(E ′) be a formidable, monotone operator with form h. Then
for all x, y ∈ D := dom T and all positive λ ∈ IR+ we have λ(y−x) ∈ dom h(x, ·). Thus,
IR+(D − x) ⊂ dom h(x, ·).

Proof. Let x, y ∈ D and λ ∈ IR+ be given. Using the monotonicity of T we obtain
for all f ∈ ∂2h(x, 0), g ∈ ∂2h(y, 0) that 〈f, y − x〉 ≤ 〈g, y − x〉, and hence h(x, y − x) ≤
〈g, y − x〉 < ∞. Finally, by sublinearity of h(x, ·) we have h(x, λ(y−x)) = λh(x, y−x) <
∞, which proves the lemma.

The inclusion of the lemma can be proper. For an example, let E = IR and let the
operator T : IR → P(IR) be defined by

Tx :=

{

{0} if x ∈ [0, 1],
? otherwise.

Obviously, T is monotone. Let h be its form. We have dom h(1, ·) = IR, but IR+(D−1) =
(−∞, 0].

Lemma 2.9. Suppose that T : K → P(E ′) is a formidable operator with form h. Then
we have for all x ∈ Dom h

dom h(x, ·) =
⋃

λ>0

λ(Tx)◦.
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Proof. Let y ∈
⋃

λ>0 λ(Tx)
◦ be given. Then there is a λ > 0 such that for all x′ ∈ Tx

we have 〈x′, y〉 ≤ λ. Hence we deduce y ∈ dom h(x, ·). On the other hand, choose
y ∈ dom h(x, ·). Then we have λ := h(x, y) < ∞. Thus, 〈x′, y〉 ≤ λ for all x′ ∈ Tx, and
the assertion follows.

Let h : K× E → IR be a form with domain D and A⊂ E. We call h ω-continuous on
A if for all y ∈ E and all λ ∈ IR the set {x ∈ E | h(x, y − x) ≥ λ} is closed in A.
We say that h is ω-continuous on the segments of A if h is ω-continuous on [a, b] for all
a, b ∈ A. Evidently, a form is ω-continuous if and only if the map x 7→ h(x, y − x) is
upper semicontinuous for every y ∈ E.

Proposition 2.10 (Simons [23, Lemma 40.1 (d)]). Let T : K → P(E ′) be a maxi-
mal monotone operator. Then its form is ω-continuous on int dom T .

Proposition 2.11 (Shih and Tan [25, Lemma 1]). Let T : E → P(E ′) be a weak*
compact-valued formidable operator with nonempty and convex domain D. Moreover,
suppose that for all a, b ∈ D the map T |[a,b] : [a, b] → P(E ′) is ‖·‖-weak* upper semicon-
tinuous. Then its form is ω-continuous on the segments of D.

The next proposition is a first application of ω-continuity. It will imply the well known
characterization lemma of everywhere defined maximal monotone operators in the lan-
guage of forms.

Proposition 2.12 (Shih and Tan [25, Lemma 2]). Suppose that the form h : K ×
E → IR is monotone, ω-continuous on the segments of D := Dom h, f ∈ E ′, and D is
convex. Then

⋂

y∈D

{x ∈ D | h(y, x− y) ≤ 〈f, x− y〉} ⊂
⋂

y∈D

{x ∈ D | 〈f, y − x〉 ≤ h(x, y − x)}.

Lemma 2.13. Let h : E×E → IR be a monotone and ω-continuous form and Dom h = E.
Then h is maximal monotone.

Proof. This follows from Proposition 2.12, Proposition 2.5, and Corollary 2.6.

We call h coercive with respect to f ∈ E ′ if there is an x0 ∈ D := Dom h such that the set

clw {x ∈ D | 〈f, x0 − x〉 ≤ h(x, x0 − x)}

is weakly compact. Since x0 is contained in the above set, it is nonempty. We say that a
form h is coercive if it is coercive with respect to every f ∈ E ′.

We say that T : K → P(E ′) is coercive with respect to f ∈ E ′ if there exists ρ > 0 such
that for all x ∈ dom T ∩ {B[0, ρ] and x′ ∈ Tx we have 〈x′ − f, x〉 > 0. If we assume, for a
moment, that E is a reflexive Banach space, then James theorem tells us that a bounded
and weakly closed subset of E is also weakly compact. With the aid of James theorem
we get the following result.

Lemma 2.14. Let T : E → P(E ′) be a formidable, and weak* compact-valued operator
with form h. If T is coercive with respect to f ∈ E ′, and E is reflexive, then its form is
also coercive with respect to f .
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Proof. Let us set D := Dom h = dom T . Moreover, let us define the set-valued map

ψ(x0) := {x ∈ D | 〈f, x0 − x〉 ≤ h(x, x0 − x)}.

As T is coercive with respect to f , there exists ρ > 0 such that for all x ∈ D ∩ {B[0, ρ]
and all x′ ∈ Tx we have 〈x′ − f, x〉 > 0. Let us fix any x ∈ D ∩ {B[0, ρ]. Since Tx
is weak* compact there is x′ ∈ Tx, for which h(x,−x) = 〈x′,−x〉 < 〈f,−x〉. Thus,
h(x, 0− x) < 〈f, 0− x〉 and hence x 6∈ψ(0). Therefore ψ(0) ⊂ B[0, ρ]. The lemma follows
from James’ theorem, see e. g. [15].

Lemma 2.15. Suppose that h : K × E → IR is a monotone form which is coercive with
respect to f ∈ E ′, and x0, the element which exists by coerciveness of h, equals to x0 = 0.
Then the associated operator T = ∂2h(·, 0) is coercive with respect to f .

Proof. As h is coercive with respect to f the set

A := clw {x ∈ D | 〈f, 0− x〉 ≤ h(x, 0− x)}

is weakly compact, and thus bounded. Hence, there is ρ > 0 such that A ⊂ B[0, ρ]. Thus,
for all x ∈ D ∩ {B[0, ρ] we have

〈f,−x〉 > h(x,−x) = sup
x′∈Tx

〈x′,−x〉 .

Therefore, for any x′ ∈ Tx we have 〈f,−x〉 > 〈x′,−x〉 which shows that T is coercive
with respect to f .

Usually we assume that x0 = 0. If this not the case, then we consider a translated
problem, for the argument see the proof of Theorem 4.2.

3. The Sum Problem

First of all we derive a calculus for forms. That is, we investigate when the sum of two
formidable operators remains formidable. A first application will be Heisler’s theorem.
Then we restrict our attention to the monotone setting.

Lemma 3.1. Let T, S : K → P(E ′) be formidable. Assume further that T is weak*
compact-valued on dom S, and h, k are the associated forms. Then

[T + S](x) = ∂2[h+ k](x, 0).

Proof. Let x ∈ Dom h∩Dom k be arbitrary. Then dom h(x, ·) = E and hence h(x, ·) is
continuous on E, see e. g. Chapter 2 of [4]. Thus, we deduce for all x ∈ Dom h ∩ Dom k
that

0 ∈ int dom h(x, ·) ∩ dom k(x, ·).

The lemma is now a consequence of the sum theorem for subdifferentials.

Theorem 3.2 (Heisler). Suppose that T, S : E → P(E ′) are maximal monotone, and
dom T = dom S = E. Then T + S is maximal monotone.
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Proof. Let h and k be the respective forms. We deduce from Proposition 2.10 that h
and k are ω-continuous on E. Hence their sum h+ k is also monotone and ω-continuous.
Furthermore, Lemma 3.1 yields

T + S = ∂2[h+ k](·, 0).

The result follows by Lemma 2.13.

A similar proof of Heisler’s theorem can be found in [23]. Our next result, stated in the
introduction, is a step beyond Simons results. It says that we have a calculus, provided
that both forms are monotone, and Rockafellar’s constraint qualification is fulfilled.

Proof of Proposition 1.3. By hypotheses (α) there are ε > 0 and x0 ∈ Dom h such
that x0 ∈ Dom k and B(x0, ε) ⊂ int Dom h. Thus, we have for all x ∈ Dom h ∩ Dom k
from Lemma 2.8 that

x0 − x ∈ int dom h(x, ·) ∩ dom k(x, ·).

Finally, the sum theorem for subdifferentials yields

∂2h(x, 0) + ∂2k(x, 0) = ∂2[h+ k](x, 0),

which proves the proposition.

Let C ⊂ E be a subset. We define the normal cone of C by

NC(x) := ∂ δC(x) = {x′ ∈ E ′ | 〈x′, x− x〉 ≤ 0 for all x ∈ C}.

If C is convex and closed, then NC : E → P(E ′) is a maximal monotone operator. The
next lemma is crucial for the proof of the sum theorem.

Lemma 3.3 (Simons [23, Lemma 16.1]). Let T : K → P(E ′) be a maximal mono-
tone operator, C be a convex and closed subset of E, and dom T ⊂ C. Then

T +NC(x) = T.

It is a well known result of Brønsted and Rockafellar [5] that for a proper, convex, and
lower semicontinuous functional p : E → IR the domain of ∂p is dense in the domain of
p. See also the discussion in [23]. Thus, we have dom (∂p) ⊂ dom p ⊂ cl dom (∂p), and
hence cl dom p = cl dom (∂p).

Theorem 3.4. Let p : E → IR be a proper, lower semicontinuous and convex functional,
T : E → P(E ′) be a formidable, monotone and weak* compact-valued operator. Moreover,
let D := cl dom p ⊂ dom T . If T is ‖·‖-weak* upper semicontinuous on the segments of
D and dom (∂p) is closed, then ∂p+ T is maximal monotone.

Proof. First of all, we show that for any pair (x, f) ∈ E × E ′ that is monotonically
related to ∂p+ T , we have x ∈ D = cl dom p. By the result of Brønsted and Rockafellar
it holds D = dom(∂p). Thus, D is convex. Obviously, ∂p+T is monotone. From Lemma
3.3 it follows that for all y ∈ D, x′

1 ∈ ∂p(y), x′
2 ∈ ND(y), λ > 0, and g ∈ Ty we have

〈f − (x′
1 + λx′

2 + g), x− y〉 ≥ 0.
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This yields

〈0− x′
2, x− y〉 ≥ 0 for all y ∈ D and x′

2 ∈ ND(y).

Since ND is maximal monotone we get 0 ∈ ND(x), hence x ∈ D = dom(∂p).

Now we reduce the statement to a variational inequality. To that end, let h be the form
of T . We want to show

f ∈ ∂p(x) + ∂2h(x, 0).

If we set h̃(x, y) := p(x + y) − p(x), then ∂p(x) = ∂2h̃(x, 0). Thus, by the sum theorem
for subdifferentials, we have to show f ∈ ∂2[h̃+ h](x, 0), and hence

〈f, y − x〉 ≤ p(y)− p(x) + h(x, y − x) for all y ∈ dom p. (3)

Finally, we show that this inequality is true. Choose y ∈ D and define for λ ∈ [0, 1]

xλ := λy + (1− λ)x.

By our assumption D = dom ∂p is convex. Hence, ∂p(xλ) is nonempty for every λ ∈
[0, 1]. Since (x, f) is monotonically related to T + ∂p we deduce for all gλ ∈ Txλ and all
x′
λ ∈ ∂p(xλ) that

λ(1− λ)−1
〈

x′
λ, y − xλ

〉

=
〈

x′
λ, xλ − x

〉

≥
〈

f − gλ, xλ − x
〉

=
〈

f − gλ, λy − λx
〉

.

Since x′
λ ∈ ∂p(xλ) was arbitrary we have

p(y)− p(xλ) ≥ (1− λ) 〈f − gλ, y − x〉.

The last inequality is valid for any gλ ∈ Txλ, hence

p(y)− p(xλ) + h(xλ, y − xλ) ≥ (1− λ) 〈f, y − x〉.

Employing Proposition 2.11 we deduce that h is ω-continuous on the segments of D.
Thus, we finally obtain that

p(y)− p(x) + h(x, y − x) ≥ lim sup
λ→0+

[

p(y)− p(xλ) + h(xλ, y − xλ)
]

≥ lim sup
λ→0+

(1− λ) 〈f, y − x〉

= 〈f, y − x〉,

from which (3), and hence the theorem follows.

Proof of Theorem 1.6. The theorem follows from the last theorem. By Proposition
2.1 we know that T is formidable. Moreover, as a maximal monotone operator, T is
‖·‖-weak* upper semicontinuous, and weak* compact-valued on int dom T , see e.g. [10].
Thus, all prerequisites of Theorem 3.4 are fulfilled.
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4. Browder’s Theorem

In the remainder of the paper we prove a variant of Browder’s theorem in the context
of forms. The theorem we have in mind reads: Let E be a real reflexive Banach space.
If T : E → P(E ′) is a maximal monotone, and coercive operator, then T is surjective,
see e. g. [8, Theorem V.3.5, page 163]. The next lemma is a direct consequence of the
Debrunner-Flor extension lemma, which can be found in [10].

Lemma 4.1. Let dimE < ∞, K ⊂ E be compact and convex, q : K → E ′ be continuous,
and K ⊂ dom q. Furthermore, suppose that h : K × E → IR is a monotone form. Then
there exists x ∈ K such that for all y ∈ D := Dom h

h(y, x− y) ≤ 〈q(x), x− y〉.

Theorem 4.2 (Browder). Suppose that h : K × E → IR is a maximal monotone form
with domain D. Furthermore, suppose that h is coercive with respect to f ∈ E ′. Then
there is an x ∈ D such that

f ∈ ∂2h(x, 0). (4)

Proof. This proof is inspired by [10, Theorem III.2.14]. We may assume that x0, the
element which exists by coerciveness assumption, is equal to x0 = 0. If this is not the case
we consider a translated problem, i.e. we define the form h̃(x, y) := h(x0 + x, y). This
implies that D̃ := Dom h̃ = D − x0. Let us note that h̃ is still maximal monotone. We
claim that h̃ is coercive with respect to f . To that end consider

{x̃ ∈ D̃ | 〈f,−x̃〉 ≤ h̃(x̃,−x̃)} = {x̃+ x0 ∈ D | 〈f,−x̃〉 ≤ h(x̃+ x0,−x̃)}
= {x ∈ D | 〈f, x0 − x〉 ≤ h(x, x0 − x)}.

We have seen that problem (4) is equivalent to

∃x ∈ V :=
⋂

y∈D

{

x ∈ K
∣

∣h(y, x− y) ≤ 〈f, x− y〉
}

.

Let us define the following set-valued map ψ : D → P(D)

ψ(y) :=
{

x ∈ D
∣

∣ 〈f, y − x〉 ≤ h(x, y − x)
}

.

By the coerciveness of h and Krein-Šmulian’s weak compactness theorem the set B :=
co clw ψ(0) is weakly compact. Moreover, V ⊂ B by Proposition 2.5.

Let L be the family of all finite dimensional subspaces of E equipped with ‖·‖E. For every
F ∈ L let IF : F → E be the inclusion map and I ′F : E

′ → F ′ be its adjoint. Furthermore,
let hF := h ◦ IF × IF and fF := I ′F ◦ f . Then hF is monotone and fF ∈ F ′. Now we set
KF := F ∩B ∩K and DF := D ∩ F . The set KF is nonempty since 0 ∈ KF . By Lemma
4.1 we have with q := fF

∃xF ∈ VF :=
⋂

y∈DF

{

x ∈ KF

∣

∣h(y, x− y) ≤ 〈f, y − x〉
}

.

We define for Z ∈ L

ΓZ :=
{

xF ∈ E
∣

∣xF ∈ VF , Z ⊂ F, F ∈ L
}

.
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Since KF ⊂ B the set
⋂

Z∈L cl
w ΓZ is weakly compact. We conclude by induction that

{ΓZ}Z∈L has the finite intersection property. Therefore, we have

∃x ∈
⋂

Z∈L

clw ΓZ . (5)

Choose y ∈ D. Then there is an F ∈ L such that y ∈ F . By (5) it follows that there is a
net (xF

λ )λ∈Λ ⊂ ΓF which converges weakly to x and

∀λ ∈ Λ : h(y, xF
λ − y) ≤

〈

f, xF
λ − y

〉

.

Thus,
h(y, x− y) ≤ 〈f, x− y〉.

Since y ∈ D was arbitrary we conclude that x ∈ V .

Remark 4.3. If we want to show Browder’s original theorem stated above, we have in
addition to assume that T is also weak* compact-valued, because of Lemma 2.14. The
surjectivity of T follows as a coercive operator is coercive with respect to any f ∈ E ′.
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