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We obtain inner estimations, around special eigenvalues, for the eigenvalue set of a properly nonlinear
closed convex process. We also consider a differential inclusion associated with a general closed convex
process and we construct smooth power series solutions of exponential type for some initial states.
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1. Introduction

Set-valued analysis is a flexible framework which permits to treat in a unified manner a
wide variety of applications, ranging from equilibrium problems in theoretical economics to
the control of dynamical systems. Although multivalued maps share some properties with
their singlevalued analogues, the set-valued structure gives rise to important differences
in many aspects of the theory. A particularly interesting multivalued concept is that
of convex process on a vector space, that is, a set-valued map whose graph is a convex
cone containing the origin. This natural generalization of a linear transformation was
first introduced by Rockafellar [8, 9], and since his pioneering work many authors have
investigated the properties of this notion.

This paper is concerned with eigenvalue as well as differential inclusion problems associ-
ated with some closed convex process F : H ⇒ H, withH being either a finite dimensional
Euclidean space or a Hilbert space. Our goal is twofold. On the one hand, we expect
to contribute to the understanding of this important class of set-valued maps when some
regularity and boundedness conditions hold. On the other hand, we intend to stress
similarities and differences between linear and properly nonlinear convex processes.

This paper is organized as follows. In Section 2 we recall some definitions and basic
properties of set-valued maps. Section 3 is devoted to an inner estimation of the eigenvalue
set σ(F ) = {λ ∈ IR | λx ∈ F (x) for some x 6= 0} of the type

[

λ0 − Ýλ, λ0 + Ýλ
]

⊂ σ(F ),
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when dimH < ∞, the convex process F is properly nonlinear and λ0 is a particular
element of σ(F ). To this end, we begin with a characterization of linear convex processes,
that is, set-valued maps whose graph is a vector subspace, and we establish a useful prop-
erty for properly nonlinear convex processes. Then, using Brower’s fixed point theorem,
we establish an inner estimation of the set (F − λI)(BH) for each λ near λ0, where BH is
the closed unit ball in H with dimH < ∞. As a consequence of this result, we finish the
section with the proof of the inner estimation of σ(F ). In Section 5 we turn our attention
to the differential inclusion problem

(P ; ξ)

{

Úϕ(t) ∈ F (ϕ(t)), t ∈ [0, T ],
ϕ(0) = ξ.

Under a special condition on the initial state ξ we give an elementary construction of
power series solutions to (P ; ξ) of the exponential type:

ϕ(t) =
∞
∑

k=0

tkxk

k!
, t ∈ [0, T ], x0 = ξ, xk+1 ∈ F (xk).

We give sufficient conditions on F in order to ensure that such solutions are well defined,
and we discuss some connections with exponential solutions associated with eigenvalues
when the initial state is a (generalized) eigenvector of F . Finally, when the domain of F
is the whole space we give a continuity property for the constructed solutions with respect
to the initial state.

Let us mention that spectral theory of set-valued maps in Hilbert spaces has been studied
by several authors in the last years. For a clear introduction and a brief historical account
on the eigenvalue analysis of set-valued maps, the reader can consult Seeger [11, 12] and
Lavilledieu and Seeger [5]. The important case when the map is a convex process is
studied by Leizarowitz [6] and, by Aubin, Frankowska and Olech [3] where the eigenvalue
problem is related to the controllability of a differential inclusion. The book of Aubin
and Frankowska [2] also deals with this subject. Concerning estimations of the eigenvalue
set, an outer estimation of the type σ(F ) ⊂ [λF , λ

F ] has been given by Correa and Seeger
in [4]. On the other hand, it is well known that the existence of eigenvalues allows us to
obtain solutions of differential inclusions where the right hand side is a convex process, see
for instance Lavilledieu and Seeger [5] and Smirnov [13]. Concerning exponential behavior
of solutions, we can cite the work of Wolenski [14].

2. Preliminaries

Let (H, 〈·, ·〉) be a real Hilbert space with associated norm |·|. Let us recall some definitions
of set-valued analysis. The graph of the set-valued map F : H ⇒ H is defined by
GraphF := {(x, y) ∈ H × H | y ∈ F (x)}, the domain of F is given by DomF := {x ∈
H | ∃y ∈ H, (x, y) ∈ GraphF} = {x ∈ H | F (x) 6= ∅}, and the image of F is defined
to be ImF := {y ∈ H | ∃x ∈ H, (x, y) ∈ GraphF} = {y ∈ H | F−1(y) 6= ∅}, where
x ∈ F−1(y) ⇔ y ∈ F (x).

The set-valued map F is said to be closed if GraphF is a closed subset of H ×H, and it
is said to be a process if its graph is a cone, i.e., ∀α > 0, ∀x ∈ H, F (αx) = αF (x). We
say that F is linear (see [2]) if GraphF is a linear subspace of H ×H; otherwise, we say
that F is properly nonlinear.
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A set-valued map F is called convex process [8, 9] if GraphF is a convex cone containing
the origin. Equivalently, F is a convex process if and only if the three following properties
hold:

(a) Normalization: 0 ∈ F (0).

(b) Positive homogeneity: ∀α > 0, ∀x ∈ H, F (αx) = αF (x).

(c) Super-additivity: ∀x, y ∈ H, F (x+ y) ⊃ F (x) + F (y).

Throughout this paper, F : H ⇒ H stands for a convex process. A convex process F is
said to be fully defined or strict when DomF = H. Note that the domain and image of a
closed convex process are convex cones which are not necessarily closed.

We say that F is fully bounded if F (BH) is bounded, where BH = {x ∈ H | |x| ≤ 1} is the
closed unit ball in H. Thus, if F is fully bounded then it maps bounded sets to bounded
sets. Defining

‖F‖sup := sup
x∈BH∩DomF

(

sup
y∈F (x)

|y|

)

, (1)

it is clear that F is fully bounded if and only if ‖F‖sup < +∞. Note that if F is
fully bounded then F (0) = {0}; in the finite dimensional context, we get the opposite
implication. It is easy to see that if F is a strict convex process satisfying F (0) = {0},
then F is linear, indeed F (x) = {Ax} with A : H → H being a linear transformation.
Hence, a strict closed convex process F is fully bounded if and only if F is a continuous
linear operator.

As in [7], we define now

‖F‖ := sup
x∈BH∩DomF

(

inf
y∈F (x)

|y|
)

(2)

and we say that F is bounded, or normed, if ‖F‖ < +∞. By [7, Theorem 1], the following
three properties are equivalent for any convex process F :

(a) F is bounded;

(b) F is lower semicontinuous (lsc) at 0, that is, for each open set U in H with F (x)∩U 6=
∅ there exists a neighborhood V of x such F (x′) ∩ U 6= ∅ for all x′ ∈ V ∩DomF ;

(c) F−1 is open at 0, that is, for each open neighborhood U of 0 in H, there exists a
neighborhood V of 0 in ImF such that V ⊂ F−1(U).

Recall the generalized closed graph theorem given in [7]: if F is a strict closed convex
process then F is bounded and ‖F‖-Lipschitz, that is,

∀x, y ∈ H, F (x) ⊂ F (y) + ‖F‖|x− y|BH . (3)

Thus, F is lsc and upper semicontinuous (usc) at every point of H. Recall that F is usc
at x if for each open set U in H with F (x) ⊂ U there exists a neighborhood V of x such
that F (x′) ⊂ U , ∀x′ ∈ V .

The kernel of F is defined by KerF := {x ∈ H | 0 ∈ F (x)}. A real number λ is an
eigenvalue of F if λx ∈ F (x) for some x 6= 0. The element x 6= 0 such that λx ∈ F (x) is
called eigenvector associated with λ. We define Eλ(F ) := {x ∈ H | λx ∈ F (x)} the set
consisting of all eigenvectors associated with λ together with the origin, and σ(F ) the set
of all the eigenvalues of F .
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3. Inner estimation of the eigenvalue set

3.1. Linear and properly nonlinear convex processes

In this section we give a basic property of properly nonlinear convex processes that we
will use in the next section for obtaining an inner estimation of the eigenvalue set σ(F ).
We begin with a characterization of linear convex processes.

Proposition 3.1. If a closed convex process F is linear, then DomF is a linear subspace
of H and there exists a linear operator A : DomF → H and a linear subspace L of H
such that F (x) = Ax+L for all x ∈ DomF . In fact, Ax may be chosen to be the minimal
norm element in F (x) and L = F (0). Moreover, the linear operator A is continuous if
and only if DomF is closed.

Proof. If the convex process F is linear, then for every x ∈ DomF and y ∈ F (x) we
have that −y ∈ F (−x). This implies that DomF and F (0) are linear subspaces of H.
Furthermore, we obtain that

(i) F (αx) = αF (x) for all x ∈ DomF and α ∈ IR \ {0};
(ii) F (x+ y) = F (x) + F (y) for all x, y ∈ DomF .

Then, F (x)−F (x) = F (0) for all x ∈ DomF. From this we deduce that F (x) = ΠF (x)(0)+
F (0) for all x ∈ DomF , where ΠC(0) is the minimal norm element in the closed convex set
C. Let us check now that x 7→ ΠF (x)(0) is a linear operator in DomF . Let x ∈ DomF .
Then, by the characterization of the unique minimal norm element of F (x) we have
〈ΠF (x)(0), z − ΠF (x)(0)〉 ≥ 0 for all z ∈ F (x). On the other hand, we can write F (0) =
F (x) − ΠF (x)(0) and then, since F (0) is a linear subspace, the above characterization of
ΠF (x)(0) can be written by the equality 〈ΠF (x)(0), p〉 = 0 for all p ∈ F (0). By (i) and
(ii) we conclude that αΠF (x)(0) = ΠF (αx)(0) for all α ∈ IR and ΠF (x)(0) + ΠF (y)(0) =
ΠF (x+y)(0) for all x, y ∈ DomF . Assume now that DomF is a closed linear subspace,
from the generalized closed graph theorem [7], it follows that F is bounded and then
|Ax| = |ΠF (x)(0)| ≤ ‖F‖ |x| for all x ∈ DomF , which implies the continuity of A.
Finally, it is clear that if the linear operator A is continuous, the linear subspace DomF
is closed.

Recalling that F (0) = {0} when F is fully bounded, Proposition 3.1 yields directly the
following result.

Corollary 3.2. If a linear convex process F is fully bounded, then it is a linear operator
defined over a linear subspace of H. It is continuous if and only if DomF is closed.

There is an important difference between linear and properly nonlinear convex processes.
For instance, it is well known that if A : H → H is a linear transformation such that
I − A is compact then KerA = {0} ⇔ ImA = H. Such a property does not hold for
properly nonlinear convex processes as the next result shows.

Proposition 3.3. If F : H ⇒ H is a properly nonlinear convex process with KerF = {0}
then ImF 6= H.

Proof. Since F is a properly nonlinear convex process, there exists x ∈ DomF and
y ∈ F (x) such that −y /∈ F (−x). We claim that −y /∈ ImF . In fact, if −y belongs to
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ImF then there exists z ∈ DomF such that −y ∈ F (z), which implies 0 ∈ F (x + z).
Since KerF = {0} then z = −x which is a contradiction.

In the next section, we use this property of properly nonlinear convex processes to provide
an inner estimation of the spectrum under appropriate conditions.

3.2. Inner estimation of σ(F ) for a properly nonlinear convex process F

The main result of this section is an inner estimation of the spectrum σ(F ) of a properly
nonlinear convex process, around an eigenvalue λ0 verifying Im (F − λ0I) = H. Remark
that the existence of λ0 such that Im (F −λ0I) = H is not equivalent to ImF = H except
in the simple case when ‖(F − λ0I)

−1‖ = 0 as in the next proposition.

Proposition 3.4. Let F be a closed convex process such that ImF = H, DomF 6= {0},
and ‖F−1‖ = 0. Then σ(F ) = IR and the equality Eλ(F ) = DomF holds for all λ ∈ IR.

Proof. Since ‖F−1‖ = 0, from (3) we obtain that there exists a closed convex coneK such
that F−1(y) = K for all y ∈ H. Therefore 0 ∈ F−1(y) for all y ∈ H and then F (0) = H.
Fix any x in DomF . Since F is a convex process, we obtain F (x) + F (0) ⊂ F (x), that
is, F (x) = H for all x ∈ DomF . Now, it is clear that for any λ ∈ IR and for each
x ∈ DomF \ {0} we have λx ∈ F (x).

Now, we assume that dimH < ∞ and we focus on the case ‖(F − λ0I)
−1‖ > 0.

Lemma 3.5. Let F : H ⇒ H be a closed convex process and let us suppose that dimH <
∞. If there exists λ0 such that Im (F − λ0I) = H and ‖(F − λ0I)

−1‖ > 0, then for
all real number α such that 0 < α ≤ 1/‖(F − λ0I)

−1‖ and for all λ ∈ IR such that

|λ− λ0| ≤ 1−α‖(F−λ0I)−1‖
‖(F−λ0I)−1‖ one has

αBH ⊂ (F − λI)(BH).

Proof. With no loss of generality we may assume that λ0 = 0. Note that ‖F−1‖ is finite
because the closed convex process F−1 is strict. Let α ∈]0, 1/‖F−1‖] and λ ∈ IR be such

that |λ| ≤ 1−α‖F−1‖
‖F−1‖ . Fix y ∈ αBH . We define the mapping φ : H ⇒ H given by

φ(x) = {z ∈ H | y + λx ∈ F (z)} = F−1(y + λx).

Since F−1 is a strict closed convex process, then φ(x) is a nonempty convex closed set
and the mapping φ is lsc and usc. From [1, Theorem 1, pp. 70] we have that the function
m : H −→ H defined by m(x) = Πφ(x)(0) is continuous, where ΠC(0) is the minimal norm
element in the closed convex set C. From definition of ‖F−1‖ we can write

|m(x)| = |ΠF−1(y + λx)(0)| ≤ ‖F−1‖ |y + λx| ≤ ‖F−1‖(α+ |λ|) ≤ 1,

for all x ∈ BH , that is, m(BH) ⊂ BH and from the Brower fixed point theorem (see [15])
there exists x̄ ∈ BH such that m(x̄) = x̄. Hence y ∈ (F − λI)(x̄).
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Theorem 3.6. Let F : H ⇒ H be a closed convex process and let us suppose that
dimH < ∞. If F is properly nonlinear and if there exists λ0 such that Im (F −λ0I) = H
with ‖(F − λ0I)

−1‖ > 0, then we have the inner estimation

[

λ0 − Ýλ, λ0 + Ýλ
]

⊂ σ(F ), (4)

where Ýλ = 1/‖(F − λ0I)
−1‖.

Proof. As in the proof of Lemma 3.5, for simplicity we assume that λ0 = 0; otherwise,
we conclude by redefining λ 7→ λ + λ0. Let α ∈]0, 1/‖F−1‖] and λ ∈ IR be such that

|λ| ≤ 1−α‖F−1‖
‖F−1‖ . By Lemma 3.5 one has αBH ⊂ (F −λI)(BH) and then, Im (F −λI) = H.

Since the closed convex process F is properly nonlinear, then it will be the same for the
closed convex process F − λI. By Proposition 3.3 we obtain that Ker (F − λI) 6= {0},
that is, λ is an eigenvalue of F . Therefore, for all α ∈]0, 1/‖F−1‖] and for all λ ∈ IR such

that |λ| ≤ 1−α‖F−1‖
‖F−1‖ we have that λ ∈ σ(F ) which proves the result with the open interval

in the left hand side. We finish by noting that in the finite dimensional setting, if F is a
closed convex process, then σ(F ) is closed.

4. Exponential series solutions of differential inclusions

In this section we are concerned with the construction of a smooth solution for the differ-
ential inclusion

(P ; ξ)

{

Úϕ(t) ∈ F (ϕ(t)), t ∈ [0, T ],
ϕ(0) = ξ.

when F is a closed convex process.

One may find in [5] and [13] some existence results of solutions for (P ; ξ) when the initial
state ξ is either an eigenvector or a generalized eigenvector of F , that is, ξ ∈ (F−λI)−m(0)
for some λ ∈ IR and m ≥ 1. Notice that in virtue of the inner estimation (4) of σ(F ), that
is, (F − λI)−1(0) 6= {0} for any λ ∈ [λ0 − Ýλ, λ0 + Ýλ] and since {(F − λI)−m(0)}m∈N is a
nondecreasing family of convex cones, applying the result given by Smirnov in [13] which

we recall in Proposition 4.1, we can see that solutions of the type ϕ(t) = eλt
∑m−1

j=0
tjyj
j!

with y0 = ξ and yj ∈ (F − λI)(yj−1) for j = 1, . . . ,m− 1 exist for all λ ∈ [λ0 − Ýλ, λ0 + Ýλ].

Proposition 4.1 ([13]). Let F : H ⇒ H be a convex process. If λ ∈ IR, ξ ∈ H and

m ≥ 1 are such that 0 ∈ (F − λI)m(ξ), then x(t) = eλt
∑m−1

j=0
tjyj
j!

with y0 = ξ and

yj ∈ (F − λI)(yj−1) for j = 1, . . . ,m− 1 is a solution of (P ; ξ).

The main result of this section is established in Theorem 4.2, where we give another
sufficient condition on the initial state ξ for the existence of an exponential series solution
to (P ; ξ). This existence result does not assume that ξ is an eigenvector or a generalized
eigenvector. Indeed, we will show that for some bounded convex processes F , this sufficient
condition is verified for all ξ ∈ DomF , and in particular for all ξ ∈ H when F is a strict
closed convex process.
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From now on, let HN stand for the vector space of sequences in H and for any T ∈ [0,∞),
we define the vector subspaces of HN

`1T (H) =
{

~x ∈ HN |
∑

k≥0
Tk|xk|

k!
< ∞

}

and `1∞(H) =
⋂

T≥0

`1T (H).

It is clear that if T2 ≥ T1 ≥ 0 then `1∞(H) ⊂ `1T2
(H) ⊂ `1T1

(H) ⊂ `10(H) = HN.

For any T ∈ [0,∞) and ~x ∈ `1T (H), we define the exponential series function ϕ~x : [0, T ] →
H given by

ϕ~x(t) =
∞
∑

k=0

tkxk

k!
, t ∈ [0, T ]. (5)

Of course, for each t ∈ [0, T ], ϕ~x(t) is well defined when ~x ∈ `1T (H) and ϕ~x ∈ C∞(0, T ;H)

with Úϕ~x(t) =
∑∞

k=0
tkxk+1

k!
. Finally, we define the set of sequences generated by the iteration

xk+1 ∈ F (xk) with initial state ξ ∈ H by

S(F ; ξ) := {~x ∈ HN | x0 = ξ, xk+1 ∈ F (xk), ∀k ≥ 0}.

Theorem 4.2. Given a closed convex process F : H ⇒ H, for any T ∈ [0,∞) and ξ ∈ H
such that `1T (H) ∩ S(F ; ξ) 6= ∅, we have that for all ~x ∈ `1T (H) ∩ S(F ; ξ), the exponential
series function ϕ~x defined in (5) is a solution of the differential inclusion (P ; ξ).

Proof. Given ~x ∈ `1T (H)∩S(F ; ξ), we obtain ϕ~x(0) = ξ and since F is a convex process,

we have that xk+1 ∈ F (xk) implies tkxk+1

k!
∈ F

(

tkxk

k!

)

, hence
∑N

k=0
tkxk+1

k!
∈ F

(

∑N
k=0

tkxk

k!

)

,

for all N ∈ N. From the closedness of F , it follows that

Úϕ~x(t) =
∞
∑

k=0

tkxk+1

k!
∈ F

(

∞
∑

k=0

tkxk

k!

)

= F (ϕ~x(t)).

This result has a direct extension to higher order dynamics:

Corollary 4.3. Given a closed convex process F : H ⇒ H, elements ξ0, ξ1, . . . , ξn−1,
and sequences ~xj = (xj

k)k≥0 ∈ `1T (H)∩S(F ; ξj) for j = 0, . . . , n−1, we define the sequence
~x = (xk)k≥0 by xnk+j = xj

k for all k ≥ 0 and j = 0, . . . , n − 1. Then, the corresponding
exponential series function ϕ~x is a solution of the differential inclusion

{

ϕ(n)(t) ∈ F (ϕ(t)), t ∈ [0, T ],
ϕ(j)(0) = ξj j = 0, . . . , n− 1.

In the following lemma, whose proof is straightforward, we give a very simple but useful
sufficient condition in order to have ~x ∈ `1∞(H).

Lemma 4.4. Given ~x = (xk)k≥0, if there exist α, ρ > 0 such that |xk| ≤ αρk for all k
large enough, then ~x ∈ `1∞(H).

Proposition 4.5. Let F be a closed convex process.
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(i) If F is bounded and ImF ⊂ DomF , then ∀ξ ∈ DomF , S(F ; ξ) ∩ `1∞(H) 6= ∅.
(ii) If F is fully bounded then ∀ξ ∈ DomF , S(F ; ξ) ⊂ `1∞(H).

Proof. (i) Let ξ ∈ DomF . Since F is bounded, the minimal norm element η = ΠF (ξ)(0) ∈
F (ξ) of the closed convex set F (ξ) satisfies |η| ≤ ‖F‖|ξ|. Setting x0 = ξ, we can generate
a sequence ~x = (xk)k≥0 by xk+1 = ΠF (xk)(0) ∈ F (xk) for all k ≥ 0 and clearly, ~x ∈ S(F ; ξ).
Moreover, |xk| ≤ ‖F‖k|ξ| and from Lemma 4.4, we have ~x ∈ `1∞(H).

(ii) Since F is fully bounded, ‖F‖sup < ∞ (see (1)). Therefore, for all y ∈ F (x) we have
|y| ≤ ‖F‖sup|x|. Hence, if ~x ∈ S(F ; ξ) with ξ ∈ DomF then |xk| ≤ ‖F‖ksup|ξ|, and from
Lemma 4.4, we have ~x ∈ `1∞(H).

As a direct consequence of Proposition 4.5 we obtain:

Corollary 4.6. Let F be a closed convex process. Assume

(i) F is strict
or

(ii) F is fully bounded and for all x ∈ DomF , F (x) ∩DomF 6= ∅.
Then S(F ; ξ) ∩ `1∞(H) 6= ∅ for all ξ ∈ DomF .

In the following result we give a continuity property with respect to the initial state of
the exponential series solutions of (P ; ξ) when F is a strict closed convex process.

Proposition 4.7. If F is a strict closed convex process, then for any initial states ξ, ξ′ ∈
H, and ~x ∈ S(F ; ξ)∩ `1T (H), there exists ~y ∈ S(F ; ξ′)∩ `1T (H) such that |ϕ~x(t)−ϕ~y(t)| ≤
|ξ − ξ′|et‖F‖ for all t ∈ [0, T ].

Proof. Given ξ, ξ′ ∈ H, and ~x = (xk)k≥0 ∈ S(F ; ξ)∩ `1T (H) we will construct a sequence
~y = (yk)k≥0 ∈ S(F ; ξ′)∩ `1T (H) verifying the desired inequality. Set y0 = ξ′. By (3), there
exists y1 ∈ F (ξ′) such that |y1 − x1| ≤ ‖F‖|ξ − ξ′|. In this way, for each k ≥ 1 we choose
yk+1 ∈ F (yk) such that |yk+1−xk+1| ≤ ‖F‖|yk−xk|. Hence we get |yk−xk| ≤ ‖F‖k|ξ−ξ′|.
Clearly ~y = (yk)k≥0 ∈ S(F ; ξ′) and since |yk| ≤ |xk − yk| + |xk| ≤ ‖F‖k|ξ − ξ′| + |xk| we
have

∑∞
k=0

Tk|yk|
k!

≤ |ξ − ξ′|eT‖F‖ +
∑∞

k=0
Tk|xk|

k!
< ∞ that is ~y ∈ `1T (H) and finally

|ϕ~x(t)− ϕ~y(t)| ≤
∞
∑

k=0

tk|xk − yk|
k!

≤
∞
∑

k=0

tk‖F‖k|ξ − ξ′|
k!

≤ |ξ − ξ′|et‖F‖,

for all t ∈ [0, T ].

A natural question is whether the exponential series solution ϕ~x of problem (P ; ξ) is a
slow solution, that is, it satisfies Úϕ~x(t) = ΠF (ϕ~x(t))(0) for every t ∈ [0, T ]. As we show in
the next example, this is not always the case.

Example 4.8. Let F : H ⇒ H be defined by F (x) = Ax +K where A : H −→ H is a
continuous linear operator and K ⊂ H is the closed convex cone given by K = {y ∈ H |
〈y, p〉 ≥ 0} for some fixed p 6= 0. A direct calculation gives

ΠF (x)(0) = Ax+ΠK(−Ax) =

{

〈Ax, p〉p if − Ax /∈ K
0 if − Ax ∈ K.
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If ξ is such that −Aξ /∈ K then the slow solution u(·) of (P ; ξ) is given by

u(t) =

{

ξ + 〈Aξ,p〉
〈Ap,p〉(e

t〈Ap,p〉 − 1)p if 〈Ap, p〉 6= 0

ξ + t〈Aξ, p〉p if 〈Ap, p〉 = 0.

On the other hand, the exponential series solution ϕ~y for the same initial state ξ with
−Aξ /∈ K, obtained from yk+1 = ΠF (yk)(0) and y0 = ξ is

ϕ~y(t) =

{

ξ + 〈Aξ,p〉
〈Ap,p〉(e

t〈Ap,p〉 − 1)p if 〈Ap, p〉 > 0

ξ + t〈Aξ, p〉p if 〈Ap, p〉 ≤ 0.

If 〈Ap, p〉 < 0 we see that the slow solution and the exponential series solution are not
the same. Notice that for all t ≥ 0 one has −Au(t) /∈ K and −Aϕ~y(t) ∈ K for all
t ≥ t∗ = −1/〈Ap, p〉. If ξ is such that −Aξ ∈ K then, both solutions are the same:
u(t) = ϕ~y(t) = ξ.

We finish this work by showing that the Smirnov solution for problem (P ; ξ) which we
recalled in Proposition 4.1 is included in the solution that we give in Theorem 4.2 when
the eigenvalue associated with the initial state ξ is nonnegative. We do not know whether
this is also the case for negative eigenvalues.

Proposition 4.9. Let F : H ⇒ H be a convex process. If λ ≥ 0, ξ ∈ H and m ≥ 1
are such that 0 ∈ (F − λI)m(ξ), then there exists ~x ∈ S(F ; ξ) ∩ `1T (H) such that the
exponential series solution ϕ~x, defined in (5), coincides with the solution of (P ; ξ) given
in Proposition 4.1.

Proof. Denoting as usual by

(

k
j

)

the binomial coefficient, we will prove that if we

define the sequence ~x = (xk)k≥0 by

xk =
k

∑

j=0

(

k
j

)

λk−jyj (6)

where y0 = ξ, yj ∈ (F − λI)(yj−1) for j = 1, . . . ,m − 1 and yj = 0 for j ≥ m we have

that ~x ∈ S(F ; ξ) ∩ `1T (H) and ϕ~x(t) =
∑

k≥0
tkxk

k!
= eλt

(

∑m−1
j=0

tjyj
j!

)

. Let us first verify

the latter assuming that ϕ~x(t) is well defined. In fact,

ϕ~x(t) =
∑

k≥0

tkxk

k!
=

∑

k≥0

k
∑

j=0

tkx

k!

(

k
j

)

λk−jyj =
∑

j≥0

∑

k≥j

tkλk−jyj
(k − j)! j!

.

But
∑

j≥0

∑

k≥0

tk+jλkyj
k! j!

=
∑

k≥0

tkλk

k!

∑

j≥0

tjyj
j!

= eλt

(

m−1
∑

j=0

tjyj
j!

)

as we claimed. Let us prove now, by induction, that the sequence given in (6) is in
S(F ; ξ). We see that x0 = y0 = ξ and x1 = λξ + y1 ∈ F (ξ) = F (x0). Suppose now that
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xk ∈ F (xk−1), we must prove that xk+1 ∈ F (xk). For this, we verify the following equality

xk+1 = λxk +
k

∑

j=1

(

k − 1
j − 1

)

(yj+1 + λyj)λ
k−j. (7)

In fact, by direct computations,

λxk +
k

∑

j=1

(

k − 1
j − 1

)

(yj+1 + λyj)λ
k−j =

k
∑

j=0

(

k
j

)

λk+1−jyj

+
k−1
∑

j=1

(

k − 1
j − 1

)

λk−jyj+1 + yk+1 +
k

∑

j=1

(

k − 1
j − 1

)

λk+1−jyj.

On the other hand, we have that

xk+1 =
k+1
∑

j=0

(

k + 1
j

)

λk+1−jyj = λk+1ξ + yk+1

+
k

∑

j=1

[(

k
j

)

+

(

k − 1
j − 1

)]

λk+1−jyj +
k

∑

j=2

(

k − 1
j − 2

)

λk+1−jyj,

from which (7) follows easily. We also have

xk = λxk−1 +
k

∑

j=1

(

k − 1
j − 1

)

λk−jyj. (8)

Since xk ∈ F (xk−1) and λ ≥ 0, then

λxk ∈ F (λxk−1). (9)

Furthermore, since yj+1 + λyj ∈ F (yj) for all j ≥ 0, then

k
∑

j=1

(

k − 1
j − 1

)

(yj+1 + λyj)λ
k−j ∈ F

(

k
∑

j=1

(

k − 1
j − 1

)

λk−jyj

)

. (10)

If we add (9) and (10), from the equalities (7) and (8), we obtain the desired inclusion
xk+1 ∈ F (xk), thus ~x = (xk)k≥0 ∈ S(F ; ξ). To finish the proof, we verify that ~x ∈ `1∞(H).

Indeed, for k ≥ m we have that xk =
m−1
∑

j=0

(

k
j

)

λk−jyj, then

|xk| ≤ max
i

|yi|
m−1
∑

j=0

(

k
j

)

|λ|k−j ≤ max
i

|yi|
k

∑

j=0

(

k
j

)

|λ|k−j = max
i

|yi|(1 + |λ|)k

and by Lemma 4.4 we have ~x ∈ `1∞(H).
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