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We prove maximum principle for vector valued minimizers u : Ω ⊂ Rn → RN of some functionals

F(u) =

∫

Ω
f(x,Du(x))dx.

The main assumption on the density f(x, z) is a kind of "monotonicity" with respect to the N×n matrix
z. A model density is f(z) = |z|4 − (det z)2, where z ∈ R2×2. We also consider relaxed functionals

RF(u) = inf{lim inf
k

F(uk) : uk → u}

and we prove a maximum principle under suitable assumptions.
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1. Introduction

Let us consider vector valued mappings u : Ω ⊂ Rn → Rn; when x ∈ Ω, it turns
out that Du(x) is a n × n matrix. For i ∈ {1, . . . , n} we set Mi(Du) to be the vector
containing all the minors i× i taken from the n×n matrix Du. Thus M1(Du) = Du and
Mn(Du) = detDu. Let us consider the variational integral

I(u) =
∫

Ω

f(Du(x))dx, (1)

where f(Du) = g1(M1(Du)) + g2(M2(Du)) + · · ·+ gn(Mn(Du)). For a suitable choice of
gi’s, such an integral is a model functional in nonlinear elasticity. As long as regularity
of minimizers for (1) is concerned, partial regularity of Du has been recently proved
in [4] for degenerate convex gi’s. Maximum principle has been established in [7] when
gi(Mi(Du)) = hi(| Mi(Du) |) with increasing hi : [0,+∞) → [0,+∞). The importance of
maximum principle is highlighted in [5] where it is used in proving continuity of minimizers
in the two dimensional case. Let us point out that, in general, the density f is not strictly
convex, thus there may be more than one minimizer for (1). In this paper we select
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two conditions on f allowing for maximum principle: the first one ensures that for every
minimizer u of (1) there exists another minimizer ũ enjoying the maximum principle;
the second one is stronger than the first one and it guarantees that every minimizer u
of (1) satisfies the maximum principle. Next section contains precise statements and
their proofs. In the last section we deal with relaxation: some integrals I show lack of
semicontinuity that gives some trouble in proving existence of minimizers. To overcome
this difficulty, we consider the relaxed functional

RI(u) = inf

{

lim inf
k→∞

I(uk) : {uk}k ⊂ Lip(Ω̄;RN) and

uk ⇀ u weakly in W 1,p(Ω;RN)

}

(2)

see [2]. Under suitable assumptions on f , RI turns out to be W 1,p lower semicontinuous
and p coercive, thus direct methods in the calculus of variations guarantee the existence
of minimizers for RI, provided a suitable boundary datum has been fixed. In Section
3 we give conditions for the validity of maximum principle for minimizers of the relaxed
functional RI.

2. Statements and proofs.

Let Ω ⊂ Rn be a bounded open set and u : Ω ⊂ Rn → RN ; n,N ≥ 2. We consider the
functional

F(u) =

∫

Ω

f(x,Du(x))dx, (3)

where f : Ω × RN×n → R is assumed to be measurable with respect to x ∈ Ω and
continuous with respect to z ∈ RN×n. We also require that

0 ≤ f(x, z) (4)

for every x ∈ Ω, for each z ∈ RN×n. When dealing with a matrix z ∈ RN×n, we write
z1, . . . , zN to denote the N rows; for each row zα it results that zα = (zα1 , . . . , z

α
n) ∈ Rn.

Now we are ready to write the main assumption:

f(x, z̃) ≤ f(x, z) (5)

for every x ∈ Ω, for every couple of matrices z̃, z ∈ RN×n such that there exists β ∈
{1, . . . , N} for which z̃β = 0 6= zβ and z̃α = zα for α 6= β. We will refer to (5) as to
"monotonicity".

A minimizer of functional (3) is a function u ∈ W 1,1(Ω,RN) such that F(u) < +∞ and

F(u) ≤ F(v), (6)

for every v ∈ u+W 1,1
0 (Ω,RN).

For γ ∈ {1, . . . , N} and b ∈ R we define the truncation operator

Tγ,b : RN → RN (7)
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as follows. For every y = (y1, . . . , yN) ∈ RN we set Tγ,b(y) = (T 1
γ,b(y), . . . , T

N
γ,b(y)) ∈ RN

where Tα
γ,b(y) = yγ ∧ b = min{yγ; b} if α = γ, Tα

γ,b(y) = yα if α 6= γ.

The first result of the present paper is the following

Theorem 2.1. Let u = (u1, . . . , uN) ∈ W 1,1(Ω,RN) be a minimizer of functional (3)
under (4) and (5). If there exist β ∈ {1, . . . , N} and k ∈ R such that uβ ≤ k on ∂Ω, then
Tβ,k(u) ∈ u+W 1,1

0 (Ω,RN) and Tβ,k(u) minimizes (3) too.

Remark 2.2. In general uβ may be greater than k in Ω, that is Tβ,k(u) 6= u, as the
following example shows, [10]. Take n = N = 2, Ω = {x ∈ R2 :| x |< π/2}, u1(x) =
cos | x |, u2(x) = 0, f(x, z) =| det z |. So, the second row of the matrix Du(x) is zero,
thus its determinant vanishes and F(u) = 0. Since 0 ≤ F(v) for any v, it turns out
that u is a minimizer of F with u1 = 0 on ∂Ω but u1 > 0 in Ω. On the other hand
T1,0(u) = u1 ∧ 0 = 0 < u1 in Ω. Note that f(x, z) =| det z | verifies (4) and (5).

In order to get the equality Tβ,k(u) = u we have to assume the following "strict mono-
tonicity":

f(x, z̃) < f(x, z) (8)

for every x ∈ Ω, for every couple of matrices z̃, z ∈ RN×n such that there exists β ∈
{1, . . . , N} for which z̃β = 0 6= zβ and z̃α = zα for α 6= β. Under (8) we are able to prove
that Tβ,k(u) = u in Theorem 2.1, that is, every minimizer enjoys the maximum principle:
this is the second result of the present paper.

Theorem 2.3. Let u = (u1, . . . , uN) ∈ W 1,1(Ω,RN) be a minimizer of functional (3)
under (4) and (8). If there exist β ∈ {1, . . . , N} and k ∈ R such that

uβ ≤ k on ∂Ω

then
uβ ≤ k in Ω.

Remark 2.4. The assumption "v ≤ k on ∂Ω" means that there exists a sequence {vh}h ⊂
Lip(Ω) such that vh(x) ≤ k for every x ∈ ∂Ω, for each h ∈ N and vh → v in W 1,1(Ω) as
h → ∞.

Remark 2.5. The statement "v ≤ k in Ω" means that v(x) ≤ k for almost every x ∈ Ω.

Remark 2.6. Let us assume that there exists a function g such that

f(x, z) = g(x, |M1(z)|, |M2(z)|, . . . , |Ms(z)|), (9)

where s = min{n,N} and Mi(z) is the vector containing all the i× i minors taken from
the N × n matrix z. About g = g(x, p1, p2, . . . , ps) we assume that

pi → g(x, p1, . . . , pi, . . . , ps) (10)

is increasing on [0,+∞) for every i = 1, . . . , s. Under (9) and (10) it is easy to prove that
(5) holds true. A simple model is

f(x, z) =| det z |

where N = n = s, Ms(z) = det z and g(x, p1, . . . , ps) = ps.
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Remark 2.7. Under (9) and (10), if we also assume that

p1 → g(x, p1, p2, . . . , ps) (11)

is strictly increasing on [0,+∞), then it is easy to prove that (8) holds true. Variational
integrals (3) under (9), (10), (11) have been considered in [7] and the model is

f(x, z) =| z |p + | det z |q,

where z ∈ Rn×n, p, q > 0; see [5] for the case n = 2 = p = q.

Remark 2.8. Let us recall that f is said to be rank one convex if for all x ∈ Ω it results

f(x, tP + (1− t)Q) ≤ tf(x, P ) + (1− t)f(x,Q), (12)

for every t ∈ (0, 1), for every P,Q ∈ RN×n with rank(P − Q) ≤ 1, see [3], page 99.
Now we restrict ourselves to a special class of rank one matrices, those P − Q’s having
all rows equal to zero but one: there exists β ∈ {1, . . . , N} such that P β − Qβ 6= 0 and
Pα − Qα = 0 for α 6= β. We say that f is special rank one convex if (12) holds true for
P,Q such that P−Q has all rows equal to zero but one. Convexity is not enough to ensure
"monotonicity" (5) as the following example shows. Take N = n = 2, f(z) =| z |2 +det z.
Then f is convex but it does not verify (5): set

z =

(

2 0
0 -1

)

z̃ =

(

2 0
0 0

)

thus
f(z) = 3 < 4 = f(z̃).

In addition to special rank one convexity, we assume

z → f(x, z) ∈ C1(RN×n) (13)

for every x ∈ Ω and the following structure condition

∂f

∂zβi
f(x, ξ) = 0, (14)

for every x ∈ Ω, for every i = 1, . . . , n for every β = 1, . . . , N , for every ξ ∈ RN×n with
ξβ = 0. Under (13) and (14), any special rank one convex function f(x, z) turns out to
satisfy (5).

Remark 2.9. In order to satisfy the "strict monotonicity" (8), we have to require the
strict inequality in (12). Precisely, we say that f is strictly special rank one convex if, for
all x ∈ Ω, it results that

f(x, tP + (1− t)Q) < tf(x, P ) + (1− t)f(x,Q), (15)

for every t ∈ (0, 1), for every P,Q ∈ RN×n with P −Q having all rows equal to zero but
one. Under (13) and the structure condition (14), any strictly special rank one convex
function f(x, z) turns out to satisfy (8).
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Example 2.10. Let us assume n = N = 2. We consider the function

f(z) = a|z|4 − (det z)2

where a ≥ 1/2. It turns out that f satisfies the "strict monotonicity" (8).

Proof of Theorem 2.1. Let β ∈ {1, . . . , N} and k ∈ R be such that uβ ≤ k on ∂Ω. Set

ϕβ = −max{uβ − k, 0}.

Since uβ ≤ k on ∂Ω, it turns out that ϕβ ∈ W 1,1
0 (Ω). If α 6= β we simply set ϕα = 0.

Then we have ϕ ∈ W 1,1
0 (Ω;RN) and

ũ := u+ ϕ ∈ u+W 1,1
0 (Ω;RN) (16)

is a test function for the minimality condition (6). Set

Ω1 = {x ∈ Ω : uβ(x) ≤ k} ∪ {x ∈ Ω : uβ(x) > k, Duβ(x) = 0}

and
Ω2 = Ω \ Ω1.

Then
Dũ = Du on Ω1 (17)

and

Dũα =

{

Duα if α 6= β

0 6= Duβ if α = β

}

on Ω2. (18)

Thus
f(x,Dũ(x)) = f(x,Du(x)) if x ∈ Ω1 (19)

and, using "monotonicity" (5),

f(x,Dũ(x)) ≤ f(x,Du(x)) if x ∈ Ω2. (20)

The previous (19), (20) and the positivity (4) merge into

0 ≤ F(ũ) ≤ F(u). (21)

Since F(u) < +∞, it turns out that F(ũ) < +∞ too. Moreover, the minimality (6) of u
gives

F(u) ≤ F(ũ)

thus
F(ũ) = F(u) = min

v∈u+W 1,1
0 (Ω;RN )

F(v) (22)

and ũ turns out to be a minimizer too. Note that

ũ = Tβ,k(u).

This ends the proof of Theorem 2.1.
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Proof of Theorem 2.3. We argue as in the proof of Theorem 2.1 until we reach (22).
Because of (17), the equality (22) reads as

∫

Ω2

f(x,Du(x))dx =

∫

Ω2

f(x,Dũ(x))dx. (23)

Now, the "strict monotonicity" (8) can be used with z̃ = Dũ(x) and z = Du(x), because
of (18):

f(x,Dũ(x)) < f(x,Du(x)) if x ∈ Ω2. (24)

Comparing (23) with (24) gives that Ω2 has zero measure. This means that Duβ(x) = 0
for almost every x ∈ {uβ > k}, thus Dϕβ = 0 a.e. in Ω. Since ϕβ ∈ W 1,1

0 (Ω), by Poincaré
inequality it follows that ϕβ(x) = 0 for a.e. x ∈ Ω. Since ϕβ = −max[(uβ − k); 0] < 0 on
{uβ > k}, it turns out that |{uβ > k}| = 0, then

uβ(x) ≤ k for a.e. x ∈ Ω.

This ends the proof of Theorem 2.3.

Remark 2.11. An inspection of the proof of Theorem 2.1 shows that

F(Tβ,k(u)) ≤ F(u) (25)

for every u ∈ W 1,1(Ω;RN), for every k ∈ R, for every β ∈ {1, . . . , N}: the inequality (25)
does not require neither the minimality of u, nor the boundary condition uβ ≤ k on ∂Ω.
In order to force Tβ,k(u) to have the same boundary datum as u, we need uβ ≤ k on ∂Ω.
Thus the following results hold true.

Theorem 2.12. Let us consider the functional (3) under (4) and (5). For every u ∈
W 1,1(Ω,RN), for every β ∈ {1, . . . , N}, for every k ∈ R it results that

F(Tβ,k(u)) ≤ F(u) (26)

where Tβ,k(u) is introduced in (7).

Theorem 2.13. For every u ∈ W 1,p(Ω,RN), 1 ≤ p < +∞, for every β ∈ {1, . . . , N}, for
every k ∈ R such that

uβ ≤ k on ∂Ω (27)

it results that

Tβ,k(u) ∈ u+W 1,p
0 (Ω,RN) (28)

where Tβ,k(u) is introduced in (7).

Remark 2.14. In the previuos Theorem 2.13, the assumption "uβ ≤ k on ∂Ω" means
that there exists a sequence {vh}h ⊂ Lip(Ω) such that vh(x) ≤ k for every x ∈ ∂Ω, for each
h ∈ N and vh → uβ in W 1,p(Ω) as h → ∞: we remark that, starting from uβ ∈ W 1,p(Ω),
we require the convergence of vh in W 1,p(Ω) and it results that Tβ,k(u) ∈ u+W 1,p

0 (Ω,RN).
Compare with Remark 2.4 where p = 1.
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3. Relaxation.

Let us consider the model functional

G(u) =
∫

Ω

(|Du|p + | detDu|q) dx, (29)

where u : Ω ⊂ Rn → Rn, 1 < p and q > 0. Maximum principle for minimizers of (29)
has been proven in Theorem 2.3, see also Remark 2.7. The case 1 < p < n, 1 ≤ q need
to be dealt with more carefully: G is not sequentially weakly lower semicontinuous on
W 1,p(Ω;Rn), see [1]. Let us recall that, if we restrict ourselves to suitable subclasses of
W 1,p maps, then it is possible to have lower semicontinuity, provided n − 1 ≤ p, see [8],
[6] and their references. Let us remark that condition n − 1 < p is important also for
partial regularity of minimizers, [4]. Lack of semicontinuity gives some trouble in proving
existence of minimizers. To overcome this difficulty, we consider the relaxed functional

RG(u) = inf

{

lim inf
k→∞

G(uk) : {uk}k ⊂ Lip(Ω̄;RN) and

uk ⇀ u weakly in W 1,p(Ω;RN)

}

(30)

see [9], [2]; RG turns out to be W 1,p lower semicontinuous; since G is p coercive, RG is p
coercive too. Thus direct methods in the calculus of variations guarantee the existence of
minimizers for RG, provided a suitable boundary datum has been fixed. In this section we
show that every minimizer of RG enjoys the maximum principle, provided 2 ≤ p. More
generally, we consider the functional (3) under (4). We also assume p-coercivity: there
exist ν > 0, m ≥ 0, p > 1 such that

ν|z|p −m ≤ f(x, z) (31)

for every x ∈ Ω, for each z ∈ RN×n, where Ω is a bounded open subset of Rn with
Lipschitz boundary. We define the relaxation of (3) as follows

RF(u) = inf

{

lim inf
k→∞

F(uk) : {uk}k ⊂ Lip(Ω̄;RN) and

uk ⇀ u weakly in W 1,p(Ω;RN)

}

. (32)

In the following lemma we resume the properties of relaxed functional (32) that we will
need later. Their proof is standard and we omit it. About relaxation we refer to [2].

Lemma 3.1. Let F be the functional (3) under (4) and (31). Let RF be its relaxation
as defined in (32). Then, the following properties hold true.

1) ν
∫

Ω
|Du|pdx−m|Ω| ≤ RF(u), for every u ∈ W 1,p(Ω;RN).

2) RF(v) ≤ F(v), for every v ∈ Lip(Ω̄;RN).

3) 0 ≤ RF(u) ≤ lim infk→∞RF(uk), for every u ∈ W 1,p(Ω;RN), for every sequence
{uk}k ⊂ W 1,p(Ω;RN) such that uk ⇀ u weakly in W 1,p(Ω;RN).

4) For every u ∈ W 1,p(Ω;RN) there exists {uk}k ⊂ Lip(Ω̄;RN) such that uk ⇀ u
weakly in W 1,p(Ω;RN) and RF(u) = limk→∞F(uk).
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We fix a function u0 ∈ Lip(Ω̄;RN) with F(u0) < +∞. Property 2) ofRF givesRF(u0) ≤
F(u0) < +∞. The left hand side in property 3) guarantees that RF is bounded below.
Moreover, 1) and 3) in Lemma 3.1 tell us that RF is p-coercive and lower semicontinuous
with respect to the weak convergence in W 1,p. Then, there exists at least one minimizer
v of RF in the class u0+W 1,p

0 (Ω;RN). Our goal is to prove that RF admits a minimizer

whose components enjoy the maximum principle. This is achieved in the following

Theorem 3.2. Under the assumptions (3), (4), (31), (5), let u0 = (u1
0, . . . , u

N
0 ) ∈

Lip(Ω̄;RN) with F(u0) < +∞. Then there exists u ∈ u0 +W 1,p
0 (Ω;RN) such that

RF(u) ≤ RF(v)

for every v ∈ u0 + W 1,p
0 (Ω;RN); moreover, every component uβ satisfies the maximum

principle:
uβ ≤ max

∂Ω
uβ
0 in Ω

for every β = 1, . . . , N .

The previous Theorem 3.2 tells us that at least one minimizer enjoys the maximum prin-
ciple. In order to ensure that every minimizer satisfies the maximum principle, we need
an assumption stronger than (5): since the relaxed functional RF(u) is defined by means
of limits taken over F(uh), the strict monotonicity (8) does not seem to be strong enough
(strict inequality might be equality in the limit). We need the following "uniform strict
monotonicity": there exists µ > 0 such that

µ|z − z̃|p + f(x, z̃) ≤ f(x, z) (33)

for every x ∈ Ω, for every couple of matrices z̃, z ∈ RN×n such that there exists β ∈
{1, . . . , N} for which z̃β = 0 6= zβ and z̃α = zα for α 6= β; in (33) the exponent p is the
same as in (31) and in (32). Under (33) we are able to prove that every minimizer enjoys
the maximum principle.

Theorem 3.3. Under the assumptions (3), (4), (31), (33), let u0 = (u1
0, . . . , u

N
0 ) ∈

Lip(Ω̄;RN) with F(u0) < +∞. If u ∈ u0 +W 1,p
0 (Ω;RN) verifies

RF(u) ≤ RF(v)

for every v ∈ u0+W 1,p
0 (Ω;RN), then every component uβ satisfies the maximum principle:

uβ ≤ max
∂Ω

uβ
0 in Ω

for every β = 1, . . . , N .

Example 3.4. Let us assume n = N ≥ 2. We consider the function

f(z) = |z|p + | det z|q

where p ≥ 2 and q > 0. It turns out that f satisfies the "uniform strict monotonicity"
(33) with µ = 1.
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Proof of Theorem 3.2.

Step 1. Existence of minimizers.

Lemma 3.1 guarantees that RF is bounded below, p coercive and weak lower semicon-
tinuous in W 1,p, thus direct methods in the calculus of variations give the existence of at
least one u ∈ u0+W 1,p

0 (Ω;RN) such thatRF(u) ≤ RF(v) for every v ∈ u0+W 1,p
0 (Ω;RN).

Step 2. Approximation.

Let u ∈ u0 +W 1,p
0 (Ω;RN) minimize RF among all v ∈ u0 +W 1,p

0 (Ω;RN). Because of 4)
in Lemma 3.1, there is a sequence {uk}k ⊂ Lip(Ω̄;RN) such that

F(uk) → RF(u)

and uk ⇀u weakly inW 1,p(Ω;RN). Rellich Theorem gives strong convergence in Lp(Ω;RN),
thus, up to a subsequence, we have pointwise convergence uk(x) → u(x) for almost every
x ∈ Ω.

Step 3. Truncation and weak convergence.

For every β ∈ {1, . . . , N} we consider the maximum on ∂Ω of the β component uβ
0 of

our boundary datum u0 = (u1
0, . . . , u

N
0 ) and we set b = max

∂Ω
uβ
0 . Then we consider the

truncation operator Tβ,b defined in (7); it turns out that

Tβ,b(uk) ∈ Lip(Ω̄;RN).

On the other hand, the W 1,p norm of Tβ,b(uk) is bounded, thus, up to a further subse-
quence, Tβ,b(uk) ⇀ w weakly inW 1,p, strongly in Lp, pointwise almost everywhere in Ω, for
some w ∈ W 1,p(Ω;RN). Since uk(x) → u(x), it turns out that Tβ,b(uk(x)) → Tβ,b(u(x)),
thus w = Tβ,b(u) and

Tβ,b(uk) ⇀ Tβ,b(u) weakly in W 1,p(Ω;RN).

Moreover, since u ∈ u0 +W 1,p
0 (Ω;RN) and uβ

0 ≤ b on ∂Ω, Theorem 2.13 guarantees that

Tβ,b(u) ∈ u0 +W 1,p
0 (Ω;RN).

Step 4. Truncation and minimality.

The minimality of u with respect of Tβ,b(u) gives

RF(u) ≤ RF(Tβ,b(u));

the definition of RF guarantees that

RF(Tβ,b(u)) ≤ lim inf
k

F(Tβ,b(uk));

Theorem 2.12 gives
F(Tβ,b(uk)) ≤ F(uk)

thus
lim inf

k
F(Tβ,b(uk)) ≤ lim inf

k
F(uk) = RF(u),
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where the last equality holds true by construction, see the beginning of Step 2. Thus

RF(Tβ,b(u)) = RF(u).

Let us summarize Steps 2, 3 and 4 as follows. For every minimizer u of RF , for every
β = 1, . . . , N , the function Tβ,bβ(u) is a minimizer too, provided bβ = max

∂Ω
uβ
0 .

Step 5. Iterative truncation of the components of (u1, u2, . . . , uN).

We start from a minimizer u and the previous argument gives that T1,b1(u) is a min-
imizer; thus T2,b2((T1,b1(u)) is a minimizer; we proceed in this way until we arrive at
TN,bN (. . . (T1,b1(u))) which is a minimizer for RF . This ends the proof.

Proof of Theorem 3.3. Let u ∈ u0 + W 1,p
0 (Ω;RN) minimize RF among all v ∈ u0 +

W 1,p
0 (Ω;RN). The proof of Theorem 3.2 guarantees that

0 ≤ RF(Tβ,b(u)) = RF(u) < +∞ (34)

and
Tβ,b(u) ∈ u0 +W 1,p

0 (Ω;RN) (35)

for every β = 1, . . . , N , where b = bβ = max
∂Ω

uβ
0 . We claim that, under (33), we have

µ

∫

Ω

|Dv −D(Tβ,k(v))|pdx+RF(Tβ,k(v)) ≤ RF(v) (36)

for every β = 1, . . . , N , for every k ∈ R, for every v ∈ W 1,p(Ω;RN), where µ is the same
positive constant appearing in (33). Assume that (36) holds true; then we use it with
k = b = max

∂Ω
uβ
0 and v = u: equality (34) gives

µ

∫

Ω

|Du−D(Tβ,b(u))|pdx+RF(Tβ,b(u)) ≤ RF(u) = RF(Tβ,b(u)) (37)

then

µ

∫

Ω

|Du−D(Tβ,b(u))|pdx ≤ 0 (38)

thus D(Tβ,b(u)) = Du almost everywhere in Ω; (35) tells us that Tβ,b(u) has the same
boundary value as u, then Poincaré inequality gives

Tβ,b(u) = u (39)

almost everywhere in Ω, thus
uβ ≤ b = max

∂Ω
uβ
0

almost everywhere in Ω. So, we are left to prove (36). The case RF(v) = +∞ is
straightforward, thus we assume that RF(v) < +∞. Property 4) in Lemma 3.1 tells us
that there exists a sequence {vh} ⊂ Lip(Ω̄;RN) such that

vh ⇀ v weakly in W 1,p(Ω;RN) (40)
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and
F(vh) → RF(v). (41)

Since RF(v) < +∞, we may assume that F(vh) < +∞ too. Because of (40), we have

Tβ,k(vh) ⇀ Tβ,k(v) weakly in W 1,p(Ω;RN). (42)

Moreover
Tβ,k(vh) ∈ Lip(Ω̄;RN); (43)

then, the definition of RF gives

RF(Tβ,k(v)) ≤ lim inf
h

F(Tβ,k(vh)) (44)

and the lower semicontinuity of the Lp norm gives

µ

∫

Ω

|Dv −D(Tβ,k(v))|pdx ≤ lim inf
h

µ

∫

Ω

|Dvh −D(Tβ,k(vh))|pdx. (45)

We already know that
0 ≤ F(Tβ,k(vh)) ≤ F(vh)

because of Theorem 2.12, thus

0 ≤ RF(Tβ,k(v)) ≤ lim inf
h

F(Tβ,k(vh)) ≤ lim inf
h

F(vh) = RF(v) < +∞ (46)

Now we want to improve on (46). We set

Ω1 = {x ∈ Ω : vβh(x) ≤ k} ∪ {x ∈ Ω : vβh(x) > k, Dvβh(x) = 0}

and
Ω2 = Ω \ Ω1.

Then
D(Tβ,k(vh)) = Dvh on Ω1 (47)

and

D(Tα
β,k(vh)) =

{

Dvαh if α 6= β

0 6= Dvβh if α = β

}

on Ω2. (48)

We use (33) and we get

µ|Dvh(x)−D(Tβ,k(vh(x)))|p + f(x,D(Tβ,k(vh(x)))) ≤ f(x,Dvh(x)) if x ∈ Ω2 (49)

and

µ|Dvh(x)−D(Tβ,k(vh(x)))|p + f(x,D(Tβ,k(vh(x)))) = f(x,Dvh(x)) if x ∈ Ω1. (50)

Now we integrate with respect to x ∈ Ω1 ∪ Ω2 = Ω and we obtain

µ

∫

Ω

|Dvh −D(Tβ,k(vh))|pdx+ F(Tβ,k(vh)) ≤ F(vh). (51)
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This inequality and (41), (44), (45) give

µ

∫

Ω

|Dv −D(Tβ,k(v))|pdx+RF(Tβ,k(v))

≤ lim inf
h

µ

∫

Ω

|Dvh −D(Tβ,k(vh))|pdx+ lim inf
h

F(Tβ,k(vh))

≤ lim inf
h



µ

∫

Ω

|Dvh −D(Tβ,k(vh))|pdx+ F(Tβ,k(vh))





≤ lim inf
h

F(vh) = RF(v). (52)

This ends the proof of (36). Theorem 3.3 is completely proven.

We end this section by gladly taking the opportunity to thank Paolo Marcellini for pointing
us the lack of semicontinuity for the functional (29) and the related paper [1]: Marcellini’s
kind remark was the starting point for our research on relaxation and maximum principle.
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