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We study the dependence of the Hausdorff measure H1
d on the distance d. We show that the uniform

convergence of dj to d is equivalent to the Γ convergence of H1
dj

to H1
d with respect to the Hausdorff

convergence on compact connected subsets. We also consider the case when distances are replaced by
semi-distances.

1. Introduction

In this paper we investigate the sensitivity of the Hausdorff measure H1
d, in a metric space

Q endowed with a distance d, with respect to the distance d. More precisely, our analysis
starts from the well known Gołab Theorem, which states that the Hausdorff measureH1

d is
lower semicontinuous for the Hausdorff distance between sets, when we restrict ourselves
to the class of subsets which are compact and connected. In other words,

H1
d(E) ≤ lim inf

j→+∞
H1

d(Ej)

whenever Ej and E are compact, connected, and Ej → E in the Hausdorff convergence.

We show that the Gołab Theorem is actually only a part of a more general result where
we obtain that, always for the Hausdorff convergence on compact and connected subsets,

H1
dj

→ H1
d for the Γ convergence

whenever dj → d uniformly as a sequence of functions of two variables in Q×Q. Making
explicit the meaning of Γ convergence, this gives:

i) for every Ej → E in the Hausdorff convergence, we have

H1
d(E) ≤ lim inf

j→+∞
H1

dj
(Ej);

ii) for every E there exists Ej → E in the Hausdorff convergence, such that

H1
d(E) = lim

j→+∞
H1

dj
(Ej).
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The Gołab Theorem is then a particular case of i) when we take all the distances dj equal
to d. We actually show that the Γ convergence of H1

dj
to H1

d is equivalent to the uniform

convergence of dj to d, and this is consistent with the results of [4] where the uniform
convergence of dj to d is shown to be equivalent to several other convergences, among
which the convergence (still in the Γ sense) of the length functionals defined on curves
γ : [0, 1] → Q

Ld(γ) := sup

{

K
∑

k=1

d(γ(tk−1), γ(tk))

∣

∣

∣

∣

∣

0 = t0 ≤ t1 ≤ . . . ≤ tK = 1

}

.

Some interesting facts occur if we try to remove the assumption that dj and d are distances,
by simply imposing that they are semi-distances, in the sense that the associated metrics
may degenerate. In this case we are not able to characterize completely the Γ limit set
function as a Hausdorff measure, and we prove only an inequality (see Theorem 4.2).

Finally, in the last section we present some examples and open problems, mainly dealing
with the homogenization of distance functions.

2. Preliminaries

Let (Q, e) be a complete metric space, we think of a closed set Q ⊂ Rn together with the
Euclidean distance e : Q2 → R. We consider the set C(Q) of curves γ : [0, 1] → Q that
are Lipschitz continuous with respect to the underlying distance e.

Given a distance d on Q, we can define the corresponding d-diameter diamd of a set A as

diamd(A) = sup{d(x, y)|x, y ∈ A}.

The length Ld of a Lipschitz curve Γ is independent of the choice of the parametrization
and we sometimes write Ld(Γ) := Ld(γ). We call a distance geodesic, if

d(x, y) = inf {Ld(γ)|γ ∈ C(Q), γ(0) = x, γ(1) = y} .

A concept closely related to the length is that of the 1-dimensional Hausdorff measure H1
d

with respect to d,

H1
d(A) := sup

δ>0
H1

d,δ(A),

where

H1
d,δ(A) := inf

{

∑

i∈I

diamd(Ai)

∣

∣

∣

∣

∣

diamd(Ai) < δ,A ⊂
⋃

i∈I

Ai

}

.

We can define the previous quantities also in the case that d is only a semi-distance, that
is, we only impose d(x, y) ≥ 0 and not the strict inequality for x 6= y. Then H1

d is a
subadditive functional on X := {A ⊂ Q|A compact and connected}. We endow X with
the distance τe, the Hausdorff distance between sets,

τe(A,B) := max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}.
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We will use the Theorem of Blaschke (see [7], Theorem 3.16) which implies that every
bounded sequence of compact non-empty sets has a τe-convergent subsequence with limit
in X.

By Xd ⊂ X we denote the set of maximal elements in X with respect to H1
d. An element

A is called maximal if for every X 3 A′ ⊃ A, H1
d(A

′) = H1
d(A) implies A′ = A. For a

semi-distance d the quotient space Qd := Q/d endowed with d (evaluated on arbitrarily
chosen representants) is a metric space.

Our work continues the investigations of [4], where the equivalence between uniform con-
vergence of distances and Γ-convergence of the length-functionals was shown assuming
a uniform bound of the form d(x, y) ≥ αe(x, y) for some α > 0. Our aim is to re-
move this restriction; on the contrary, we will still use an upper estimate of the form
d(x, y) ≤ Ce(x, y).

Lemma 2.1. Let d be a semi-distance on Q and γ a d-continuous curve connecting x
and y. Then

H1
d(γ([0, 1])) ≥ d(x, y).

Proof. Given ε > 0 and δ > 0, let Ai be a covering of A := γ([0, 1]) with diam(Ai) < δ
such that

∑

i∈I diam(Ai) ≤ H1
d(A) + ε. Given tk ∈ [0, 1) we find i(k) such that γ(tk−1) ∈

Ai(k), and define tk+1 := sup{t|γ(t) ∈ Ai(k)}. We set t0 = 0 and repeat the process until
tK = 1. Then d(γ(tk), γ(tk−1)) ≤ diam(Ai(k)), and we find

H1
d(A) + ε ≥

∑

i∈I

diam(Ai) ≥
K
∑

k=1

diam(Ai(k))

≥
K
∑

k=1

d(γ(tk), γ(tk−1)) ≥ d(x, y).

Since ε was arbitrary we have proved the claim.

The second part of the next lemma is Theorem 4.4.1 of [2].

Lemma 2.2. For every semi-distance d we have H1
d ≤ Ld on C(Q). Moreover, if d is a

distance and γ ∈ C(Q) is a curve without self-intersections, then

H1
d(γ([0, 1])) = Ld(γ).

Proof. For the first part we can assume that Ld(γ) < ∞. For δ > 0 arbitrary, we will
construct a covering of γ([0, 1]) with balls of radius δ. Choose 0 = t0 < ... < tk < ... <
tK = 1 such that Ld(γ([tk−1, tk])) ≤ δ. This is possible, since Ld(γ([0, 1])) is finite. By
definition of Ld we have

Ld(γ) =
K
∑

k=1

Ld(γ|[tk−1,tk]) =:
K
∑

k=1

lk.

For every k we choose t̄k ∈ (tk−1, tk) such that Ld(γ|[tk−1,t̄k]) =
1
2
lk. Such t̄k exists, it is

not necessarily uniquely defined. We set Uk := Bd
lk/2

(γ(t̄k)). Then γ([0, 1]) ⊂
⋃K

k=1 Uk,
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since any x ∈ γ([tk−1, t̄k]) satisfies d(x, γ(t̄k)) ≤ Ld(γ([tk−1, t̄k])) ≤ lk/2, and the same for
x ∈ γ([t̄k, tk]). Since diamd(Uk) ≤ lk ≤ δ,

H1
d,δ(γ([0, 1])) ≤

K
∑

k=1

lk = Ld(γ)

and, taking the supremum with respect to δ > 0, the inequality H1
d ≤ Ld follows.

We now show H1
d ≥ Ld in the case that d is a distance and γ is free of self-intersections.

Let ε > 0 be arbitrary and 0 = t0 < . . . < tK = 1 such that

Ld(γ) ≤
K
∑

k=1

d(γ(tk), γ(tk−1)) + ε.

If d is a distance, the Hausdorff measure is additive and therefore

H1
d(γ([0, 1])) =

K
∑

k=1

H1
d(γ((tk−1, tk)))

L.2.1
≥

K
∑

k=1

d(γ(tk), γ(tk−1))

≥ Ld(γ)− ε.

Since ε > 0 was arbitrary we found the result. Note that in the case of a semi-distance d
we do not have the additivity of the Hausdorff measure that we used in the last line.

It is easy to construct curves γ with self-intersections such that

H1
e(γ([0, 1])) < Le(γ).

Every curve that repeats part of itself has this property. Less obvious is an example of a
semi-distance d and a curve without self-intersections such that length and 1-dimensional
Hausdorff-measure do not coincide.

Example 2.3. We consider the semi-distance d on B̄1(0) ⊂ R2, d(x, y) = ||x| − |y||, and
the curve γ(t) = −1 + 2t connecting (−1, 0) with (1, 0). Then

H1
d(γ([0, 1])) = 1 < 2 = Ld(γ).

The above equalities follow from the fact that the length of the segment AB is the sum
of the lengths of AC and CB, while H1

d(AB) = H1
d(AC), since every covering of AC with

closed sets automatically covers AB. Note that in this example the set [0, 1]× {0} is not
measurable for H1

d in the sense of Carathéodory.

The above example motivates the use of curves without d-self-intersections in our forth-
coming constructions. Another aspect will concern the continuity of the curves. We will
see in Example 2.5 that the use of e-continuous curves is too restrictive in the case of semi-
distances. Note that for a semi-distance d, a d-continuous curve satisfies d(γ(t), γ(s)) → 0
for s → t, and need not to be e-continuous.
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A C B

Figure 2.1: Illustration of the semi-distance of Example 2.3

Definition 2.4 (d-curves and trees). We say that a curve γ is free of d-self-intersec-
tions if d(γ(t), γ(s)) = 0, s < t implies d(γ(t), γ(τ)) = 0 for every τ ∈ [s, t]. We say that
γ is a d-curve if it is d-continuous and free of d-self-intersections.

A tree in a metric space (Y, d) is a d-compact set such that two points x, y ∈ Y are joined
by a unique d-rectifiable path.

Up to constant parts, every d-curve γ can be interpreted as an injective continuous curve
γ̃ in (Q/d, d), and, vice versa, every injective continuous curves γ̃ in (Q/d, d) has a rep-
resentative γ which is a d-curve.

In Example 2.3 the set E := γ([0, 1]) contains no curve connecting (−1, 0) with (1, 0)
whose length is bounded by the d-Hausdorff measure of E. But in this example E is not
a maximal set for the semi-distance d, since E ′ := B̄1 contains E and has the same 1-
dimensional d-Hausdorff-measure. In contrast, the set Σ in the next example is a maximal
set.

Example 2.5. On [−1, 0]×[−1, 1] we consider the subset Σ := {(x, sin(1/x))|x ∈ [−1, 0)}
∪({0}×[−1, 1]), and define the semi-distance d as d(x, y) := min{e(x, y), e(x,Σ)+e(y,Σ)}.
Then Σ is maximal with respect to d and its d-Hausdorff measure vanishes (in particular
it is finite). But there is no e-continuous curve that connects (x1, x2) ∈ Σ, x1 < 0, with
(0, 0) ∈ Σ.

In this example γ(t) = (x1, x2) for every t < 1 and γ(1) = (0, 0), is a d-curve connecting
the two points in Σ.

Lemma 2.6 (d-curves and d-trees). For every d-curve γ we have

H1
d(γ([0, 1])) = Ld(γ).

Moreover, every tree E =
⋃

k Ek ⊂ Q/d composed of continuous injective curves Ek in
Q/d has a representative Ē =

⋃

k Ēk ⊂ Q consisting of d-curves Ēk such that

H1
d(Ē) =

∑

k

H1
d(Ēk).

Proof. We note that every d-curve γ has a corresponding curve γ̃ in Qd = (Q/d, d) that
is free of self-intersections. We find

H1
d(γ([0, 1])) = H1

d(γ̃([0, 1])) = Ld(γ̃) = Ld(γ)
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by the second part of Lemma 2.2. In the first and last equality we use that the definitions
of Ld and of H1

d yield the same values for γ and γ̃.

In order to choose representatives in a unique way, we select a family of points Q̄ ⊂ Q
such that Q̄ 3 x 7→ x̃ = {q ∈ Q|d(q, x) = 0} ∈ Q/d is bijective. Given a tree E we can
represent every Ek ⊂ Q/d by a d-curve Ēk ⊂ Q̄ and define Ē =

⋃

k Ēk. By the additivity
of the Hausdorff-measure for a distance we find

H1
d(Ē) = H1

d(E) =
∑

k

H1
d(Ek) =

∑

k

H1
d(Ēk),

which was the claim.

We next quote a theorem that is classical for subsets of Rn (see e.g. [7], Theorem 3.12),
and is shown for metric spaces in [2], Theorem 4.4.4.

Theorem 2.7. If E is a complete metric space and C ⊂ E is a closed connected set such
that H1

d(C) < ∞, then C is compact and connected by injective rectifiable curves.

We will use the following corollary of this theorem.

Corollary 2.8. Let d be a semi-distance on Q satisfying d(x, y) ≤ Ce(x, y) for every
x, y ∈ Q, and let A be closed and connected with respect to e with H1

d(A) < ∞. Then
the d-closure of A is d-path-connected, i.e. for x, y in the d-closure of A exists a d-curve
connecting x and y.

Proof. We consider Ã ⊂ (Q/d, d), the d-closure of the points {x̃ ∈ Q/d|x̃ = {q ∈ Q :
d(x, q) = 0}, x ∈ A}. Then Ã is closed and connected in (Q/d, d) with H1

d(Ã) = H1
d(A) <

∞. Theorem 2.7 yields the existence of a d-rectifiable curve γ̃ without self-intersections
connecting x and y in Ã. We can represent γ̃ with a d-curve γ in the d-closure of A
connecting x and y.

3. On families of semi-distances converging to a distance

The following lemma is similar to Lemma 3.17 of [7] in a metric space; the idea stems
from [6]. Note that the result is in general wrong for semi-distances d.

Lemma 3.1. Let (Q, d) be a metric space, F ⊂ Q a tree, H1
d(F ) < ∞. Then for every

δ > 0 there exists a family (Fi)i=1,...,k such that F =
⋃k

i=1 Fi and

(a)
∑

i diamd(Fi) ≤
∑

iH1
d(Fi) = H1

d(F ).

(b) diamd(Fi) ≤ δ for every i.

(c) k ≤ 3δ−1H1
d(F ) + 1.

Proof. The proof follows that of Falconer [7]; we repeat it for completeness. Note that
the proof does not work if d is only a semi-distance since we use the additivity of the
Hausdorff measure and the second part of Lemma 2.2.

In the case diamd(F ) ≤ δ we do not have to decompose F . Assume therefore diamd(F ) >
δ. Let x be any point of F , and let m denote the supremum of the d-path-distance of
points in F from x; then by Lemma 2.2 m ≤ H1

d(F ) < ∞, while m > δ/2 because of
diamd(F ) ≥ δ. Let y be a point of F at d-path-distance greater than m− δ/6 from x, and
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let z be the point on the unique path joining x and y at d-path-distance m − δ/2 from
x. The point z determines a dissection of F into two subtrees F1 and F ′ with z as their
only commen point, where F1 consists of those points of F whose joins to x pass through
z. Every point of F1 is within d-path-distance δ/2 of z, so diamd(F1) ≤ δ. By the second
part of Lemma 2.2, H1

d(F1) is greater than the d-path-distance from y to z, which is at
least (m− δ/6)− (m− δ/2) = δ/3.

If diamd(F
′) > δ we repeat this process with the tree F ′ to break off a subtree F2, and

so on, until we are left with a tree Fk of diameter, at most, δ. Parts (a) and (b) of the
conclusion are immmediate using the subadditivity of H1, while (c) follows from (a) since
δ/3 < H1

d(Fi) for all i = 1, . . . , k − 1.

In the proof of the next lemma we use the following elementary equivalence for a locally
compact space (Q, e) and a distance on Q with d ≤ Ce.

(xk)k e− bounded, d(xk, x) → 0 ⇐⇒ e(xk, x) → 0. (1)

The implication ′ ⇐′ is immediate by d ≤ Ce. For the converse implication we note
that by local compactness of (Q, e) the sequence xk has an e-convergent subsequence,
xk(j) → x̄ ∈ Q. By the triangle inequality d(x, x̄) ≤ d(x, xk(j)) + d(xk(j), x̄) ≤ d(x, xk(j)) +
Ce(xk(j), x̄) → 0. Since d is a distance, we infer x = x̄. The limit of subsequences is
unique, therefore the whole sequence xk converges to x.

Lemma 3.2. Let d ≤ Ce be a distance and dj a sequence of geodesic semi-distances
converging uniformly to d. Then for every e-bounded and d-continuous curve γ there
exists a sequence of curves γj with γj([0, 1]) → γ([0, 1]) in τe and such that

lim sup
j→∞

Ldj(γj) ≤ Ld(γ). (2)

Proof. We can assume Ld(γ) < ∞. We set ε = 1/N and choose for K = K(N) time
instances 0 = t0 < . . . < tK = 1 such that Ld(γ|(tk−1,tk)) ≤ ε for every k ≤ K. For
two points x = xk = γ(tk−1) and y = yk = γ(tk) we find an index J(k) such that
dj(x, y) ≤ d(x, y) + ε

2K
for every j ≥ J(k). Since dj is geodesic, we find an e-continuous

curve γk,j connecting x and y with

Ldj(γk,j) ≤ dj(x, y) +
ε

2K
.

Connecting the curves (γk,j)k to a single curve γ̄j we find

Ldj(γ̄j) =
K
∑

k=1

Ldj(γk,j) ≤
K
∑

k=1

[

dj(xk, yk) +
ε

2K

]

≤
K
∑

k=1

[

d(xk, yk) +
ε

K

]

≤ Ld(γ) + ε ∀j ≥ J0(K).

Here we set J0(K) = max{J(k) : k = 1, . . . , K}. In the above construction the index
J0(K) = J0(K(N)) and the curves γ̄j = γN

j both depend on N . We now construct the
final sequence γj by setting γj := γ̄N

j for every j = max{N, J0(K(N))}, . . . ,max{N +
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1, J0(K(N + 1))} − 1 in step N . Note that the set of j on the right hand side may be
empty. The curves γj are chosen arbitrary for indices j ≤ J0(K(1)). We find for arbitrary
ε = 1/N an index j0 = J0(K(N)) such that Ldj(γj) ≤ Ld(γ) + ε for all j ≥ j0, and
therefore (2).

It remains to show that Γj := γj([0, 1]) → Γ := γ([0, 1]) in τe. By the e-connectedness of
Γj it suffices to show that

Γ = {x|x is an e-limit point of (Γj)j}. (3)

Indeed, choose R large enough and a ball Be
R to have Γ ⊂ Be

R. The e-compact family
Γj ∩ B̄e

2R has some τe-limit ΓR by the theorem of Blaschke. (3) implies ΓR = Γ. We
conclude that from some index j0 on, Γj ∩ (B̄e

2R \ Be
R) = ∅. By e-connectedness we have

Γj ⊂ B̄e
R for every j ≥ j0. Then Γj → Γ in τe.

We prove the inclusion ’⊂’ in (3). Ld(γ|(tk−1,tk)) ≤ ε for every k implies that every point
x ∈ Γ is a d-limit point of (xk)k = (γ(tk−1))k. By xk ∈ Γj, x is also d-limit point of Γj.
Since Γ is e-bounded we can use (1) to see that x is also an e-limit point of Γj.

We prove now the inclusion ’⊃’ in (3). Assume that x ∈ Q is an e-limiting point of
Γj with x 6∈ Γ. Then d(x,Γ) > 0, since d is a distance. Since x is an e-limit point it
is also a d-limit point, and for every j0 we find j ≥ j0 such that d(x,Γj) < d(x,Γ)/2.
We choose j0 = J0(K(N)) with N large enough to have εN = 1/N < d(x,Γ)/4. The
distance of x to Γj is attained at some piece γk,j := γ|[tk−1,tk] for some k = k(j), that is,
d(x, γk,j([0, 1])) < d(x,Γ)/2. Since Ldj(γk,j) ≤ d(xk, yk) + ε/K ≤ ε(1 + 1/K) we find

d(x,Γ) ≤ d(x, xk) ≤ d(x, γk,j([0, 1])) + Ldj(γk,j)

< d(x,Γ)/2 + d(x,Γ)/2,

which is a contradiction.

Theorem 3.3. Let (Q, d) be a metric space and dj ≤ Ce a family of geodesic semi-
distances on Q with dj → d uniformly. Then

H1
dj

Γ→ H1
d

as functionals on (X, τe).

Proof. We have to verify the following two properties.

∀Ej → E in (X, τe) : H1
d(E) ≤ lim inf

j→∞
H1

dj
(Ej), (4)

∃Ej → E in (X, τe) : H1
d(E) ≥ lim sup

j→∞
H1

dj
(Ej). (5)

The idea to prove (4) is to repeat the proof of Falconer [7], Theorem 3.18, where lower
semicontinuity of H1

e is shown, i.e. the theorem of Gołab

H1
e(E) ≤ lim inf

j→∞
H1

e(Ej).

The idea to prove (5) is to follow the proof of Theorem 3.1 of [4], where the corresponding
result is shown for the length functional. We cannot apply this result, since d ≥ αe for
some α > 0 was used there.
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Proof of (4), not using that d is a distance. Without loss of generality we can
assume H1

dj
(Ej) ≤ C0 < ∞ for every j. We can take the dj-closure of Ej without

changing H1
dj
(Ej) and the dj-connectedness. We can therefore assume that every Ej is

dj-closed. We choose finite subsets Sj ⊂ Ej such that Sj → E with respect to τe, and
dj-continuous trees Fj connecting the points Sj/dj within Ej/dj (using Theorem 2.7).

Using Lemma 3.1, we can write Fj =
⋃k

i=1 Fji with k independent of j and

diamdj(Fji) ≤ δ ∀i, j, (6)

k
∑

i=1

diamdj(Fji) ≤ H1
dj
(Fj). (7)

We next choose representatives F̄ji ⊂ Q consisting of dj-curves and set

ÝFji := F̄ji ∪
{

x ∈ Sj|dj(x, F̄ji) = 0
}

,

which does not alter property (6) or (7). In this way we find that ÝFj :=
⋃

i
ÝFji → E in τe.

We then find subsequences jl → ∞ such that ÝFji → Hi in τe for some set Hi. We next

calculate a bound for the d-diameter of Hi. For every x, y ∈ Hi there exist xj, yj ∈ ÝFji

such that xj → x and yj → y with respect to e. By uniform convergence dj → d we find

d(x, y) = lim
j→∞

dj(xj, yj) ≤ lim inf
j→∞

diamdj(
ÝFji). (8)

In particular we find diamdHi ≤ δ using (6). Then the family Hi provides a covering of
E with sets of d-diameter bounded by δ, so that

H1
d,δ(E) ≤

k
∑

i=1

diamdHi

(8)

≤ lim inf
j→∞

k
∑

i=1

diamdj(
ÝFji)

(7)

≤ lim inf
j→∞

H1
dj
( ÝFj)

(F̄j⊂Ej)

≤ lim inf
j→∞

H1
dj
(Ej).

Since δ > 0 was arbitrary, this shows inequality (4).

Proof of (5). We can assume H1
d(E) < ∞. Since d is a distance, the e-closed set E

is also d-closed: Assume E 3 an → a with respect to d. Then by compactness of E a
subsequence satisfies an(k) → ā ∈ E with respect to e. By d ≤ Ce the point ā is also a
d-limit and therefore ā = a is in E.

We choose finite sets of points Si such that
⋃

Si is dense in E with respect to τe, and
connect the points of Si with d-curves Eik in E using Corollary 2.8. This yields a sequence
of trees E ⊃ Ei :=

⋃

k Eik → E in τe. Note that Ei ⊂ E implies that all Eik are e-bounded.
By Lemma 3.2, for every Eik we find approximating curves Ej

ik converging to Eik in τe for
j → ∞, and such that

Ld(Eik) ≥ lim sup
j→∞

Ldj(E
j
ik).
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By Lemma 2.2, Ld and H1
d coincide on Eik and, setting Ẽj

i :=
⋃

k E
j
ik, we find

H1
d(E)

Ei⊂E

≥ H1
d(Ei) =

∑

k

H1
d(Eik) =

∑

k

Ld(Eik)

≥
∑

k

lim sup
j→∞

Ldj(E
j
ik)

L.2.2
≥

∑

k

lim sup
j→∞

H1
dj
(Ej

ik)

≥ lim sup
j→∞

H1
dj
(Ẽj

i ),

using subadditivity of H1
dj
. For every i > 0 we find j = j(i) such that Ẽj

i is close to Ei in

the Hausdorff distance τe, and H1
dj
(Ẽ

j(i)
i ) ≤ H1

d(E)+ 1
i
. Then Ẽi := Ẽ

j(i)
i → E for i → ∞

and

lim sup
i→∞

H1
dj
(Ẽi) ≤ H1

d(E)

as required.

The theorem above allows us to analyze the periodic and the stochastic homogenization
of microscopic, disconnected obstacles or conductors. Indeed, in these examples, even
if the approximating structures give raise to semi-distances, the limit turns out to be a
distance (see Section 6).

4. The case of a limiting semi-distance

Lemma 4.1. Let d be a semi-distance, Γ the image of a d-continuous curve, and dj
a sequence of geodesic semi-distances converging uniformly to d. Then there exists a
sequence of e-continuous curves Γj with the same end-points as Γ satisfying

lim sup
j→∞

Ldj(Γj) ≤ Ld(Γ).

Proof. The proof is obtained by following step by step the proof of Lemma 3.2. The fact
that d is a distance is used there in order to show that the curves Γj converge to Γ in τe.
For a semi-distance d this is not necessarily true.

Theorem 4.2. Assume that Q is e-compact. Let dj → d uniformly, with dj ≤ Ce and d
semi-distances on Q, and assume that all dj are geodesic. Then, for some F : X → R,

H1
dj

Γ→ F ≥ H1
d

as functionals on the space (X, τe). Moreover, on the subset Xd of d-maximal sets we have

F = H1
d on Xd.

Proof. The inequality F ≥ H1
d on X, that is (4), is shown in Theorem 3.3. Con-

cerning inequality (5), it remains to find, for every E ∈ Xd, a sequence Fl → E with
lim supl H1

dl
(Fl) ≤ H1

d(E); we can assume H1
d(E) < ∞. We consider the d-closure Ē of E,

choose an e-dense family of finite sets Si ⊂ Ē, and connect Si/d in Ē/d using Theorem
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2.7. Lemma 2.6 yields the existence of an e-dense family of trees Ei made up of d-curves
Eik. Approximating every curve Eik as in Lemma 4.1 we obtain

H1
d(Ei)

L.2.6
=

K(i)
∑

k=1

Ld(Eik)
L.4.1
≥

K(i)
∑

k=1

lim sup
j→∞

Ldj(E
j
ik).

A subsequence of the family Ej
i :=

⋃K(i)
k=1 E

j
ik converges (for j → ∞) in τe to an e-connected

set ÝEi ⊃ Si. For a subsequence i → ∞ and some ÝE ⊂ Q we also find ÝEi → ÝE for i → ∞
in τe, and ÝE is again connected in (Q, e). To conclude the proof it remains to show that
ÝE = E. Since (Si)i is dense in E we have ÝE ⊃ E and so

H1
d(E) = H1

d(Ē)
Ē⊃Ei

≥ H1
d(Ei) ≥

K(i)
∑

k=1

lim sup
j→∞

Ldj(E
j
ik)

L.2.2
≥

K(i)
∑

k=1

lim sup
j→∞

H1
dj
(Ej

ik) ≥ lim inf
j→∞

K(i)
∑

k=1

H1
dj
(Ej

ik)

≥ lim inf
j→∞

H1
dj
(Ej

i )
(4)

≥ H1
d( ÝEi).

Applying (4) again for the trivial sequence dj = d (theorem of Gołab) we find

H1
d(E) ≥ H1

d( ÝE).

Since E was maximal we infer E = ÝE and therefore E
j(i)
i → E for some appropriate

subsequence j(i).

One might ask if the stronger result H1
dj

→ F = H1
d in the above theorem is true. This is

not the case: in Subsection 6.3 we provide an example with F 6= H1
d.

5. The converse implication: limits of geodesic distances

In this section we assume again the e-compactness of Q. Our aim is to show the converse
implication of Theorem 4.2: The Γ-convergence of the Hausdorff measures implies the
uniform convergence of the distance functions.

Lemma 5.1. Let dj → d be a uniformly convergent sequence of geodesic semi-distances
satisfying dj ≤ Ce and, in the sense of Γ-convergence,

H1
dj

→ F ≥ H1
d

with equality on the d-maximal subsets of Q. Then

d(x, y) = inf{H1
d(γ([0, 1]))|γ d− curve connecting x and y}

= inf{H1
d(A)|A ∈ X, x, y ∈ A}

= lim
j→∞

inf{H1
dj
(A)|A ∈ X, x, y ∈ A}.

(9)
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Proof. We have the following chain of inequalities using Lemma 2.1 for d-curves in the
first line (in the second line we use that for an e-connected set A each two of its points
can be connected with a d-curve in the d-closure of A):

d(x, y)
L.2.1
≤ inf

{

H1
d(γ([0, 1]))|γ d− curve connecting x and y

}

Cor.2.8
≤ inf{H1

d(A)|A ∈ X, x, y ∈ A}
≤ inf{F (A)|A ∈ X, x, y ∈ A}
(Γ)
= lim

j→∞
inf{H1

dj
(A)|A ∈ X, x, y ∈ A}

= lim
j→∞

dj(x, y) = d(x, y).

In the equality (Γ) we used the Γ-convergence of H1
dj

to F and the compactness of the

space (X, τe). We then conclude that equality holds in all lines.

Remark 5.2. Note that in the case of a distance d the infimum in the second line is
actually a minimum (see [2]). This is not true for a semi-distance (see Example 2.5).

Proposition 5.3. Let dj ≤ Ce be a family of geodesic semi-distances such that for some
semi-distance d

H1
dj

Γ→ F ≥ H1
d

with equality on the d-maximal subsets of Q. Then dj → d uniformly.

Proof. The family dj : Q2 → R is uniformly continuous and we find a subsequence
dj → d̃ uniformly for some d̃. It suffices to show that d̃ = d. We have, by Theorem 4.2,

H1
dj

→ F ≥ H1
d̃

with equality on the d̃-maximal subsets of Q. We apply Lemma 5.1 to d and d̃ and find

d(x, y) = lim
j→∞

inf{H1
dj
(A)|A ∈ X, x, y ∈ A} = d̃(x, y).

Therefore the two distance functions coincide, as required.

6. Examples

6.1. Periodic homogenization

We consider periodically distributed ’obstacles’ and study shortest paths between points.
We define the length of a curve as the euclidean length of that part of the curve that does
not hit an obstacle (see Figure 6.1). This problem appears in the homogenization of a
stationary problem in fluid mechanics, where surface tension forces the liquid to minimize
the perimeter of the occupied area (here the wetting energy of the obstacles is neglected).
The corresponding variational problem is given by (P) (compare [8] for a nonstationary
analysis).

(P ) Given a convex macroscopic domain Q ⊂ R2 we choose a closed set B ⊂ (0, 1)2 and
define Sε := ε(Z2 + B) ∩ Q. We are interested in paths Γ between points x, y ∈ Q that
minimize the functional

Fε(Γ) := H1
e(Γ \ Sε).
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Problem (P ) defines a geodesic semi-distance dε given by

dε(x, y) := inf{Fε(Γ)|Γ ∈ C(Q), x, y ∈ Γ}.

The distances dε have a uniform limit d, and Theorem 3.3 implies that the functionals Fε

Γ-converge to the Hausdorff-measure H1
d.

Large obstacles: If the obstacles are large enough we find for a1 := dist(B, (1, 0) + B)
and a2 := dist(B, (0, 1) + B) that dist(B, (k1, k2) + B) ≥ k1a1 + k2a2 for all positive
integers k1, k2. In this case one calculates that dε converges uniformly to the ’Manhattan-
distance’ d(x, y) = a1|x1 − y1| + a2|x2 − y2|. Theorem 3.3 yields H1

dε
→ H1

d in the sense
of Γ-convergence. In particular, for a family Γε of minimizers of Fε, a subsequence of
Γε converges to a minimizer of H1

d. Note that for x, y with x1 6= y1 and x2 6= y2, not
every sequence of minimizers has the property to stay away from planes parallel (but not
identical) to the straight connection of x and y. This relates to a property studied in [5]
for distances.

Figure 6.1: Shortest paths in a periodic and in a stochastic geometry

Obstacles of arbitrary shape: In the general case the limiting distance function can be
expressed by

d(x, y) = inf

{∫ 1

0

Φ(γ′(t)) dt

∣

∣

∣

∣

γ ∈ C(Q), γ(0) = x, γ(1) = y

}

.

Here the Finsler function Φ is obtained via the characteristic function a of R2 \ (Z2 +B)
as (see, for instance, [1], [3])

Φ(z) = lim
T→∞

[

inf

{

1

T

∫ 1

0

a(γ)|γ′|
∣

∣

∣

∣

γ ∈ C(R2), γ(0) = 0, γ(1) = Tz

}]

.

We conjecture that, independently of the obstacle B, the periodic homogenization never
yields an isotropic limiting distance function.

6.2. Stochastic homogenization

A way to obtain an isotropic limiting distance function is to consider a random distribution
of obstacles. Let obstacles of size 1 be distributed stochastically on R2 to define S ⊂ R2.
We assume that the probability measure on the space of configurations is invariant under
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translations and rotations. We study problem (P ) on the set Sε := εS∩Q. In this setting
we expect that for almost every realization of obstacles the distances dε converge to an
isotropic and translation invariant limit, that is, dε → d uniformly for d = αe, α ∈ R,
and e the Euclidean distance. By Theorem 4.2 this information suffices to see that the
functionals Fε converge in the sense of Γ convergence to the Hausdorff measure αH1

e.
In particular, for α > 0, every minimizing sequence Γε converges to a straight line, the
Euclidean geodesic.

6.3. Homogenization with macroscopic obstacles

On Q = [0, π]× [−1, 1] we consider the set

Σj := {(x, sin(jx))|x ∈ [0, π]} ,

and the semi-distances dj defined as dj(x, y) := min{e(x, y), e(x,Σj) + e(y,Σj)}. In this
setting shortest paths are either straight lines or shortest paths from x and y to Σj,
connected by a curve contained in Σj. The limiting semi-distance is for S = [0, π]× [0, 1]
given by d(x, y) = min{e(x, y), e(x, S) + e(y, S)}.

BA

Figure 6.2: A shortest path in the presence of a macroscopic obstacle

We study shortest paths Aj connecting x = (0,−1/3) with y = (1,−1/3) for large j.
For a subsequence, Aj converges in τe to some set A that minimizes F . Because of
F = H1

d on Xd we know that the d-closure Ā of A is a minimizer of H1
d and therefore

Ā = ({0} × [−1/3, 0]) ∪ S ∪ ({1} × [−1/3, 0]).

Note that in this example the path P := ({0}× [−1/3, 0])∪([0, 1]×{0})∪({1}× [−1/3, 0])
satisfies F (P ) = 5/3 and is not a minimizer of F . This yields an example for F 6= H1

d,
since H1

d(P ) = 2/3. We see that the knowledge of the Γ-limit F of the functionals H1
dj

includes indeed more information than H1
d: Knowing only H1

d we can say that limits of
minimizing sequences are contained in P ∪ S, but we can not exclude that the limit is P .
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