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Consider a set-valued operator mapping points of a real Banach space into convex and weak® closed
subsets of the dual space. It is shown that such operators can be investigated via the notion of a form. In
particular, continuity, monotonicity, maximal monotonicity, and coerciveness are considered. Moreover,
a calculus of forms is derived. Having established the above connections, a probably new sum theorem
in nonreflexive Banach spaces is proved, and a Browder-type theorem for forms is given.
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1. Introduction

A prominent example of a set-valued map is the subdifferential of a lower semicontinuous,
convex, and proper functional p: £ — R := [—00, +00], defined by

op(T) .= {2’ € E'| (2,2 —T) < p(x) — p(T) for all x € E}.

Here and throughout this paper, let £ denote a real Banach space with dual E’, and
K C FE a convex and closed subset. The starting point of our analysis is the connection
between support functionals, and convex and weak™ closed subsets given by Hormander’s
theorem, compare [22] and [1].

Theorem 1.1 (Hérmander).

° Let M be a nonempty, convex, and weak™® closed subset of E'. Then the support
functional oy (z) := supyep (2/, x) is proper, sublinear, and lower semicontinuous.
Moreover, M = 0o (0).

) Suppose p: E — TR is proper, sublinear, and lower semicontinuous. Then the set
M, := 0p(0) is nonempty, conver, and weak* closed, moreover oy, = p.

° If My and M,y are two nonempty, convexr, and weak™® closed subsets of E’', then
My = M if and only if op, = O, -

If we restrict ourselves to operators T: K — B(E’) that map into convex and weak*
closed subsets of the dual, then we can associate to each set Tx a support functional.
A mapping h: K x E — R is called form if there is a nonempty set D C K such
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that for all x € CD there holds h(z,-) = —oo; for all z € D the functional h(z,-) is
lower semicontinuous, and sublinear; and A(z,0) = 0. We call the set Dom h := D
the domain of h. Using Hormander’s theorem we can show a one-to-one correspondence
between forms and weak™ closed-valued, and convex-valued operators. For simplicity we
call these operators formidable. To be more precise, let T: K — B(E’) be a formidable
operator. Then its form is given by h(z,y) = sup,cp, (¢, y). On the other hand, suppose
h: K x E — R is a form. Then the associated operator is recovered by Tz = dyh(z,0),
where Oyh(x,0) denotes the subdifferential of h(z,-) at 0.

Phelps [14] used a form-like approach to investigate the set of points where a maximal
monotone operator is single-valued, Simons [23] proved a sum theorem in nonreflexive
Banach space, and in Hu and Papageorgiou [10] one finds some general observations on
support functionals representing set-valued maps.

Example 1.2. Let p: £ — IR be a convex, proper, and lower semicontinuous functional.
Moreover, let dom p := {z € E|p(x) < oo} be open. Then the form of dp is given by
d.p(z,y), which is the right hand sided Gateaux differential of p at x in direction y.

We call a form h: K x E — IR monotone if for all ,y € Dom h
h(z,y —z) + h(y,x —y) <O0.

The form is called mazimal monotone if the associated operator T' := 0yh(-,0) as an
operator T: K — B(E’) is maximal monotone. One can also define different notions of
monotonicity in a similar manner, compare [12].

In [16, 13] a representation of maximal monotone operators via a (modified) subdifferential
of a concave-convex function is given. Representation of operators via bifunctionals can
be found in [12, 29], and references therein. For a different approach compare [7, 19]. Our
next step is a calculus rule.

Proposition 1.3. Suppose T,S: K — PB(E’) are monotone and formidable operators,
and h, k are their associated forms. Moreover, let the following constraint qualification be

fulfilled
intdom 7'Ndom S # @. ()

Then
[T + S](z) = Oo[h + k](z,0). (1)

Equation (1) is necessary for the maximal monotonicity of 7'+ S since the operator
Oo[h + K](+,0) is a monotone extension of '+ S. The constraint qualification («) ensures,
with the help of the monotonicity of 7" and S, that the sum of the convex and weak*
closed sets Tz and Sz is again convex and weak* closed, hence is representable by a
support functional. The proposition is proved with the sum theorem for subdifferentials.

Theorem 1.4. Suppose p,q: E — TR are proper, convex, and lower semicontinuous.
Moreover, assume that int dom p Ndom g # &. Then we have

Ap + q)(z) = Ip(x) + dq(x) for all x € E.

The theorem states that dp + 0g remains maximal monotone. A proof can be found in
[20] and [11]. As one might expect, there is a generalization for arbitrary S and T
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Theorem 1.5 (Rockafellar [17]). Suppose that E is a reflexive Banach space, T, S: E
— PB(E') are mazimal monotone and

intdom 7T"Ndom S # &. (o)
Then T + S is mazimal monotone.

Looking at our calculus rules, (o) implies that 7'+ S still maps into weak™* closed and
convex subsets of E’, which is necessary for the maximal monotonicity of 7'+ .S. On the
other hand, it also implies that T is ||-||-weak™® upper semicontinuous on a subset of E.
This is a strong assumption. Simons gives an overview how this condition can be relaxed,
including his results, and a discussion of examples in [23] and [24]. Our sum theorem is
inspired by [26]. In that paper one finds the following theorem: Suppose p: E — IR is
proper, lower semicontinuous and convez, and T: E — E' is monotone. Assume further
cl dom p C dom T. Moreover, let T be hemicontinuous on ¢l dom p, and dom Op be
closed. Then Op +T: E — PB(E') is mazimal monotone. We can show:

Theorem 1.6. Suppose p: E — R is a proper, convex, and lower semicontinuous func-
tional, T: E — PB(E') is a maximal monotone operator. Furthermore, suppose that
D :=cl dom p C intdom T'. If dom (Op) is closed, then Op + T is mazimal monotone.

This generalizes a result of Simons, compare [23, Theorem 41.1]. The theorem is proved
in three steps. First of all we show that every pair (z, f) € F x E’ which is monotonically
related to Op+ T, i. e. for every (y,g) € gra(dp+T) we have (f,z —y) + (g,y —x) >0,
must satisfy x € dom 9[p+ T]. Then we reduce the statement to a variational inequality,
which we finally solve with the upper semicontinuity of 7. Nonreflexive sum theorems,
using a different sum, are investigated in [2, 18, 19, 27, 28].

In the remainder of the paper, we will see how the form gives a natural proof of a Browder-
type theorem in the context of forms. First of all we reduce the solvability of an operator
inclusion to a variational inequality. To solve it, we will modify [10, Lemma III1.2.13 and
Theorem I11.2.14 |. Our approach differs from [10] as the authors first solve a perturbed
problem f € (T + eJ)x,. and then argue on € — 0. Instead, we solve f € Tx directly.

We assume that the reader is familiar with monotone operator theory and nonsmooth
analysis, as in e.g. [3, 10, 14, 21, 30].

Let us finally fix some notation. We denote the power set of E' by P(E"), the weak closure
of a set A C E with cl* A, the convex hull of A by co A, the closed convex hull of A by
co A. The domain of T: K — PB(F’) is defined by dom T := {z € K |Tx # @}, the
graph of T' is defined as the set gra T := {(z, f) € K x E'| f € Tx}. Moreover, the polar
of A C E' is defined by A° :={z € F| («/,z) <1 for all 2’ € A}.

2. The Form of an Operator

Proposition 2.1. Let T: K — B(E") be such that Tz is convex and weak™ closed for all
x € dom T'. Then there is a unique form h: K x E — R, for which

Tz = Oyh(x,0).
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The domain D of h equals dom T. If further Tx is weak™ compact for x € D, then h(x,-)
is continuous on E and dom h(z,-) = E. Moreover, if T is single-valued at x € dom T,
then h(z,-) is linear.

Proof. The proposition follows from Hormander’s theorem. Let x € dom 7', then there
exists a unique support function

orz(y) = sup (2',y).

€Tz

Moreover, the set Tz is recovered by Tz = dor,(0). Let us define

h(z,y) = sup (z,y) . (2)

z'eTx

Then h is the unique form of 7', and we have Tx = dyh(x,0). Furthermore Dom h =
dom T, because sup, = —oo. Suppose now that the set Tz is weak™ compact, then
the supremum in (2) is attained, hence h(x,-) = maxyer, (¢/,-). This shows that
dom h(z,-) = E. Moreover, as a lower semicontinuous and convex functions is continuous
on the interior of its domain we have that h(z,-) is continuous on E, see e. g. Chapter 2
of [4]. Finally, if Tz is only a point, then

h(z,y) = sup (2, y) = (Tz,y),

' e€Tx

which shows that h(x,-) is linear. O
Corollary 2.2. Suppose that T: K — B(E’) admits a form h. Then we have

feTx e fedh(z,0) < (f,7) <h(x,z) forall T € E.

It is well known that a maximal monotone operator is weak* closed-valued and convex-
valued. Thus, it admits a unique form. Now we show that the definition of a monotone
form is a good one.

Lemma 2.3. SupposeT: K — P(E') is a formidable operator with form h. The operator
T is monotone if and only if h is monotone.

Proof. Suppose that 7" is monotone, then we have for all =,y € dom T'

sup (f,y —x) < inf (g,y — ).
feTx geTy

Therefore, we deduce h(z,y — z) < —h(y,z — y). The other direction is trivial. O

Now we take a closer look at maximal monotonicity of a form. Let us call a pair (z, f) €
K x E' monotonically related to h if (x, f) is monotonically related to the associated
operator Oqh(-,0): K — PB(E’). Our first result is the next lemma.

Lemma 2.4. Let h: K x E — R be a monotone form with domain D.

(i)  The form h is mazimal monotone if and only if for every pair (z, f) € K x E’ for
which holds f & Oxh(x,0) there is y € D such that (f,x —y) < h(y,z —y).
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(i) If h is mazimal monotone and (x, f) € K x E' is such that for all y € D we have
<fax - y) > h(y7$ - y)7 then f € 82h(x70)

Proof. (i) Let h be maximal monotone, and let (z, f) € K x E’ be such a pair. Then
(x, f) is not monotonically related to h, thus there are y € D and g € 0»h(y,0) such that
(f,x —y)+ (9,y —x) < 0. From Corollary 2.2 it follows

(fix—y) <(g,x—y) < h(y,z—y).

For the converse, suppose that (z, f) € K x E’ and f & Oyh(z,0). Then there is y € D
such that (f,z —y) < h(y,x — y). In particular, there is g € Ty for which holds

(frx—y) <(g.z—y) <h(y,r—y),

and hence (f,z —y) + (9,y —x) < 0. Thus, (z, f) is not monotonically related to h.
Therefore, h is maximal monotone.

(17) Let (z, f) € K x E be such that for all y € D we have

(fiz—y) > h(y,r —y).

Thus, for any y € D and any g € dxh(y,0) it holds

(fiz—y) >hy,z—y) > (g,z—y).

This shows that (z, f) is monotonically related to h. By maximal monotonicity of h we
have f € Oxh(x,0). O

Suppose that A is a form with domain D C K and f € E’. We set:

Ai(f) = ({z € DI (f.y— ) < h(z,y — 2)}

yekE

As(f) = (Mz € K|hy,x —y) < (f,z—y)}

yeD

If h is a monotone form, then for any f € E’ we have A;(f) C A(f). Indeed, for
x € Ay(f) we obtain by monotonicity of h that for each y € D

(f,y—x>+h(:l:,y—:1:)g(f,y—x>—h(y,x—y)§0

and thus € Ay(f). The set A;(f) contains all € D for which f € 0yh(z,0). On the
other hand, Ay(f) collects all x € K such that (z, f) is monotonically related to h. If
these sets coincide, then h is maximal monotone by definition. One might look at A;(f)
and As(f) as the primal and dual solution set of a variational inequality, which coincide
if the form is maximal monotone.

Proposition 2.5. Let h: K x E — R be a monotone form. Then the following are
equivalent:

(a)  The associated operator T := Oyh(-,0) is mazimal monotone.
(b) Forall f € E" we have A1(f) = Aa(f).
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Proof. (a) = (b) Since A;(f) C As(f) we have to establish only the opposite inclusion.
Let x € As(f), then for all y € D

h(y,r —y) < (f,x —y).

By Lemma 2.4 (ii) we obtain that € D and f € dyh(x,0). Thus, (f,Z) < h(z, %) for all
T € E. Setting & =y — x yields © € A;(f).

(b) = (a) Let (x,f) € K x E' be such that f & 0sh(z,0). Then x & A;(f) and since
A (f) = As(f), o Aa(f). Therefore, there exists y € D such that

We obtain the assertion from Lemma 2.4 (7). O

Corollary 2.6. Suppose h: K x E — R is a monotone form, and f € E'. Then

(Ve eD| (fy—a) <hley—a)} C [z € K| h(y,x —y) < (f,z —y)}.

yeD yeD
If the form h is mazximal monotone, then we have equality.

Corollary 2.7. Let h: K x E — R be a mazimal monotone form, and f € E'. Then the
following are equivalent.

o feagh<l’,0)
. x € Ai(f).
° x € As(f).

Lemma 2.8. Let T: K — B(E') be a formidable, monotone operator with form h. Then
for all z,y € D :=dom T and all positive A € Ry we have A(y —x) € dom h(z,-). Thus,
R (D —z) C dom h(zx,-).

Proof. Let z,y € D and A € IR, be given. Using the monotonicity of 1" we obtain
for all f € Ooh(x,0), g € O2h(y,0) that (f,y —x) < (g,y — z), and hence h(z,y — z) <
(9,y — x) < oo. Finally, by sublinearity of h(z, ) we have h(x, \(y —x)) = A(z,y —z) <
oo, which proves the lemma. Il

The inclusion of the lemma can be proper. For an example, let £ = IR and let the
operator T: R — P(IR) be defined by

T ::{ {0} ifxelo1]

%] otherwise.

Obviously, 7" is monotone. Let h be its form. We have dom A(1,-) = R, but Ry (D—-1) =
(—00,0].
Lemma 2.9. Suppose that T: K — B(E') is a formidable operator with form h. Then
we have for all x € Dom h

dom h(z,-) = U ANTx)°.

A>0
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Proof. Let y € |J,.,A(Tz)° be given. Then there is a A > 0 such that for all 2’ € Tz
we have (2/;y) < A. Hence we deduce y € dom h(x,-). On the other hand, choose
y € dom h(z,-). Then we have A := h(z,y) < co. Thus, (z/,y) < A for all 2’ € Tz, and
the assertion follows. O

Let h: Kx E— IR be a form with domain D and A C E. We call h w-continuous on
Aif for all y € F and all A\ € R the set {z € E| h(z,y — ) > A} is closed in A.
We say that h is w-continuous on the segments of A if h is w-continuous on |a, b] for all
a,b € A. Evidently, a form is w-continuous if and only if the map x — h(z,y — z) is
upper semicontinuous for every y € E.

Proposition 2.10 (Simons [23, Lemma 40.1 (d)]). Let T: K — B(E’) be a mazi-
mal monotone operator. Then its form is w-continuous on int dom T

Proposition 2.11 (Shih and Tan [25, Lemma 1]). Let T: E — B(FE') be a weak*
compact-valued formidable operator with nonempty and conver domain D. Moreover,
suppose that for all a,b € D the map T4 : [a,b] — P(E') is ||-||-weak™ upper semicon-
tinuous. Then its form is w-continuous on the segments of D.

The next proposition is a first application of w-continuity. It will imply the well known
characterization lemma of everywhere defined maximal monotone operators in the lan-
guage of forms.

Proposition 2.12 (Shih and Tan [25, Lemma 2]). Suppose that the form h: K x
E — R is monotone, w-continuous on the segments of D := Dom h, f € E’, and D is
convex. Then

({zeD|hy,z—y) <(fre—y}C ([ H{eeD| (fy—x) <hx,y—=)}.

yeD yeD

Lemma 2.13. Leth: ExE — R be a monotone and w-continuous form and Dom h = E.
Then h is mazimal monotone.

Proof. This follows from Proposition 2.12, Proposition 2.5, and Corollary 2.6. O]
We call h coercive with respect to f € E’ if there is an 2o € D := Dom h such that the set
c“{z € D| (f, 20 — x) < h(x,xo — )}

is weakly compact. Since xq is contained in the above set, it is nonempty. We say that a
form h is coercive if it is coercive with respect to every f € F'.

We say that T: K — B(E') is coercive with respect to f € E' if there exists p > 0 such
that for all z € dom TNCB|0, p] and 2’ € T'x we have (2’ — f,z) > 0. If we assume, for a
moment, that F is a reflexive Banach space, then James theorem tells us that a bounded
and weakly closed subset of E' is also weakly compact. With the aid of James theorem
we get the following result.

Lemma 2.14. Let T: E — PB(E’) be a formidable, and weak* compact-valued operator
with form h. If T is coercive with respect to f € E', and E is reflexive, then its form is
also coercive with respect to f.
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Proof. Let us set D := Dom h = dom T. Moreover, let us define the set-valued map

U(zo) ={x e D| (f,xo—x) < h(x,xg —x)}.

As T is coercive with respect to f, there exists p > 0 such that for all z € D N CBJ0, p]
and all 2’ € Tz we have (2’ — f,z) > 0. Let us fix any x € D NCB0,p]. Since Tz
is weak™® compact there is ' € Tz, for which h(z,—z) = (2/,—z) < (f,—x). Thus,
h(z,0—xz) < (f,0 — z) and hence x €1 (0). Therefore 1(0) C BJ0, p]. The lemma follows
from James’ theorem, see e. g. [15]. O

Lemma 2.15. Suppose that h: K x E — R is a monotone form which is coercive with
respect to f € E', and xq, the element which exists by coerciveness of h, equals to o = 0.
Then the associated operator T' = Oyh(-,0) is coercive with respect to f.

Proof. As h is coercive with respect to f the set
A=c"{zeD| (f,0—z) < h(z,0—2)}

is weakly compact, and thus bounded. Hence, there is p > 0 such that A C B[0, p]. Thus,
for all x € D NCBJO, p] we have

(f,—x) > h(zx,—x) = sup (2, —x).

' eTx

Therefore, for any 2’ € Tz we have (f,—z) > (2/, —x) which shows that T is coercive
with respect to f. O]

Usually we assume that xqg = 0. If this not the case, then we consider a translated
problem, for the argument see the proof of Theorem 4.2.

3. The Sum Problem

First of all we derive a calculus for forms. That is, we investigate when the sum of two
formidable operators remains formidable. A first application will be Heisler’s theorem.
Then we restrict our attention to the monotone setting.

Lemma 3.1. Let T,S: K — SP(E') be formidable. Assume further that T is weak™
compact-valued on dom S, and h,k are the associated forms. Then

[T + S|(x) = Oo|h + k](x,0).

Proof. Let x € Dom hNDom k be arbitrary. Then dom h(x,-) = E and hence h(z, ) is
continuous on F, see e. g. Chapter 2 of [4]. Thus, we deduce for all x € Dom h N Dom k
that

0 € int dom A(zx,-) Ndom k(z, ).
The lemma is now a consequence of the sum theorem for subdifferentials. Il

Theorem 3.2 (Heisler). Suppose that T,S: E — SP(E') are maximal monotone, and
dom T"=dom S = FE. Then T + S is maximal monotone.
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Proof. Let h and k be the respective forms. We deduce from Proposition 2.10 that A
and k are w-continuous on E. Hence their sum h -+ k is also monotone and w-continuous.
Furthermore, Lemma 3.1 yields

T+ S = Oylh + K](-,0).

The result follows by Lemma 2.13. O]

A similar proof of Heisler’s theorem can be found in [23]. Our next result, stated in the
introduction, is a step beyond Simons results. It says that we have a calculus, provided
that both forms are monotone, and Rockafellar’s constraint qualification is fulfilled.

Proof of Proposition 1.3. By hypotheses («) there are ¢ > 0 and zq € Dom h such
that o € Dom k and B(xg,€) C int Dom h. Thus, we have for all z € Dom h N Dom k&
from Lemma 2.8 that

zo — x € int dom h(x,-) Ndom k(z,-).
Finally, the sum theorem for subdifferentials yields
Oah(z,0) + Ook(x,0) = 0o + K|(z,0),
which proves the proposition. Il

Let C' C E be a subset. We define the normal cone of C by
No(T):=06c(T) ={a’' € E'| (2/,2—7) <0 forall z € C}.

If C'is convex and closed, then No: E — PB(E’) is a maximal monotone operator. The
next lemma is crucial for the proof of the sum theorem.

Lemma 3.3 (Simons [23, Lemma 16.1]). Let T: K — PB(E’) be a mazimal mono-
tone operator, C be a convexr and closed subset of E, and dom T' C C. Then

T+ Nc<x> =T.

It is a well known result of Brgnsted and Rockafellar [5] that for a proper, convex, and
lower semicontinuous functional p: £ — IR the domain of dp is dense in the domain of
p. See also the discussion in [23]. Thus, we have dom (dp) C dom p C ¢l dom (dp), and
hence cl dom p = cl dom (Op).

Theorem 3.4. Let p: E — IR be a proper, lower semicontinuous and convex functional,
T: E — PB(E") be a formidable, monotone and weak* compact-valued operator. Moreover,
let D :=cldom p Cdom T. If T is ||-||-weak™ upper semicontinuous on the segments of
D and dom (0p) is closed, then Op + T is mazimal monotone.

Proof. First of all, we show that for any pair (z, f) € E x E’ that is monotonically
related to Op + T', we have x € D = cl dom p. By the result of Brgnsted and Rockafellar
it holds D = dom (0dp). Thus, D is convex. Obviously, dp+ T is monotone. From Lemma
3.3 it follows that for all y € D, x| € dp(y), 4, € Np(y), A > 0, and g € T'y we have

(f = (@ + Xy +g),2—y) > 0.
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This yields
(0 —ab,x—y) >0forall y € D and 25, € Np(y).

Since Np is maximal monotone we get 0 € Np(x), hence x € D = dom (9p).

Now we reduce the statement to a variational inequality. To that end, let h be the form
of T. We want to show

f € 0p(x) 4+ Ozh(x,

0)
If we set h(x,y) = p(z +y) — p(x), then dp(x) = dyh(z,0). Thus, by the sum theorem
,0

for subdifferentials, we have to show f € dy[h + h](z,0), and hence

(fiy —x) <ply) —p(z) + h(z,y —2) forall y € dom p. (3)
Finally, we show that this inequality is true. Choose y € D and define for A € [0, 1]
Ty =y + (1 = Nx.

By our assumption D = dom 0Jp is convex. Hence, dp(x,) is nonempty for every A €
[0,1]. Since (z, f) is monotonically related to 7'+ dp we deduce for all g, € Tz, and all
x) € Op(xy) that
A1 =N "2l y —ax) = (2, 2\ — )
Z <f_g)\7x)\ _x>

Since 2, € Op(z)) was arbitrary we have

p(y) —p(ea) > (L= (f —gr,y — ).

The last inequality is valid for any g, € T'x), hence

p(y) —p(za) + h(za,y —22) > (1= N) (f,y — ).

Employing Proposition 2.11 we deduce that h is w-continuous on the segments of D.
Thus, we finally obtain that

p(y) — p(x) + hiz,y — ) > 1i§nj]t+1p [p(y) = p(xx) + h(zr, y — 2)]

> limsup(1l — A) (f,y — x)
A—0+

:<f7y_x>7

from which (3), and hence the theorem follows. O

Proof of Theorem 1.6. The theorem follows from the last theorem. By Proposition
2.1 we know that T is formidable. Moreover, as a maximal monotone operator, T is
||-||-weak™ upper semicontinuous, and weak™ compact-valued on int dom 7, see e.g. [10].
Thus, all prerequisites of Theorem 3.4 are fulfilled. O
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4. Browder’s Theorem

In the remainder of the paper we prove a variant of Browder’s theorem in the context
of forms. The theorem we have in mind reads: Let E be a real reflexive Banach space.
If T: E — B(E') is a mazimal monotone, and coercive operator, then T is surjective,
see e. g. [8, Theorem V.3.5, page 163]. The next lemma is a direct consequence of the
Debrunner-Flor extension lemma, which can be found in [10].

Lemma 4.1. Let dim E < oo, K C E be compact and conver, q: K — E’ be continuous,
and K C dom ¢q. Furthermore, suppose that h: K x E— R is a monotone form. Then
there exists x € K such that for all y € D := Dom h

h(y,z —y) < (q(x),z —y).

Theorem 4.2 (Browder). Suppose that h: K x E — R is a mazimal monotone form
with domain D. Furthermore, suppose that h is coercive with respect to f € E'. Then
there is an x € D such that

f € O2h(x,0). (4)

Proof. This proof is inspired by [10, Theorem I11.2.14]. We may assume that xq, the
element which exists by coerciveness assumption, is equal to xy = 0. If this is not the case
we consider a translated problem, i.e. we define the form h(z,y) := h(zo + z,y). This
implies that D := Dom h = D — xo. Let us note that & is still maximal monotone. We
claim that h is coercive with respect to f. To that end consider

{2 € D|(f,—&) < h(z,—i)} ={F+x0 € D| (f,—F) < (& + 2o, 1)}
={zeD|{f,ro—x) < h(x,xg—x)}.

We have seen that problem (4) is equivalent to

dr eV = m{x€K|h(y,:c—y)§<f,x—y> }.

yeD
Let us define the following set-valued map ¢ : D — B(D)
U(y):={zeD|{fy—a) <hlx,y—z)}.
By the coerciveness of h and Krein-Smulian’s weak compactness theorem the set B :=
cocl? 1(0) is weakly compact. Moreover, V' C B by Proposition 2.5.

Let £ be the family of all finite dimensional subspaces of E equipped with ||-||g. For every
F e £let Ip: F — E be the inclusion map and I: £ — F”’ be its adjoint. Furthermore,
let hp :=holp x Ip and fp := I o f. Then hp is monotone and fr € F'. Now we set
Kr:=FNBNK and Dr := DN F. The set Kg is nonempty since 0 € Kr. By Lemma
4.1 we have with ¢ := fp

Jep € Vp = ﬂ {z € Kp ’h(y,x—y)g(f,y—@ b

yeDRr
We define for Z € £
Iy={ar€E|zpeVpZCFFecg}.
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Since Kp C B the set [),.qcl” I'z is weakly compact. We conclude by induction that
{I"z}zee has the finite intersection property. Therefore, we have

dz € ﬂ c” I'y. (5)
Zes

Choose y € D. Then there is an F' € £ such that y € F. By (5) it follows that there is a
net (z1)xea C I'r which converges weakly to z and

Thus,
Since y € D was arbitrary we conclude that x € V. O
Remark 4.3. If we want to show Browder’s original theorem stated above, we have in

addition to assume that 7' is also weak® compact-valued, because of Lemma 2.14. The
surjectivity of T" follows as a coercive operator is coercive with respect to any f € E'.
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