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1. Introduction

In discrete systems graphs represent a basic tool to study links between agents. There has
been recently in the literature interesting articles whose goal is to mimic on graphs well
known problems of PDE (Partial Differential Equations) type. In particular the discrete
Laplacian has been considered and the discrete Green Function introduced and studied
(see Chung and Yau [2]). More recently, Berenstein and Chung [1] went a step further in
the analogy, by introducing discrete gradients, Dirichlet Principle, considering Dirichlet
and Neumann problems and identification questions. Since we are dealing with finite
dimensional problems, formulations are more or less equivalent and it is meaningful to
look for the simplest presentation. We try here to mimic the variational formulation of
boundary value problems, in the spirit of Lions [4]. It is an approach which leads to simpler
presentations. As it will be seen, we prefer to work with un-normalized weights rather
than normalized weights. There is no loss whatsoever, and in addition the normalization
prevents a clear variational formulation of the problem to hold (although of course by
the equivalence mentioned earlier one can always recover it). We proceed with giving the
probabilistic interpretation of the solution of the discrete P.D.E. (in fact, these problems
may arise from Markov Chains). On the other hand, we extend part of the results in
Berenstein and Chung [1] to oriented graphs with non-symmetric weights.
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2. Assumptions and Notation

We give now our main definitions, assumptions and notations.

2.1. Connected Undirected Graphs

We consider a graph G made of N nodes (or vertices). When there is a link (called an
edge) between two nodes x, y, we say that the nodes are adjacent. We denote an edge
by {x, y} (as a set notation) so that we have {x, y} = {y, x}, which means that there is
no order in the link, or that the graph is undirected. We use the notation x ∼ y for two
adjacent nodes. Note that we may have a link {x, x} or not. We say that G is connected
whenever, for any pair of nodes x, y there is a (finite) sequence (called a path or chain)
x0 = x, x1, . . . , xn−1, xn = y such that xi−1 ∼ xi, for every i = 1, . . . , n. In the first
part, only connected undirected graphs are considered. We shall next consider subgraphs
S ⊂ G and say that S is induced from G, whenever for every x and y in S any chain
connecting x and y is exclusively made of nodes belonging to S. Clearly, this implies (but
it not equivalent) that all edges from G which connect nodes in S are actually links in S.
We introduce the boundary of S

∂S = {x 6∈ S | ∃y ∈ S, such that y ∼ x}. (1)

Note the following property

if x, x′ ∈ ∂S, then x 6∼ x′, (2)

which follows immediately from the definition of an induced graph. Indeed, let x and x′

be in ∂S then there exist y and y′ in S such that x ∼ y and x′ ∼ y′. Hence, if x ∼ x′

then there is a path (or chain) joining y and y′ two edges in S and because the subgraph
S is induced, then the whole path must be in S, i.e., x and x′ are in S, contradicting the
definition of the boundary ∂S. We shall also need the concept of inner boundary

∂ ÚS = {x ∈ S | ∃ y ∈ ∂S, such that y ∼ x}.

We call S̄ = S ∪ ∂S. Naturally a node in S cannot be adjacent to a node in Gr S̄.

2.2. Functions on Graphs

We shall consider (numerical) functions f(x) defined for x in G. These functions form a
finite dimensional space RN . By analogy with functional spaces we define

∫

G

f =
∑

x∈G

f(x) (3)

and the (Hilbert) space L2(G) composed by all functions f : G → R, with the scalar
product and the norm

(f, g) =

∫

G

fg, ‖f‖2L2 =

∫

G

f 2. (4)

We next define the partial (or directional) derivatives

∂yf(x) = f(y)− f(x) (5)
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and the gradient
Df(x) = ∂yf(x), y ∈ G (6)

Clearly ∂yf(x) = −∂xf(y). We introduce a semi-norm in L2(G) by setting

[]f [] =

√

∑

x

∑

y∼x

(

∂yf(x)
)2
,

and we have

Lemma 2.1. The following property holds: if []f [] = 0 then f is constant.

Proof. From the definition, if []f [] = 0 then f(x) = f(y) for every y ∼ x. But if x, y
are two arbitrary nodes then there exists a chain x0 = x, x1, . . . , xn−1, xn = y such that
xi−1 ∼ xi, for every i = 1, . . . , n. Therefore f(xi−1) = f(xi), for every i = 1, . . . , n. It
follows that f(x) = f(y), for all x, y in G. Hence the result.

Based on the previous Lemma, we may define the subspace H1(G) of L2(G) composed by
all functions with zero-average, thus, if the average is given by

〈f〉 = 1

N

∫

G

f

then
H1(G) =

{

f ∈ L2(G) : 〈f〉 = 0
}

, (7)

with the norm defined by

‖f‖H1 = []f [] =

√

∑

x

∑

y∼x

(

∂yf(x)
)2
, (8)

and the scalar product

((f, g)) =
∑

x

∑

y∼x

∂yf(x)∂yg(x).

The notation is reminiscent of that of Sobolev spaces. Usually, for functions in H1(G)
we denote the norm by ‖ · ‖ or explicitly ‖ · ‖H1 . However, for any function in L2(G) we
use the semi-norm notation [] · [], as in (8). We may re-interpret the subspace H1(G) as
follows. First, define an equivalence relation on L2(G) by setting

f ∼ g iff f(x)− g(x) is a constant

Next, consider the quotient space L̃2(G) = L2(G)/∼, equipped with the norm

‖f̃‖L̃2 = ‖f − 〈f〉‖L2 , (9)

where f̃ is an equivalence class, f a representative. Clearly, we may take as representative
of f̃ the element with zero-average. The H1 semi-norm becomes a norm on the quotient
space, which is equivalent to the quotient norm. In other words we have the inequalities

c0‖f − 〈f〉‖L2 ≤ ‖f‖H1 ≤ c1‖f − 〈f〉‖L2 , (10)
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for every function f in L2(G) and some positive constants c1 ≥ c0 > 0. Thus, the (sub-)
space H1(G) is identified with the quotient space L2(G)/∼ equipped with the norm H1,
given by (8). For any function f(x, y) of two variables we may apply the directional
derivative in the first variable, i.e., ∂yf(x, y) = f(y, y)− f(x, y). Therefore, based on the
product formula











∂y
(

f(x, y)g(x, y)
)

= ∂yf(x, y) g(y, y) + f(x, y) ∂yg(x, y)

= ∂yf(x, y) g(x, y) + f(y, y) ∂yg(x, y)

= ∂yf(x, y) g(x, y) + f(x, y) ∂yg(x, y) + ∂yf(x, y) ∂yg(x, y),

(11)

it is easy to check the following integration by parts formula



















∑

x

∑

y

[

∂yf(x, y) g(x, y) + f(x, y) ∂yg(x, y)
]

=
∑

x

∑

y

[

∂y
(

f(x, y)g(x, y)
)

− ∂yf(x, y) ∂yg(x, y)
]

,

which reduces to

∑

x

∑

y

(

∂yf(x, y)
)

g(x, y) =
∑

x

∑

y

∂y
(

f(x, y)g(x, y)
)

, (12)

whenever f(y, y) = 0 for every y. Let S be an induced subgraph with its boundary ∂S.
We consider now spaces of functions on S̄. The only difference between S and G is the
boundary, however, S̄ and G are similar. As above, define

∫

S̄

f, ‖f‖L2(S̄), L2(S̄), H1(S̄) = L2(S̄)/∼, H1
0 (S).

Note that a function f ∈ L2(S̄) can be considered as a function in L2(G) which vanishes
outside S̄, however, one cannot consider a function in H1(S̄) as a function in H1(G) which
vanishes outside S̄. The same difference exists in the usual Sobolev spaces. This is due
to the contribution of edges between nodes of ∂S and nodes outside S̄. Let H1

0 (S) be the
space of functions on G which vanish outside S equipped with the H1 semi-norm. As in
Lemma 2.1, one can check that the semi-norm is a norm, and explicitly

‖f‖2H1
0 (S)

=
∑

x∈S̄

∑

y∈S̄, y∼x

(

∂yf(x)
)2
. (13)

In particular, we can indifferently consider f in S̄ or in G, extended outside S̄ by 0. The
analogy is complete with the usual Sobolev space H1

0 . Note that H1 may be regarded
as a quotient space (each class of equivalence represented by an element in L2 with zero
average) while H1

0 (S), with a non empty boundary ∂S, is a subspace of L2(S̄).

3. Variational Problems

In most of what follows and with the previous notation, we consider an undirected con-
nected graph G and an induced (connected) subgraph S of G.
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3.1. Weights and Bilinear Forms

To the edges of G, we associate weights. More precisely we consider a function on G×G
called $(x, y), with the properties

{

$(x, y) = $(y, x) ≥ 0

$(x, y) > 0 ⇐⇒ x ∼ y
(14)

We define on H1(G)×H1(G) the bilinear form



















a(u, v) =
1

2

∑

x

∑

y

$(x, y)
(

u(y)− u(x)
)(

v(y)− v(x)
)

=
1

2

∫

G

∫

G

$(x, y)∂yu(x)∂yv(x)

(15)

We begin with several remarks. First, concerning the symmetry assumption on $(x, y).
If we leave this assumption, then we note that

∑

x

∑

y

$(x, y)
(

u(y)− u(x)
)(

v(y)− v(x)
)

=
∑

x

∑

y

$(y, x)
(

u(y)− u(x)
)(

v(y)− v(x)
)

and therefore we obtain the same bilinear form with $(x, y) changed into 1
2
($(y, x) +

$(x, y)). Thus, the symmetry is not really an assumption. Second, we have a(u, v) =
a(v, u) for every u and v in H1(G), and thirdly, the properties (14) of $(x, y) yield the
following estimate

{

|a(u, v)| ≤ M‖u‖H1(G) ‖v‖H1(G),

a(u, u) ≥ α‖u‖2H1(G),
(16)

for any u and v in H1(G) = L̃2(G) and with M, α some positive constants, namely,











M = max
{1

2
$(x, y) : x, y ∈ G

}

,

α = min
{1

2
$(x, y) : x, y ∈ G, $(x, y) > 0

}

.

Finally, we state the property, which leads to the Maximum Principle

a(u, u−) ≤ 0, a(u, u+) ≥ 0 ∀u, v ∈ H1(G), (17)

where u−(x) = −min(0, u(x)), and u+(x) = max(0, u(x)). Indeed, by checking all possi-
bilities one deduce the elementary inequality

(a− b)(a+ − b+) ≥ 0, ∀ a, b ∈ R,

which yields the above property (17). Finally, it is clear that if we consider a(u, v) as a
bilinear form on L2(G), the coercivity does not hold anymore.
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Lemma 3.1. Under the assumption (14), define the operator

Au(x) = −
∑

y

∂y
(

$(x, y)∂yu(x)
)

. (18)

from L2(G) into itself. Then 〈Au〉 = 0 for every function u, so that A can be considered
as an operator from H1(G) into itself. Also, we have the property

a(u, v) = (Au, v), ∀u, v ∈ L2(G). (19)

and A is self-adjoint positive definite on H1(G).

Proof. We first check easily that, one has also

Au(x) =
∑

y

$(x, y)(u(x)− u(y)) (20)

and thus, by symmetry,

∑

x

∑

y

$(x, y)(u(x)− u(y)) = 0,

i.e., 〈Au〉 = 0. This shows that Au is the representative (with zero-average) of an element
of L̃2(G). Since

∑

x

∑

y

$(x, y)∂yu(x)∂yv(x) =
∑

x

Au(x) v(x) +
∑

x

∑

y

$(x, y)∂yu(x) v(y),

the symmetry properties $(x, y) = $(y, x) and ∂yv(x) = −∂xv(y) yield

∑

x

∑

y

$(x, y)∂yu(x) v(y) = −
∑

x

∑

y

$(y, x)∂xu(y) v(y).

Hence
∑

x

∑

y

$(x, y)∂yu(x)∂yv(x) = 2
∑

x

Au(x) v(x),

i.e.,

a(u, v) =
∑

x

Au(x)v(x),

and property (20) holds.

Let S be an induced subgraph with its boundary ∂S. We consider the bilinear form on
H1(S̄)×H1(S̄)

aS̄(u, v) =
1

2

∑

x∈S̄

∑

y∈S̄

$(x, y)(u(y)− u(x))(v(y)− v(x)) (21)
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This form does not coincide with a(u, v) for any functions u and v in L2(G) with u = v = 0
on Gr S̄, since we need u = v = 0 on Gr S. Hence, one has the property

a(u, v) = aS̄(u, v), ∀u, v ∈ H1
0 (S), (22)

see (13). Proceeding as in Lemma 3.1, we define the operator from L̃2(S̄) into itself such
that

aS̄(u, v) = (AS̄u, v), ∀u, v ∈ H1
0 (S), (23)

with
AS̄u(x) =

∑

{y∈S̄}

$(x, y)(u(x)− u(y)) (24)

The operators A and AS̄ do not coincide, otherwise we see easily that

AS̄u(x) = Au(x) ∀x ∈ S, ∀u ∈ L2(G) (25)

For any u in L2(S̄) we define the co-normal derivative relative to the operator A as follows

∂u

∂νA
(x) =

∑

{y∈S}

$(x, y)(u(x)− u(y)), ∀x ∈ ∂S. (26)

To simplify notation, and unless otherwise mentioned, we may use ∂ν instead of ∂νA to
symbolize the co-derivative relative to A. We can then state the Green’s formula

Lemma 3.2. Assume that S is an induced subgraph of an undirected connected graph G
with a weight satisfying (14). Then we have the formula

∫

S

Auv +

∫

∂S

∂u

∂ν
v =

∫

S

Av u+

∫

∂S

∂v

∂ν
u, (27)

for every u and v in L2(S̄).

Proof. Since AS̄ is self adjoint in in L2(S̄) we have
∫

S̄

AS̄u v =

∫

S̄

AS̄v u.

This relation implies
∫

S

AS̄u v +

∫

∂S

AS̄u v =

∫

S

AS̄v u+

∫

∂S

AS̄v u.

Now for x in ∂S one has

AS̄u(x) =
∑

{y∈S̄}

$(x, y)(u(x)− u(y)) =
∑

{y∈S}

$(x, y)(u(x)− u(y)).

Therefore

AS̄u(x) =
∂u

∂ν
(x), ∀x ∈ ∂S.

Taking also into account (25), the formula (27) follows immediately.

Note that

AS̄u(x) =
∂u

∂νA
(x), ∀x ∈ ∂S, ∀u ∈ L2(G). (28)
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3.2. Problem in the Full Graph

We first consider a problem posed in the full graph G. We consider a linear form on
H1(G) = L̃2(G), which can be represented as a linear form on L2(G), (f, v) such that

(f, 1) =
∑

y

f(x) = 0. (29)

We consider the equation

a(u, v) = (f, v), ∀ v ∈ H1(G), (30)

or, which is equivalent
Au = f in G, (31)

then we can state

Theorem 3.3. Under the assumptions (14) and (29) there exists one and only one so-
lution of (30) or (31) in H1(G) (or equivalently, a solution u in L2(G) with 〈u〉 = 0).
Moreover one can represent the solution as

u(x) =

∫

G

G(x, y)f(y). (32)

The Green function G(x, y) is given by the formula

G(x, y) =
N−1
∑

j=1

1

λj

Ψj(x)Ψj(y). (33)

where λj and Ψj are the eigenvalues and eigenfunctions of the operator A. We have

0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1, AΨj(x) = λjΨj(x).

Proof. Since H1(G) is a Hilbert space of dimension N − 1 (finite dimensional) and the
operatorA is self-adjoint, positive definite, there existN−1 eigenvalues and eigenfunctions
λj and Ψj. The Ψj form an orthonormal system in L̃2(G), namely

∫

G

ΨjΨk = δj,k, 〈Ψj〉 = 0.

Because λj = (AΨj,Ψj), we deduce that λj > 0. Hence, the representation (32) follows
immediately.

We can compare this result with that of Berenstein and Chung [1]. These authors intro-
duce the notation

d$(x) =
∑

y

$(x, y),

and d is the operator
dv(x) = v(x)d$(x).
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In the notation of Berenstein and Chung [1]

−∆$ = d−1A

namely,

−∆$u(x) = u(x)−
∑

y $(x, y)u(y)

d$(x)
.

They then solve the problem
−∆$u(x) = g(x).

This amounts to Au(x) = dg(x), and the solvability condition becomes

∫

G

g(x)d$(x) = 0.

So from Theorem 3.3, it follows that the solution u is given by

u(x) =
N−1
∑

j=1

1

λj

Ψj(x)
∑

y

Ψj(y)g(y)d$(y). (34)

To cope with the fact that −∆$ is not self-adjoint, Berenstein and Chung [1] introduce

L$ = d
1
2 (−∆$)d

− 1
2 = d−

1
2Ad−

1
2 ,

which is also self-adjoint nonnegative. Setting ũ = d
1
2u then ũ is solution of d−

1
2Ad−

1
2 ũ(x) =

d
1
2 g(x). Considering the system of eigenvalues µj and eigenvectors Φj of the operator

d−
1
2Ad−

1
2 , and noting that µ0 = 0, µj > 0, for every j > 0, one obtains

ũ(x) = c
√

d$(x) +
N−1
∑

j=1

1

µj

Φj(x)
∑

y

Φj(y)g(y)
√

d$(y),

where c is an arbitrary constant. Thus

u(x) = c+
N−1
∑

j=1

1

µj

Φj(x)
√

d$(x)

∑

y

Φj(y)g(y)
√

d$(y). (35)

The formulas (34) and (35) are of course equivalent. But (34) is simpler and leads imme-
diately to a choice of the constant so that 〈u〉 = 0.

3.3. Dirichlet Problem

In this section, we consider an induced subgraph S of an undirected connected graph G
with a weight $. The boundary ∂S is assumed to be nonempty, so that S 6= G. First,
given a function f : S → R, we solve the Dirichlet problem: find a function u such that

{

Au(x) = f(x), ∀x ∈ S,

u(x) = 0, ∀x ∈ ∂S,
(36)
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equivalently, this is the solution of the variational problem

{

Find u in H1
0 (S) such that

aS̄(u, v) = (f, v), ∀v ∈ H1
0 (S).

(37)

Recalling that a(u, v) = aS̄(u, v) for any u and v such that at least u or v belongs toH1
0 (S),

i.e., vanishes on G r S, we may replace aS̄(u, v) by a(u, v) in the above formulation of
the variational problem. The space H1

0 (S) has dimension |S|, the number of elements
(nodes) of S. The operator A is self-adjoint, positive definite. We can consider its system
of eigenvalues and eigenvectors, µj, Φj, j = 1, . . . , |S|. Therefore the solution of (36) is
given by the formula

u(x) =

|S|
∑

j=1

1

µj

Φj(x)
∑

{y∈S}

Φj(y)f(y), ∀x ∈ S, (38)

i.e., in term of the Green function. We turn now to the nonhomogeneous Dirichlet prob-
lem, that is to say

{

Au(x) = 0, ∀x ∈ S,

u(x) = g(x), ∀x ∈ ∂S,
(39)

where g : ∂S → R is a given function. We can reduce the nonhomogeneous Dirichlet
problem to the homogeneous one, as follows. Let us define the operator

Bg(x) =
∑

{y∈∂S}

$(x, y)g(y), ∀x ∈ S. (40)

Consider the homogeneous Dirichlet problem

{

Aũ(x) = Bg(x), ∀x ∈ S,

ũ(x) = 0, ∀x ∈ ∂S.
(41)

We can state the

Lemma 3.4. One has the property u(x) = ũ(x), for every x in S.

Proof. Let us set w = u− ũ then w verifies
{

Aw(x) = −Bg(x), ∀x ∈ S,

w(x) = g(x), ∀x ∈ ∂S.

Let us consider, for an arbitrary f the solution of the Dirichlet problem

{

Av(x) = f(x), ∀x ∈ S,

v(x) = 0, ∀x ∈ ∂S.

We then make use of Green’s formula (27) to write

∫

S

Aw v −
∫

S

Av w +

∫

∂S

∂w

∂νA
v −

∫

∂S

∂v

∂νA
w = 0.
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Hence

−
∫

S

Bg v −
∫

S

f w −
∫

∂S

∂v

∂νA
g = 0,

and it is easy to check that the first and third terms cancel. There remains
∫

S

fw = 0.

Since f is arbitrary, we deduce w = 0 in S. This completes the proof.

We can state the following existence and uniqueness result

Theorem 3.5. Let S be a induced subgraph of an undirected connected graph G with
a weight satisfying (14). Assume that the boundary ∂S is nonempty and consider two
functions f : S → R and g : ∂S → R. Then the Dirichlet problem

{

Au(x) = f(x), ∀x ∈ S,

u(x) = g(x), ∀x ∈ ∂S,
(42)

has one and only one solution, which is explicitly given using the Green function, namely,

u(x) =

∫

S

G(x, y)
[

f(y) +Bg(y)
]

, ∀x ∈ S, (43)

where Bg is defined by (40) and

G(x, y) =

|S|
∑

j=1

1

µj

Φj(x) Φj(y), ∀x, y ∈ S, (44)

is the corresponding Green function. Moreover, the discrete maximum principle holds,
i.e., if f ≥ 0 and g ≥ 0 then u ≥ 0.

Proof. Since g ≥ 0 implies Bg ≥ 0, we need only to check the homogeneous case. Thus,
from variational form (37) we deduce for v = u−, which belongs to H1

0 (S),

a(u, u−) = (f, u−) ≥ 0,

because f ≥ 0. On the other hand, by means of property (17) we get a(u, u−) = 0. Hence
(

u(y)− u(x)
)(

u−(y)− u−(x)
)

= 0 if x ∼ y.

Now, suppose we have a node x0 in S such that u(x0) < 0, necessarily,

u(y) = u(x0) < 0, ∀ y ∼ x0.

But if z ∈ ∂S, there is a path which connects x0 to z. Necessarily u(z) = u(x0), but
u(z) = 0, and we get a contradiction.

Note that we have

u(x) =

∫

S

G(x, y)f(y) +

∫

∂S

∂G(x, y)

∂νy
g(y), ∀x ∈ S,

where the co-normal derivative is taken with respect to the second variable y of the
Green function. Thus, the maximum principle shows that G(x, y) ≥ 0 and as well as its
co-normal derivative in y.
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3.4. Neumann Problem

We want to solve the problem







Au(x) = f(x), ∀x ∈ S

∂u

∂ν
(x) = g(x), ∀x ∈ ∂S

(45)

Considering the bilinear form aS̄(u, v) and the operator AS̄ defined in (23), (24), we know
from (25) and (28) that the problem is equivalent to

{

AS̄u(x) = f(x), ∀x ∈ S

AS̄u(x) = g(x), ∀x ∈ ∂S
(46)

or, with the variational formulation

aS̄(u, v) = `S̄(v), ∀ v ∈ H1(S̄) (47)

with

`S̄(v) =

∫

S

f v +

∫

∂S

g v. (48)

The solvability condition is given by

`S̄(1) = 0 (49)

The solution of (48) is given in a similar way as for (30), with S̄ playing the role of G (S̄
is considered as a graph with no boundary, the edges between the nodes of ∂S and Gr S̄
being suppressed). Details are left for the reader.

3.5. Non-symmetric Bilinear Forms

As long as we are dealing with an undirected graph G the weight $ must be symmetric,
without going into details related to directed graphs (see Section 5.1 below), we may start
with an operator of the form (20), i.e.,

Au(x) =
∑

y

$(x, y)
(

u(x)− u(y)
)

, ∀x ∈ G, (50)

and define a bilinear form

a(u, v) = (Au, v), ∀u, v ∈ L2(G), (51)

where now $(x, y) ≥ 0 for every x and y in G, not necessarily symmetric, but $(x, y) > 0
if and only if there is a link from x to y. Since (Au, v) = (u,A∗v), with

A∗v(x) =
∑

y

$(y, x)
(

v(x)− v(y)
)

+ v(x)
∑

y

(

$(x, y)−$(y, x)
)

,
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we deduce that

a(u, u) =
1

2

(

(A+ A∗)u, u
)

=
1

2

∑

x,y

(

$(x, y) +$(y, x)
)(

u(x)− u(y)
)

u(x)

+
1

2

∑

x

[
∑

y

(

$(x, y)−$(y, x)
)

]

(

u(x)
)2
.

If we define















λ = −min
{1

2

∑

y

(

$(x, y)−$(y, x)
)

: x, y ∈ G
}

,

α = min
{1

4

(

$(x, y) +$(y, x)
)

: x, y ∈ G, $(x, y) +$(y, x) > 0
}

then

a(u, u) + λ(u, u) ≥ α((u, u)), ∀u ∈ L2(G),

meaning that the non-symmetric bilinear form a(·, ·) is coercive on H1(G) or H1
0 (S) if

λ ≤ 0, i.e., if
∑

y

(

$(x, y)−$(y, x)
)

≥ 0, ∀x ∈ G. (52)

Hence, under this condition (52) and as in the previous sections on symmetric bilinear
forms, we can treat the case of the full graph G, and the Neumann and Dirichlet problems
in an induced connected subgraph. Details are left to the reader. As we will see in
Section 5 below, the condition (52) is not really necessary if we look at a non-variational
formulation.

4. Identification

Our variational approach fits quite well with the problem of identification as considered
by Berenstein and Chung [1]. For instance, the solution of the nonhomogeneous Dirichlet
problem

{

Au(x) = f(x), ∀x ∈ S,

u(x) = g(x), ∀x ∈ ∂S
(53)

is the unique solution of the following minimization problem:
Minimize







J(v) = aS̄(v, v)− 2

∫

S

fv, over the set

{

v ∈ L2(S̄) : such that v(x) = g(x),∀x ∈ ∂S
}

,

(54)

where f and g are the given functions. Now, consider then two weights $1(x, y), $2(x, y),
such that

$1(x, y) ≤ $2(x, y), ∀x, y ∈ S̄ (55)
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and denote by A1, A2 the operators corresponding to these weights. Let u1, u2 be two
functions on S̄, such that



















A1u1(x) = A2u2(x) = 0, ∀x ∈ S

u1(x) = u2(x), ∀x ∈ ∂S

∂u1

∂νA1

(x) =
∂u2

∂νA2

(x), ∀x ∈ ∂S,

(56)

then we state the

Theorem 4.1. We assume (55), (56), where S is an induced subgraph of an undirected
connected graph G with a nonempty boundary ∂S. Then one has

u1(x) = u2(x), ∀x ∈ S̄ (57)

Moreover, if u(x) denotes the common value of u1(x) and u2(x) then we have

$1(x, y) = $2(x, y), ∀x, y ∈ S̄ such that u(x) 6= u(y) (58)

Proof. Denote by J1(v) and J2(v) the functional (54) corresponding to the weights $1

and $2, respectively. Note that, since f = 0, one has

J1(v) = a{S̄,1}(v, v) =
1

2

∑

x∈S̄

∑

y∈S̄

$1(x, y)(v(y)− v(x))2

and

J2(v) = a{S̄,2}(v, v) =
1

2

∑

x∈S̄

∑

y∈S̄

$2(x, y)(v(y)− v(x))2.

Since

J1(v) =

∫

S

A1v v +

∫

∂S

∂v

∂νA1

v,

assumption (56) yields

J1(u1) = J2(u2).

Now from (55), one has

J2(u2) ≥ J1(u2)

therefore, necessarily (57) holds. We also have

∑

x∈S̄

∑

y∈S̄

($1(x, y)−$2(x, y))(u(y)− u(x))2 = 0

and, since all terms are negative, they all vanish, which implies (58).

Remark 4.2. In Berenstein and Chung [1], one assumes in addition

$1(x, y) = $2(x, y), ∀x ∈ ∂S, ∀ y ∈ ∂ ÚS. (59)
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In fact, this due to the difference of definition of the normal derivative. They call

∂u

∂$n
(x) =

∑

{y∈S}

u(x)− u(y)

d′$x

with
d′$x =

∑

{y∈S}

$(x, y), ∀x ∈ ∂S.

In fact, the additional assumption (59) implies that

d′$1
x = d′$2

x, ∀x ∈ ∂S.

Therefore the set of assumptions coincide. Our presentation is more synthetic.

Remark 4.3. The fact that, in the first assumption (56), the right hand side is zero, is
essential. The result fails even for an identical right hand side.

Remark 4.4. If the additional assumption (59) of Remark 4.2 is made, and if in addition,
the common value on the boundary is strictly positive, and

∫

S

u1(x)d$1x =

∫

S

u2(x)d$2x

then
$1(x, y) = $2(x, y).

Indeed, we have u1(x) = u2(x) = u(x) for every x in S and moreover u(x) > 0 for every
x in S. The desired result follows, see Berenstein and Chung [1], Theorem 4.1.

5. Non-variational Formulation

In this section we outline the non-variational formulation of the problems mentioned
in Section 3. We will be able to consider directed graphs G which are not necessarily
connected and subgraphs S which are not necessarily induced. It is worth to remark that
in the variational case, the existence of solutions to the Dirichlet and Neumann problems
are consequences of the coercitivity condition on the bilinear form. Now, we will see that
in the non-variational formulation, everything follows form the maximum principle.

5.1. Directed Graphs

As mentioned early, a (simple) graph is composed by a finite number of vertices (or nodes)
G with a subset E of G × G, whose elements are called edges (or arcs or links). Thus,
a vertex x is an element of G and an edge connects two vertices. An edge of the form
(x, x) is possible and if (x, y) is an edge then we say that the vertex x is adjacent to y. A
graph is called undirected if the set of edges is undirected, i.e., if an edge (x, y) belongs
to E then (y, x) also belongs to E and (x, y) is considered to be equal to (y, x). For an
undirected graph the edges are denotes by {x, y} as a two-element subset of G instead of
the ordered pair (x, y). A graph is connected if for every pair of vertices x and y there
exits a (finite) sequence (termed a path or chain) of vertices x = x0, . . . , xn = y such
that (xi−1, xi) belongs to E, for any i = 1, . . . , n, i.e., xi−1 and xi are adjacent. A graph
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(G′, E′) is called subgraph of (G,E) or equivalent (G,E) is called a host graph of (G′, E′) if
G′ ⊂ G and E ′ ⊂ E. A subgraph (G′, E′) of (G,E) is called an induced subgraph if every
path (or chain) in E connecting two nodes x and y in E ′ is made entirely of edges in E ′.
It is clear that any induced subgraph of a connected graph is also connected. A weighted
graph (G,E,$) is a graph (G,E) with a (weight) function $ from G × G into [0,∞)
satisfying $(x, y) > 0 if and only if (x, y) belongs to E. If the graph is undirected then
$(x, y) = $(y, x) is also required for every edge {x, y}. The standard weight function
$ takes only values 0 or 1 indicating the edges. The weight $(x, y) could represent the
capacity (or conductivity) of the edge (x, y) or {x, y}. Since the weight function $ include
all (and more) information relevant to determine the edges of a graph, a weighted graph
is denoted by the couple (G,$) and the set of edges E is defined as the pairs (x, y) such
that $(x, y) > 0. As in Section 2.2, and now for a directed graph G, we can define

∫

G

f, ‖f‖L2(G), L2(G).

Note that now edges are directed, i.e., the notation adjacent ∼ is not symmetric, x ∼ y
means $(x, y) > 0 which may not be the same as y ∼ x, which means $(y, x) > 0. Given
a directed weighted graph (G,$), and a function α : G → R, define the operator

Au(x) = −α(x)u(x) +
∑

y

$(x, y)
(

u(x)− u(y)
)

, (60)

for any function u in L2(G). Recalling the inner product in L2(G) given by (4), we have

(Au, v) = (u,A∗v), ∀u, v ∈ L2(G), (61)

where


















A∗v(x) = −α∗(x)v(x) +
∑

y

$(y, x)
(

v(x)− v(y)
)

,

α∗(x) = α(x) +
∑

y

(

$(x, y)−$(y, x)
)

.
(62)

Note that
Au(x) = −α(x)u(x)−

∑

y

$(x, y)∂yu(x)

and the adjoint operator A∗ is an operator similar to A, but corresponding to the (adjoint)
weight $∗(x, y) = $(y, x). Compare the discussion in Section 3.1 relative to a bilinear
form, where $ is necessarily symmetric. Even when α = 0 we may have α∗ 6= 0 when the
weight is not symmetric. Consider a weighted graph (G,$), the boundary ∂S and the
adjoint boundary ∂∗S of a subset S of G are defined by

∂S := {y ∈ G \ S : w(x, y) > 0 for some x ∈ S},
∂∗S := {y ∈ G \ S : w(y, x) > 0 for some x ∈ S}.

Clearly, referring S as the inside and G r S as the outside we see that ∂S are outside
nodes reachable from the inside, while ∂∗S are outside nodes reaching the inside, both
communicating (in opposite directions) the outside and the inside. It is clear that these
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two boundaries can be defined independently of the weight function, i.e., ∂S and ∂∗S
depends on the (directed) edges of the graph. If S is an induced subgraph then the
equivalent of property (2) can be phased as follows

if x ∈ ∂∗S and y ∈ ∂S then $(x, y) = 0. (63)

Indeed, if x belongs to ∂∗S then there exists a x′ in S such that $(x, x′) > 0, and similarly,
if y to ∂S then there exists a y′ in S such that $(y′, y) > 0. Hence, if $(x, y) > 0 then
there is a path, (y′, y, x, x′), joining the nodes y′ and x′, both in S. Because the subgraph
is induced, the whole path should be in S, i.e., x and y must be in S, contradicting
the definition of the boundaries ∂S and ∂∗S. Note that for any subset S ⊂ G and any
function u : S ∪ ∂S → R, the above expression (60) defines a function Au : S → R,
since $(x, y) = 0 for every x in S and y in G r (S ∪ ∂S). Similarly, for any function
v : S ∪ ∂∗S → R we can define the function A∗v : S → R. We may extend the definition
of Au on the boundary ∂∗S and A∗v on boundary ∂S as follows:



















∂νu(x) = −α(x)u(x) +
∑

y∈S

$(x, y)
(

u(x)− u(y)
)

, ∀x ∈ ∂∗S,

∂∗
νv(x) = −α∗(x)v(x) +

∑

y∈S

$(y, x)
(

v(x)− v(y)
)

, ∀x ∈ ∂S.
(64)

Then, from relation (61) with u(x) = 0 for every x in Gr (S∪∂S) and v(x) = 0 for every
x in Gr (S ∪ ∂∗S) we deduce the integration by part formula

∫

S

Auv +

∫

∂∗S

∂νu v =

∫

S

uA∗v +

∫

∂S

u ∂∗
νv, (65)

for every u in L2(S ∪ ∂∗S) and v in L2(S ∪ ∂S). Clearly, ∂ν and ∂∗
ν are the co-normal

derivatives. Thus, if we assume that

∂S = ∂∗S (66)

then the closure of S is defined as

S̄ = S ∪ ∂S = S ∪ ∂∗S,

which is connected if S is induced and the host graph G is connected. Again, we may
consider

∫

S̄

f, ‖f‖L2(S̄), L2(S̄),

as in Section 2.2, and clearly Au(x) and A∗v(x) are defined for any u and v in L2(S̄) and
any x in S. The spaces H1(G) and H1(S̄) are redefined by changing the normalization
condition, see (69) below. The space H1

0 (S) remains the same, however, the H1-norm
plays no role since the associated bilinear form is not used.
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5.2. Discrete Maximum Principle

We have the following result

Theorem 5.1 (Maximum Principle). Let (G,$) be a directed weighted graph, α be a
real function defined on G, S be a (non empty) subset of G satisfying (66) such that its
closure S̄ = S ∪ ∂S is connected 1. Suppose u is a function from the closure S̄ into R
which attaints its global maximum at a node x0 satisfying α(x0)u(x0) ≥ 0. Then

Au(x0) ≤ 0 if x0 ∈ S and ∂νu(x0) ≤ 0 if x0 ∈ ∂S,

Moreover, if Au(x) ≥ 0 for every x in S and x0 belongs to S then u is a constant function
and α(x0)u(x0) = 0. Similarly, if ∂νu(x) ≥ 0 for every x in ∂S and x0 belongs to ∂S then
u is a constant function and α(x0)u(x0) = 0.

Proof. The first part follows from positivity condition on the weight, namely$(x, y) ≥ 0,
and the definitions of the operator A and the co-normal derivative ∂ν . To check the second
part, suppose that Au(x) ≥ 0 for every x in S. Since u has its global maximum at x0 we
have

u(x0) ≥ u(x), ∀x ∈ S̄.

If x0 belongs to S then α(x0)u(x0) = 0 and

∑

y

[

u(y)− u(x0)
]

$(x0, y) = 0,

where each term is nonnegative, so u(y) = u(x0) for every y in S̄ such that $(x0, y) > 0.
Since S̄ is connected we conclude that u is a constant function in S̄. Similarly, we will show
that if x0 belongs to the boundary ∂S then the co-normal derivative ∂νu(x0) > 0 unless
u is constant. Indeed, if x0 belongs to the boundary ∂S and the co-normal derivative
vanishes then

∑

y∈S

[

u(x0)− u(y)
]

$(y, x0) = 0,

where all terms are nonnegative. Therefore, the definition of the boundary ∂S show that
at least for some y0 in S we must have $(y0, x0) > 0 and so u(x0) = u(y0). Hence, u has a
global maximum at y0 in S and the previous argument proves that u must be a constant
function on S̄.

Remark 5.2. The assumption that S̄ is connected and the condition (66) are needed to
simplify the statement of the discrete maximum principle. If S is any subset of G, u is
a function defined on S ∪ ∂S ∪ ∂∗S which attains its global maximum at x0 satisfying
α(x0)u(x0) ≥ 0 then

{

Au(x0) ≤ 0 if x0 ∈ S,

∂νu(x0) ≤ 0 if x0 ∈ ∂∗S.

Moreover, denote by S(x0) the set of all nodes y in S∪∂S∪∂∗S having a path originated at
x0 and ending at y, and suppose that Au(x) ≥ 0 for every x in S. The following property
holds: (1) if x0 belongs to S then u is a constant function on S(x0), (2) if x0 belongs to

1If S is induced then the closure S̄ is connected whenever the host graph G is so.
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∂∗S then ∂νu(x0) > 0 unless u is a constant function on S(x0). If also α∗(x0)u(x0) ≥ 0
and x0 belongs to ∂S then ∂∗

νu(x0) > 0 unless u is a constant function on S(x0). Another
way of re-phasing this property is a follows: (1) if Au(x) ≥ 0 for every x in S, and x0

belongs to S and α(x0)u(x0) ≥ 0 then u is a constant function on S(x0), (2) if ∂νu(x) ≥ 0
for every x in ∂S, and x0 belongs to ∂S and α(x0)u(x0) ≥ 0 then u is a constant function
on S(x0). A typical application of this discrete maximum principle is when we assume the
maximum value u(x0) nonnegative, as well as the functions α or α∗ nonnegative.

5.3. Problem without Boundary

Let (G,$) a directed weighted graph and α be a nonnegative function from G into R.
Consider the operators A and A∗ in L2(G), given by (60) and (62). Given a function
f : G → R we want to study the following problem: Find a function u in L2(G) such that

Au(x) = f(x), ∀x ∈ G, (67)

which is related with its adjoint null problem: Find a function m in L2 such that

A∗m(x) = 0, ∀x ∈ G. (68)

Because we are in a finite dimensional space, the nullity of A is equal to the nullity of
A∗. If h satisfies Ah = 0 then the discrete maximum principle implies that h is constant,
so that the nullity (i.e., the dimension of the null space or kernel) of A is equal to 1
(the interesting case including when α = 0) or 0 (including the case when α is strictly
positive). Thus, the adjoint problem (68) do have a non-zero (if the nullity is equal to 1)
solution m (not necessarily constant), which can be normalized to satisfy

∫

G

m = 1.

Hence, problem (67) do have a unique solution if and only if

∫

G

f m = 0 = (f,m).

At this point and if the nullity is equal to 1, we modify the definition of the space H1(G)
and the quotient space L̃2(G) to include the average with respect to m, the normalized
solution of the adjoint problem (68), say, the invariant measure. Set

H1(G) = {f ∈ L2(G) : (f,m) = 0}, (69)

which is the orthogonal complement of the kernel (or null space) of A∗. Clearly A will map
H1(G) into itself. Again, the discrete maximum principle ensures that A is injective, so
that A is an invertible operator. This inverse A−1 is representable as an integral operator
called the Green function, i.e.,

u(x) =
∑

y

G(x, y) f(y), ∀x ∈ G. (70)

is the unique solution of (67) satisfying (u,m) = 0 and under the assumption that (f,m).
Clearly, if the nullity is equal to 0 then A is invertible in L2(G). Now, let S be a subset of
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G where the boundary satisfies the condition (66). Then, S̄ is playing the role of G, i.e., S̄
is considered as a graph with no boundary, the edges between the nodes of ∂S = ∂∗S and
Gr S̄ being deleted. The space H1(S̄) is modified accordingly to the invariant measure.
Results similar to the case S = G hold true as long as the discrete maximum principle
can be applied. Note that even when α changes sign, we may have α∗ nonnegative, so
that the nullity of A∗ may be calculated, and the same conclusions hold true. Hence, we
have proven the following results:

Theorem 5.3. Let S be a connected subgraph of a directed weighted host graph (G,$),
and let α = 0 in the expression (60) defining the operator A. Assume ∂S = ∂∗S and set
S̄ = S ∪ ∂S. Given a function f from S̄ into R, the discrete Neumann boundary problem

{

Au(x) = f(x), ∀x ∈ S,

∂νu(x) = f(x), ∀x ∈ ∂S
(71)

has a solution u, unique up to an additive constant, if and only if (f,m) = 0, where m is
the unique solution of the adjoint problem

{

A∗m(x) = 0, ∀x ∈ S,

∂∗
νm(x) = 0, ∀x ∈ ∂S,

(72)

which satisfies
∫

S̄

m = 1. (73)

Note that in the above result, we may take S = G so that ∂S = ∅. As mentioned above,
if α ≥ 0 then the nullity cannot be 1 (so it is 0) and the solution m of (72) can not be
normalized because m = 0. In this case the problem (71) has a unique solution u for every
given f, i.e., no compatibility condition is needed. On the other hand, starting from the
definition (60) and (62) of the operators A and its adjoint operator A∗, we may define a
non-symmetric bilinear form by the expression

a(u, v) = (Au, v) = (u,A∗v), ∀u, v ∈ L2(G). (74)

When α changes sign (i.e., it is not necessarily nonnegative), this bilinear form may be
coercive in some subspace of L2(G) and the existence and uniqueness can be deduced. In
this context, the bilinear form a(·, ·) is coercive in a subspace V of L2(G) if (1) a(u, v) ≥ 0
for every u and v in V and (2) a(u, u) = 0 with u in V implies u = 0. For instance, if

α(x) +
1

2

∑

y

(

$(x, y)−$(y, x)
)

≥ 0, ∀x ∈ G (75)

then the non-symmetric form (74) is coercive in H1(G).

5.4. Dirichlet Boundary

Let (G,$) be a directed weighted graph and α be a nonnegative function from G into
R. Consider the operators A in L2(G), given by (60). Now, suppose given a proper and
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connected subset S of G, and a function f : G → R, we want to study the following
problem: Find a function u in L2(G) such that

{

Au(x) = f(x), ∀x ∈ S,

u(x) = f(x), ∀x ∈ Gr S.
(76)

Certainly, if the boundary ∂S = ∂∗S is defined then the only relevant nodes are in the
closure S̄, no need to use the complement GrS. Note that the data f may be considered
as two functions, one defined on S and another defined on Gr S, however, we keep the
notation f for simplicity. The same argument as before, the discrete maximum principle
shows that the map f 7→ u is injective, from L2(G) into itself. Because we are working in
a finite dimensional space, the above Dirichlet problem has one and only one solution u
which can be expressed as

u(x) =
∑

y∈G

G(x, y) f(y), ∀x ∈ G,

where G(x, y) is the Green function. Clearly, the proper part of the Green function is
G(x, y) for x and y in S. Note that as in Section 3.3, given a function g defined on GrS,
the expression

Bg(x) =
∑

y∈GrS

$(x, y)g(y), ∀x ∈ S

transforms the following non-homogeneous (discrete) Dirichlet boundary value problem

{

Au(x) = 0, ∀x ∈ S,

u(x) = g(x), ∀x ∈ Gr S
(77)

into a homogeneous problem

{

Av(x) = Bg(x), ∀x ∈ S,

v(x) = 0, ∀x ∈ Gr S,
(78)

i.e., u(x) = v(x) for every x in S. Even more general, let S be a proper (non necessary
connected) subset of G and define the boundary Γ = ∂S ∪ ∂∗S and the closure S = S ∪Γ.
Suppose given a part of the boundary Γ0 satisfying

∂S r ∂∗S ⊂ Γ0 ⊂ Γ, Γ0 6= ∅, (79)

and a function f : S → R. Consider the mixed boundary problem











Au(x) = f(x), ∀x ∈ S,

∂νu(x) = f(x), ∀x ∈ Γr Γ0,

u(x) = f(x), ∀x ∈ Γ0.

(80)

Now assume that Γ0 is reachable form S, i.e., for every x in S there exists a path originated
at x0 = x and ending at some point y in Γ0. Then we can use the discrete maximum
principle, as stated in Remark 5.2, to check that the mixed problem (80) has a unique
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solution. Hence, the solution exits, it is unique and given by means of a Green function.
In general, let S0 be the component reaching Γ0, i.e., the set of all nodes x in S having
a path originated at x0 = x and ending at some point y in Γ0. Also, suppose that Sk,
for k = 1, . . . , K, 0 ≤ K < |S|, are the one-way closed and connected components of
S r S0, i.e., S is a disjoint union of S0, S1, . . . , SK and each Sk with k ≥ 1 is connected,
i.e., any two nodes in Sk can be jointed with a path, and one-way closed, i.e., any path
originated at a node in Sk must have all its nodes also in Sk. Clearly, for every k we can set
independent problems. For S0 we do have a problem similar to (80), for which existence
and uniqueness hold true. For Sk with 1 ≤ k ≤ K we have a Neumann boundary problem
like the one in the previous section, namely,

{

Au(x) = f(x), ∀x ∈ Sk,

∂νu(x) = f(x), ∀x ∈ ∂∗Sk,
(81)

where Sk is connected and ∂Sk = ∅. Because α(x) ≥ 0, the discrete maximum principle,
as state in Remark 5.2, shows that the nullity of A in Sk is equal to 1 (e.g., if α(x) = 0
for every x in Sk) or is equal to 0 (e.g., if α(x) > 0 for every x in Sk). Then, for
those k where the nullity is 1 we find a normalized invariant measure mk, solution of the
adjoint problem in Sk. Therefore, the problem in the whole S have a solution (unique
after normalization) if and only if f has a zero-average with respect to mk on Sk for every
k. Note that assumption (79) is essential to apply the discrete maximum principle, i.e., if
u is a solution of Au = 0 assuming its (global) maximum at x0 in S then no conclusive
statement can be deduced when x0 belongs to ∂S r ∂∗S, since Au(x) (or ∂νu(x)) is only
defined for x in S ∪ ∂∗S. Again, as mentioned in the previous section, we may transform
this mixed problem into a pure Dirichlet problem like (76), just delete all links in Gr S
and replace the full graph G by S and S by SrΓ0. Thus, if AS denotes the new operator
in S, which agree with A in S and with ∂ν on Γr Γ0, then problem (80) is equivalent to

{

ASu(x) = f(x), ∀x ∈ S r Γ0,

u(x) = f(x), ∀x ∈ Γ0,
(82)

where the new boundary is only Γ0. Hence, we have proven the following results:

Theorem 5.4. Let S be a subgraph of a directed weighted host graph (G,$), and let α be
a nonnegative function defined on G so that the expression (60) defines the operator A.
Set Γ = ∂S ∪ ∂∗S, S = S ∪ Γ and let Γ0 be a part of Γ satisfying (79) which is reachable
form S, i.e., for every x in S there exists a path originated at x0 = x and ending at some
point y in Γ0. Given a function f from S into R, the discrete mixed boundary problem











Au(x) = f(x), ∀x ∈ S,

∂νu(x) = f(x), ∀x ∈ Γr Γ0,

u(x) = 0, ∀x ∈ Γ0

(83)

has a unique solution u, which can be expressed by means of the Green function.

If Γ0 is not reachable from S then we need to decompose the subgraph S as above, to get
several Neumann type problems (and one mixed problem).
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6. Probabilistic Interpretation I

In this section we discuss the problem in the full graph. To simplify the presentation, we
take α = 0.

6.1. Notation and Preliminaries

Our objective in this section is to give a probabilistic interpretation to the solution of the
problem

Au = f, (84)

posed in the full graph G. We know the solvability condition

(f, 1) = 0 (85)

The probabilistic interpretation is linked to the fact that one can associate to the operator
A or to the weight $(x, y) a transition probability on the nodes of G, considered as the
states of a Markov chain,

π(x, y) =
$(x, y)

d$x
, d$x =

∑

y

$(x, y), (86)

for every x and y in G. A very important, although immediate, observation is that there
exists an invariant probability, associated to the transition probability π(x, y), that is to
say a probability m(x), such that

∑

x

m(x)π(x, y) = m(y), ∀ y ∈ G. (87)

Indeed, calling

V (G) =
∑

x

d$x,

we just take

m(x) =
d$x

V (G)
. (88)

Usually, the existence of the invariant probability, is a consequence of Ergodic Theory,
requiring for instance the Doeblin’s condition, see J. L. Doob [3]. Here, this condition is
not satisfied, but the invariant probability is obtained trivially. As we shall see, most of
the standard results, obtained from Ergodic Theory, except one, will be available. The
next step is to introduce the operator

Φf(x) =
∑

y

π(x, y)f(y). (89)

It is convenient to consider a different norm than that used to define L2(G), namely

‖f‖L∞(G) = max
{x∈G}

|f(x)|.
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The notation L∞(G) speaks for itself, although, of course, since we are dealing with a
finite dimensional vector space, these two norms are equivalent. The interest of this norm
is the fact that

‖Φ‖ ≤ 1.

We have the relation
I − Φ = d−1A, (90)

where the operator I is the identity and d is the multiplication by the function d$, i.e.,
dv(x) = d$x v(x), for every x in G. Note also

Φ1 = 1, (91)

where by 1, we mean the constant function equal to 1, and

(m,Φv) = (m, v), ∀ v ∈ L∞(G), (92)

which is the classical property of invariant probabilities. This amounts to

Φ∗m = m, (93)

where the operator Φ∗ dual of Φ is given by

Φ∗v(x) =
∑

y

v(y)
$(x, y)

d$y
. (94)

Now equation (84) reads
(I − Φ)u = d−1f. (95)

The solvability condition can be written as

(m, d−1f) =
(f, 1)

V (G)
= 0. (96)

So for a general f , we can consider the usual ergodic formulation

(I − Φ)u(x) + ρ = d−1f(x), (97)

where ρ is a constant, necessarily given by

ρ = (m, d−1f) =
(f, 1)

V (G)
. (98)

In terms of A, equation (97) reads

Au+ ρV (G)m = f, (99)

and we know that u is defined, up to a constant. As it is natural in the quotient space,
we have so far chosen the constant, so that

(u, 1) = 0.

This has no probabilistic interpretation, so in the present context, we pick the constant
so that

(u,m) = 0. (100)

As seen in Section 5.2, the discrete maximum principle applied tom(x) (with a symmetric
weight $) yields that m is actually constant, i.e., m(x) = C for every x. This reconciles
the analytic and probabilistic interpretations.
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6.2. Approximation

Here we have solved (97) directly. The usual approach is to consider the following ap-
proximation

(I − αΦ)uα(x) = d−1f(x), ∀x ∈ G, (101)

where the α is a constant satisfying 0 < α < 1 destined to approach 1. Since αΦ is a
contraction operator in L∞(G) with norm α, the solution of (101) is trivially given by the
series

uα =
∞
∑

{n=0}

αnΦnd−1f. (102)

The usual results, consequence of Ergodic Theory, are summarized as follows:

Theorem 6.1. The problem (97) has a solution (u, ρ), where u is unique up to an additive
constant, i.e, unique if we impose (u,m) = 0. The constant ρ is given by (98) and

u(x) = lim
α→1

(

uα(x)−
ρ

1− α

)

. (103)

Moreover, we have also
(1− α)uα(x) → ρ, ∀x ∈ G (104)

and

1

N

N−1
∑

n=0

Φnd−1f → ρ, in L∞(G). (105)

Proof. The uniqueness of ρ is obvious, since there is an explicit formula. The uniqueness
of u follows from the fact that, if

(I − Φ)u(x) = 0

then
Au = 0,

which yields u is constant. Since (m,u) = 0, this constant is u = 0. Consider next the
function uα, solution of (101). Set

ũα(x) = uα(x)− (m,uα) = uα(x)−
ρ

1− α
.

It is easy to check from (101) that

(I − αΦ)ũα + ρ = d−1f. (106)

From this, we deduce
1− αdũα + Aũα + ρmV (G) = f.

By taking the scalar product with ũα, we get

1− α(dũα, ũα) + (Aũα, ũα) = (f, ũα).

From this energy equality and properties (16) and (19) of A, we deduce that

‖ũα‖L2(G) ≤ C.
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Hence, property (104) follows immediately. Next we extract a subsequence, such that

ũα → u

and passing to the limit in (106) as α → 1, we deduce that u is solution of (97), with
(m,u) = 0. By the uniqueness of the limit, the full sequence converges, which is property
(102). Next, from (97), one obtains

Φnu− Φn+1u+ ρ = Φnd−1f.

Therefore, also

u− ΦNu+Nρ =
N−1
∑

n=0

Φnd−1f.

Dividing by N , and letting N tend to ∞, we obtain (105). The proof has been completed.

Remark 6.2. On the other hand, the property

‖Φnv − (m, v)‖ ≤ Kβn, β < 1 (107)

is not true, without additional assumptions. Therefore, from the fact

∞
∑

n=0

αnΦn(d−1f − ρ)(x) → u(x), as α → 1 (108)

we cannot deduce the formula

u(x) =
∞
∑

n=0

Φn(d−1f − ρ)(x) (109)

which would be a consequence of (107).

6.3. Limiting Average

Consider a probability space (Ω,A, P ), on which is constructed a Markov chain

y0, y1, . . . , yn, . . . ,

where yn = yn(ω) denotes the state of the Markov chain at time n. Clearly, yn are random
variables with values in G. The states of the Markov chain are the nodes of G, so there
are N states. The Markov chain is governed by the transition probability π(x, y) given
by (86). Set

P (x, n, y) = Φnδy(x),

where

δy(z) =

{

1 if z = y,

0 otherwise.

Then, as it is well known

P
{

yn = y | y0 = x
}

= P (x, n, y).



A. Bensoussan, J.-L. Menaldi / Difference Equations on Weighted Graphs 39

Consider the filtration generated by the random variables {yi}, i.e.,
Fn = σ(y0, y1, · · · , yn) (110)

then the following Markov property holds

P
{

yn+k = y | Fk
}

= P (yk, n, y). (111)

Next, consider a stopping time ν of Fn, namely,

{ν ≤ k} ⊂ Fk, ∀ k,
and the σ-algebra Fν defined by

Γ ⊂ Fν ⇐⇒ Γ ∩ {ν ≤ k} ⊂ Fk.

Then one has also the strong Markov property, i.e.,

P
{

yn+ν = y | Fν
}

= P (yν , n, y). (112)

Note that
Φnf(x) = E

{

f(yn) | y0 = x
}

. (113)

Therefore, we can give the probabilistic interpretation of uα,

uα(x) = E
{

∞
∑

n=0

αnd−1f(yn) | y0 = x
}

, (114)

ρ = lim
N→∞

E
{ 1

N

N−1
∑

n=0

d−1f(yn) | y0 = x
}

(115)

and

u(x) = lim
α→1

E
{

∞
∑

{n=0}

αn(d−1f(yn)− ρ) | y0 = x
}

, (116)

but we cannot interchange the limits lim and the summation
∑

signs.

7. Probabilistic Interpretation II

In this section we discuss the Dirichlet problem in an induced and connected subgraph S
with a non-empty boundary ∂S defined by (1). Again, to simplify the presentation, we
take α = 0.

7.1. Martingale Considerations

In a Markov chain the following martingale property holds, whose proof is left to the
reader:

u(yn) +
n−1
∑

j=0

(u− Φu)(yj) is a Fn martingale, ∀u, (117)

recall that the operator Φ is defined by (89). Note that, from the general properties of
martingales, we have also that for any stopping time ν of Fn, the stopped martingale is
also a martingale, hence

u(yn∧ν) +
n∧ν−1
∑

{j=0}

(u− Φu)(yj) is a Fn martingale, ∀u (118)
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7.2. Exit Time

Consider an induced subgraph S and its (non-empty) boundary ∂S. We define

τ = inf{n : yn ∈ Gr S}. (119)

It is a stopping time since

τ > k ⇐⇒ y0 ∈ S, · · · , yk ∈ S

and this event belongs to Fk. We are going to show

Lemma 7.1. We have
τ < ∞, a.s. (120)

and
if y0 = x ∈ S then yτ ∈ ∂S. (121)

Proof. Consider the solution z of the following problem
{

z(x)− Φz(x) = 1, ∀x ∈ S,

z(x) = 0, ∀x ∈ ∂S.
(122)

From the maximum principle, see Theorem 3.5, we have z ≥ 0. We denote P x the
probability on (Ω,A) with the property y0 = x a.s. Using the martingale property (118),
with ν = τ , and noting that j ≤ n∧ τ − 1 implies yj ∈ S, taking account of (122), we get

Ex
{

z(yn∧τ ) + n ∧ τ
}

= z(x)

and from the positivity of z, it follows

Ex
{

n ∧ τ
}

≤ z(x).

Letting n tend to ∞, we deduce
Exτ ≤ z(x).

Clearly, Ex{·} denote the expectation with respect to conditional probability P x, i.e.,
Ex{· | y0 = x}. This proves (120). Let us prove (121). We pick z ∈ G− S̄. We have

Ex
{

1{yτ=z}
}

=
∞
∑

n=0

Ex
{

1{yτ=z}1{τ=n}
}

=
∞
∑

n=0

Ex
{

1{yn=z}1{y1∈S,··· ,yn−1∈S}
}

=
∞
∑

n=0

Ex
{

1{y1∈S,··· ,yn−1∈S}π(yn−1, z)
}

.

But π(yn−1, z) = 0, since yn−1 ∈ S, z ∈ G− S̄. Therefore, we have

Ex
{

1{yτ=z}
}

= 0.

Since z is any node in Gr S̄, and there are a finite number of such nodes, we get

Ex
{

1{yτ∈G−S̄}
}

= 0.

So yτ belongs to S̄ almost surely. Since yτ is not in S, the property (121) is proven.
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7.3. Explicit Formula

We consider here the nonhomogeneous Dirichlet problem

{

Au(x) = f(x), ∀x ∈ S,

u(x) = g(x), ∀x ∈ ∂S.
(123)

Our objective is to prove the following result

Theorem 7.2. The solution of problem (123) is given by

u(x) = Ex
{

τ−1
∑

{j=0}

d−1f(yj) + g(yτ
}

. (124)

Proof. Note first that (122) is equivalent to

{

(I − Φ)u(x) = d−1f(x), ∀x ∈ S,

u(x) = g(x), ∀x ∈ ∂S.

From the martingale property, see (118), we have

u(x) = Ex
{

n∧τ−1
∑

{j=0}

(u− Φu)(yj) + u(yn∧τ )
}

.

Since, yj ∈ S for every j ≤ n ∧ τ − 1, using the equation (124) we get

u(x) = Ex
{

n∧τ−1
∑

{j=0}

d−1f(yj) + u(yn∧τ )
}

.

Letting n tend to ∞, the result (124) follows immediately, after making use of Lemma 7.1.

8. Probabilistic Interpretation III

In this section we discuss the Neumann problem in an induced and connected subgraph
S. Again, to simplify the presentation, we take α = 0.

8.1. Setting and Notation

We consider here the problem (45)







Au(x) = f(x), ∀x ∈ S,

∂u

∂νA
(x) = g(x), ∀x ∈ ∂S.

(125)

We recall the solvability condition, see (49)

∫

S

f +

∫

∂S

g = 0. (126)
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We recall the operator AS̄, so that the problem is equivalent to

{

AS̄u(x) = f(x), ∀x ∈ S,

AS̄u(x) = g(x), ∀x ∈ ∂S.
(127)

Next, define

d$,S̄(x) =
∑

y∈S̄

$(x, y), ∀x ∈ S̄, (128)

d′$(x) =
∑

y∈S

$(x, y), ∀x ∈ S (129)

and

dS̄v(x) =

{

d$,S̄(x)v(x), ∀x ∈ S,

d′$(x)v(x), ∀x ∈ ∂S,
(130)

ΦS̄ = I − d−1
S̄
AS̄. (131)

8.2. Statement of Results

We are, in a situation similar to the case of a full graph. So we give the results without
details. We introduce the invariant probability

mS̄(x) =



















d$,S̄(x)

V (S̄)
, ∀x ∈ S,

d′$(x)

V (S̄)
, ∀x ∈ ∂S,

(132)

with

V (S̄) =

∫

S

d$,S̄ +

∫

∂S

d′$.

If, we consider general f, g, without compatibility conditions, then the equation to be
solved is written as follows







Au(x) + ρV (S̄)d$,S̄(x) = f(x), ∀x ∈ S,

∂u

∂νA
(x) + ρV (S̄)d′$(x) = g(x), ∀x ∈ ∂S,

(133)

and

ρ =

∫

S

f +

∫

∂S

g

V (S̄)
. (134)

We associate with this problem the following equation

(I − ΦS̄)u+ ρ = D−1
S̄
L (135)

with

`(x) =

{

f(x) if x ∈ S,

g(x) if x ∈ ∂S,
(136)
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and (135) means, of course,
AS̄u+ ρdS̄ = `. (137)

We next introduce the approximation

(I − αΦS̄)uα(x) = d−1
S̄
`(x), ∀x ∈ S̄, (138)

where 0 < α < 1, and we let α tend to 1. We have, as for (102)

uα =
∞
∑

n=0

αnΦn
S̄d

−1
S̄
`(x) (139)

and we state the equivalent of Theorem 6.1.

Theorem 8.1. The solution of (135), (u, ρ), unique if we impose (u,mS̄) = 0, and ρ is
given by (134), and

u(x) = lim
α→1

(uα(x)−
ρ

1− α
). (140)

We have also
(1− α)uα(x) → ρ, ∀x, (141)

and

1

N

N−1
∑

n=0

Φnd−1
S̄
` → ρ, in L∞(G). (142)

It remains to state the probabilistic interpretation. We have

uα(x) = Ex
{

∞
∑

n=0

αn(
f(yn)

d$,S̄(yn)
1{yn∈S} +

g(yn)

d′$(yn)
1{yn∈∂S})

}

(143)

and

ρ = lim
N→∞

Ex
{ 1

N

N−1
∑

n=0

(
f(yn)

d$,S̄(yn)
1{yn∈S} +

g(yn)

d′$(yn)
1{yn∈∂S})

}

, (144)

u(x) = lim
α→1

Ex
{

∞
∑

n=0

αn(
f(yn)

d$,S̄(yn)
1{yn∈S} +

g(yn)

d′$(yn)
1{yn∈∂S} − ρ)

}

. (145)

9. Conclusions

Directed and undirected weighted graphs have been considered. Discrete versions of the
stationary Neumann, Dirichlet and mixed problems have been successfully studied, in
variational and non-variational forms. Probabilistic interpretations of the solutions are
given by means of stationary Markov chain. Several extensions are in order, first the time-
dependent case has to be discussed. Next, several non-linear problems should be studied,
e.g., where the weight of the graph is depending on a parameter which can be changed.
This will involve some optimization and the application of the dynamic programming
principle. All this is will be part of future works.
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