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This note is devoted to the clarification of the relationship between the Legendre-Fenchel conjugate of
1

f
and that of −f when f is a positive concave function.
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1. Introduction

The Legendre-Fenchel conjugate (or transform) of a function f : X → R ∪ {+∞} is a
function defined on the topological dual space X? of X as

p ∈ X? 7−→ f ∗(p) := sup
x∈X

[〈p, x〉 − f(x)] . (1)

In convex analysis the conjugacy operation f À f ∗ plays a central role, therefore a large
body of calculus rules have been developed for it; they can be found in any book on the
subject. There however are some particular calculus rules which have been considered
only recently, see for example [5, 3]. The present note is devoted to clarifying the calculus

rule giving the conjugate of
1

f
in terms of that −f when f turns out to be a positive

concave function. At first glance this situation can be viewed as a particular instance
of a general calculus rule concerning a convex function post-composed with an increas-
ing convex function ([2], Section 2.5 in chapter X): x 7−→ (−f)(x) post-composed with

0 > y 7−→ −1

y
. We nevertheless provide a self-contained proof, insisting on the distinctive

features of the resulting formula.

2. The conjugate of
1

f
.

The context of our work is the following one:

• X is a (real) Banach space; by X? we denote the topological dual space of X, and
(p, x) ∈ X? ×X 7−→ 〈p, x〉 stands for the duality pairing.
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• f : X → R ∪ {−∞} is a concave upper-semicontinuous (or closed) function, strictly
positive on C := {x ∈ X | f(x) > −∞} (assumed nonempty).

If we formulate this assumption in a way more familiar to practitioners of convex analysis
or optimization, this gives: −f : X → R ∪ {+∞} is a convex lower-semicontinuous (or
closed) function, strictly negative on dom (−f) = C.

If C turns out to be the whole of X, then f is constant on X, so that this situation is
not of much interest. In applications, C happens to be a bounded (convex) set of X, on
whichf is strictly positive.

The assumptions listed above are in force throughout the paper.

The inverse function of f , denoted as
1

f
, is defined on X as follows:

(
1

f
)(x) :=







1

f(x)
if x ∈ C

+∞ otherwise.
(2)

A classical and easily proved result is that
1

f
is now convex on X, with domain C.

The theorem below gives the expression of (
1

f
)∗ in terms of that of (−f)∗.

Theorem 2.1. For all p ∈ X?,

(
1

f
)∗(p) = min

{

[

α(−f)∗(
p

α
)− 2

√
α
]

α>0
, σC(p)

}

, (3)

where σC denotes the support function of C. If p belongs to the cone generated by
dom (−f)∗ (i.e. if p ∈ R∗

+dom (−f)∗), then

(
1

f
)∗(p) = inf

α>0

[

α(−f)∗(
p

α
)− 2

√
α
]

. (4)

Proof. We mimic here the proof devised in [2] (p. 69 of Volume II). By definition,

−(
1

f
)∗(p) = inf

x∈X

[

1

f(x)
− 〈p, x〉

]

= inf
x∈C

[

− 1

−f(x)
− 〈p, x〉

]

= inf
x∈X, r<0

[

−1

r
− 〈p, x〉 | (−f)(x) ≤ r

]

(5)

(because r 7−→ −1

r
is increasing on (−∞, 0)).

Let us define

f1 : (x, r) ∈ X × R 7−→ f1(x, r) :=

{

−〈p, x〉 − 1

r
if x ∈ X and r < 0,

+∞ otherwise;
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f2 := iepi(−f) (indicator function of the epigraph of −f).

Thus, (5) can be written as

−(
1

f
)∗(p) = inf

(x,r)∈X×R

[f1(x, r) + f2(x, r)] .

We then have to compute the conjugate of a sum of functions, however in a favorable
context since int(domf1) = X × (−∞, 0) and domf2 = epi(−f) overlap. According to
the classical Fenchel duality theorem

(
1

f
)∗(p) = min

(s,α)∈X?×R

[f ∗
1 (−s, α) + f ∗

2 (s,−α)] . (6)

The computation of the above two conjugate functions is easy and gives:

f ∗
1 (−s, α) = −2

√
α if s = p and α ≥ 0, +∞ otherwise;

f ∗
2 (s,−α) = σepi(−f)(s,−α) =











α(−f)∗(
s

α
) if α > 0,

σC(s) if α = 0,
+∞ if α < 0.

Plugging these results into (6) yields (3).

Observe that the function

α ∈ R 7−→ Θ(α) :=











α(−f)∗(
p

α
)− 2

√
α if α > 0,

σC(p) if α = 0,
+∞ if α < 0

is convex and lower-semicontinuous; its value at 0, that is σC(p), is the limit of Θ(α) when
α ∈ domΘ → 0+.

If p belongs to R∗
+dom (−f)∗, the domain of Θ cannot reduce to {0}, whence

min
α≥0

Θ(α) = inf
α>0

Θ(α),

that is to say (4).

Remarks 2.2. – It may happen that p0 ∈ dom (
1

f
)∗ but p0 /∈ R∗

+dom (−f)∗ . In that

case, (4) is invalid and the minimal value in (3) is achieved “at the limit α0 = 0Ô, thus

(
1

f
)∗(p0) = σC(p0). See Example 2.5 below for an illustration of such a situation.

– According to formula (3), dom (
1

f
)∗ contains R∗

+dom (−f)∗. We will see later on that

the closed (convex) cones generated by dom (−f)∗ and dom (
1

f
)∗ are equal. Accordingly,
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f

Example 2.3

p0 ∈ dom (
1

f
)∗ belongs to R∗

+dom (−f)∗ “genericallyÔ, i.e. at the exception of some

“boundary-situationsÔ such as that described above.

In view of the formulas (3) and (4) on (
1

f
)∗(p), on may ask the following questions:

– Could we delineate those p for which the infimum in (4) is achieved for some α > 0?
– If so, is there any way of determining such α in terms of the given p ?

Before tackling these questions, it is worthwile to consider the next simple examples in
order to grasp what can be expected and what not.

Example 2.3. Let C = [−1,+1] and

f : x ∈ R 7−→ f(x) :=

{

2− |x| if x ∈ C,
−∞ otherwise.

Then, (−f)∗ and (
1

f
)∗ are even functions with:

(−f)∗(p) =

{

2 if 0 ≤ p ≤ 1,
p+ 1 if p ≥ 1;

(
1

f
)∗(p) =







−1/2 if 0 ≤ p ≤ 1/4,
2(p−√

p) if 1/4 ≤ p ≤ 1,
p− 1 if p ≥ 1.

Let, for instance,
1

4
≤ p0 ≤ 1. The minimum value in the right-hand side of the formula

(
1

f
)∗(p0) = min

{

[α(−f)∗(
p0
α
)− 2

√
α]α>0, p0

}

is achieved for α0 = p0.

Example 2.4. Let C = [0,+∞) and

f : x ∈ R 7−→ f(x) :=

{

2− e−x if x ≥ 0,
−∞ otherwise.
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f (x) ( f ) * ( p )

2

1 0

0

-1

2

0 -1

-1/2
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Example 2.4

Then, an easy calculation leads to

(−f)∗(p) =







1 if p ≤ −1,
−p log(−p) + p+ 2 if − 1 ≤ p ≤ 0,
+∞ if p ≥ 0;

while the explicit expression of (
1

f
)∗(p) is fairly complicated (see however the Figure above

for a sketch of its graph). Let p0 = 0. Then the minimum value in the right-hand side of
the formula

(
1

f
)∗(0) = min

{

[

2α− 2
√
α
]

α>0
, 0
}

is achieved for α0 =
1

4
.

This is a general rule. Suppose M := sup
x∈C

f(x) < +∞ (as it is the case in Example

2.3 and the present one). Then the minimum value in the right-hand side of the formula

expressing (
1

f
)∗(0) is achieved at α0 =

1

M2
; the corresponding value is − 1

M
, as expected.

Example 2.5. Let C = [0,+∞) and

f : x ∈ R 7−→ f(x) :=

{

x+ 1 if x ≥ 0,
−∞ otherwise.

Then

(−f)∗(p) =

{

1 if p ≤ −1,
+∞ if p > −1;

(
1

f
)∗(p) =







−1 if p ≤ −1,
−p− 2

√
−p if − 1 ≤ p ≤ 0,

+∞ if p > 0.
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Example 2.5

Let p0 = 0. Here p0 ∈ dom (
1

f
)∗ but p0 /∈ R?

+dom (−f)∗. This is an example where

α(−f)∗(
p0
α
)− 2

√
α = +∞ for all α > 0,

whence the minimum value in the formula (3) yielding (
1

f
)∗(p0) is achieved “at the limit

α0 = 0Ô and has the value σC(p0) = 0.

To answer the questions posed as an introduction to the examples listed above, we need

to explore furthermore the relationship between dom (
1

f
)∗ and dom (−f)∗ by establishing

a link between the subdifferential of
1

f
that of −f . The connecting formula, as expected,

is the one given in the statement below.

Proposition 2.6. For all x ∈ C,

∂(
1

f
)(x) =

∂(−f)(x)

[f(x)]2
. (7)

Proof. We proceed to compare the directional derivates (
1

f
)
′
(x, d) and (−f)

′
(x, d) for all

d ∈ X.

First case: x+ td /∈ C for all t > 0.

In that case, both (
1

f
)
′
(x, d) and (f)

′
(x, d) equal +∞.

Second case: x+ t̄d ∈ C for som t̄ > 0.

Thus, the line-segment [x, x + t̄d] is entirely contained in C; therefore it comes from the
assumption made on f (an upper-semicontinuous concave function) that the function (of
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the real variable) t 7−→ f(x+ td) is continuous on [0, t̄]. We infer from that,

1

f(x+ td)
− 1

f(x)

t
=

(−f)(x+ td)− (−f)(x)

t
f(x+ td)f(x)

−→
t→0+

1

[f(x)]2
lim
t→0+

(−f)(x+ td)− (−f)(x)

t
,

whence

(
1

f
)
′
(x, d) =

(−f)
′
(x, d)

[f(x)]2
. (8)

In summary, the equality (8) holds for all d ∈ X. Since we have for any convex function
ϕ on X

∂ϕ(x) =
{

p ∈ X? | 〈p, d〉 ≤ ϕ
′
(x, d) for all d ∈ X

}

,

the announced relationship (7) readily follows from (8).

Not all the p in dom (
1

f
)∗ are in Im∂(

1

f
); however we have

Im∂(
1

f
) ⊂ dom (

1

f
)∗ ⊂ Im∂(

1

f
) (9)

(the second inclusion follows from the approximation theorem of Brøndsted-Rockafellar

(1965)). For those p which are in Im∂(
1

f
), we are able to provide α > 0 at which the

infimum is achieved in the formula (4).

Theorem 2.7. Let p0 ∈ Im∂(
1

f
), and consider x0 such that p0 ∈ ∂(

1

f
)(x0). Then,

(
1

f
)∗(p0) =

(−f)∗ {[f(x0)]
2p0}

[f(x0)]2
− 2

f(x0)
. (10)

In other words: we are in a situation where p0 belongs to the convex cone R∗
+dom (−f)∗,

and the minimizer in the right-hand side of (4) is α0 =
1

[f(x0)]2
.

Proof. We have p0 ∈ ∂(
1

f
)(x0) and, according to (7), [f(x0)]

2p0 ∈ ∂(−f)(x0). Using the

characterization of the subdifferential of ϕ in terms of its conjugate (s0 ∈ ∂ϕ(x0) if and
only if ϕ∗(s0) + ϕ(x0)− 〈s0, x0〉 = 0), we have:

(−f)∗
{

[f(x0)]
2p0

}

− f(x0) + 〈[f(x0)]
2p0, x0〉 = 0, (11)

(
1

f
)∗(p0) +

1

f(x0)
− 〈p0, x0〉 = 0. (12)
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Dividing (11) by [f(x0)]
2 and comparing the resulting equality to (12), we derive (10).

When p0 ∈ Im∂(
1

f
), we clearly are in a situation where p0 ∈ R∗

+dom (−f)∗ since (ac-

cording to (7)) p0 ∈ R∗
+Im∂(−f) ⊂ R∗

+dom (−f)∗ . Then the (strictly) convex function

α > 0 7−→ α(−f)∗(
p0
α
)− 2

√
α

is minimized at α0 =
1

[f(x0)]2
.

Remarks 2.8. – Even if p0 /∈ Im∂(
1

f
), it may happen that the infimum in the right-

hand side of (4) is achieved at some α0 > 0, but such α0 is not necessarily
1

[f(x0)]2
for

some x0 ∈ C. Indeed, consider again Example 2.4 and p0 = 0. We note that

p0 /∈ Im∂(
1

f
), p0 ∈ R∗

+dom (−f)∗,

(
1

f
)∗(p0) = inf

α>0

[α(−f)∗(
p0
α
)− 2

√
α]

= [α(−f)∗(
p0
α0

)− 2
√
α0] for α0 =

1

4
,

but there is no x0 ∈ C such that
1

4
=

1

[f(x0)]2
(such an x0 is “rejected at the infinity on

CÔ).

– We have :

dom (
1

f
)∗ = Im∂(

1

f
), dom (−f)∗ = Im∂(−f) (13)

(see the comments about (9));

R∗
+Im∂(−f) = R∗

+Im∂(
1

f
) (14)

(this results from (7)).

Combining (13) and (14) gives rise to the following relationship between dom (
1

f
)∗ and

dom (−f)∗:

R∗
+dom (

1

f
)∗ = R∗

+dom (−f)∗ . (15)

– There are several possible situations where Im∂(
1

f
) = dom (

1

f
)∗; one of them is when

X is reflexive and C is bounded. Indeed, in that case, (
1

f
)∗ is continuous throughout X?
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and Im∂(
1

f
) = dom (

1

f
)∗ = X? ([4], Corollary 7G); thus formula (10) holds true at any

p0 ∈ X?.

The expression (10) for (
1

f
)∗(p), more comfortable and easier to handle than (3) (provided

one can solve the equation p ∈ ∂(
1

f
)(x)), would then allow us to pursue further the study

of possible relations between the mathematical objects (from the viewpoint of convex

analysis) associated with the convex functions −f and
1

f
.
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