## Conjugating the Inverse of a Concave Function

J.-B. Hiriart-Urruty

Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 4, France jbhu@cict.fr

Dedicated to C. Lemaréchal on the occasion of his  $60^{\text{th}}$  birthday.

Received July 17, 2003

This note is devoted to the clarification of the relationship between the Legendre-Fenchel conjugate of  $\frac{1}{f}$  and that of -f when f is a positive concave function.

Keywords: Convex functions, Legendre-Fenchel conjugate, subdifferential

2000 Mathematics Subject Classification: 26B25, 52A41, 90C25

### 1. Introduction

The Legendre-Fenchel conjugate (or transform) of a function  $f : X \to \mathbb{R} \cup \{+\infty\}$  is a function defined on the topological dual space  $X^*$  of X as

$$p \in X^* \longmapsto f^*(p) := \sup_{x \in X} \left[ \langle p, x \rangle - f(x) \right]. \tag{1}$$

In convex analysis the conjugacy operation  $f \rightsquigarrow f^*$  plays a central role, therefore a large body of calculus rules have been developed for it; they can be found in any book on the subject. There however are some particular calculus rules which have been considered only recently, see for example [5, 3]. The present note is devoted to clarifying the calculus rule giving the conjugate of  $\frac{1}{f}$  in terms of that -f when f turns out to be a positive concave function. At first glance this situation can be viewed as a particular instance of a general calculus rule concerning a convex function post-composed with an increasing convex function ([2], Section 2.5 in chapter X):  $x \mapsto (-f)(x)$  post-composed with  $0 > y \mapsto \frac{-1}{y}$ . We nevertheless provide a self-contained proof, insisting on the distinctive features of the resulting formula.

# 2. The conjugate of $\frac{1}{f}$ .

The context of our work is the following one:

• X is a (real) Banach space; by  $X^*$  we denote the topological dual space of X, and  $(p, x) \in X^* \times X \longmapsto \langle p, x \rangle$  stands for the duality pairing.

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

•  $f: X \to \mathbb{R} \cup \{-\infty\}$  is a *concave* upper-semicontinuous (or closed) function, strictly positive on  $C := \{x \in X \mid f(x) > -\infty\}$  (assumed nonempty).

If we formulate this assumption in a way more familiar to practitioners of convex analysis or optimization, this gives:  $-f: X \to \mathbb{R} \cup \{+\infty\}$  is a *convex* lower-semicontinuous (or closed) function, strictly negative on dom(-f) = C.

If C turns out to be the whole of X, then f is constant on X, so that this situation is not of much interest. In applications, C happens to be a bounded (convex) set of X, on which f is strictly positive.

The assumptions listed above are in force throughout the paper.

The inverse function of f, denoted as  $\frac{1}{f}$ , is defined on X as follows:

$$\left(\frac{1}{f}\right)(x) := \begin{cases} \frac{1}{f(x)} & \text{if } x \in C\\ +\infty & \text{otherwise.} \end{cases}$$
(2)

A classical and easily proved result is that  $\frac{1}{f}$  is now *convex* on X, with domain C.

The theorem below gives the expression of  $(\frac{1}{f})^*$  in terms of that of  $(-f)^*$ .

**Theorem 2.1.** For all  $p \in X^*$ ,

$$\left(\frac{1}{f}\right)^*(p) = \min\left\{\left[\alpha(-f)^*(\frac{p}{\alpha}) - 2\sqrt{\alpha}\right]_{\alpha>0}, \, \sigma_C(p)\right\},\tag{3}$$

where  $\sigma_C$  denotes the support function of C. If p belongs to the cone generated by  $dom(-f)^*$  (i.e. if  $p \in \mathbb{R}^*_+ dom(-f)^*$ ), then

$$\left(\frac{1}{f}\right)^*(p) = \inf_{\alpha>0} \left[\alpha(-f)^*\left(\frac{p}{\alpha}\right) - 2\sqrt{\alpha}\right].$$
(4)

**Proof.** We mimic here the proof devised in [2] (p. 69 of Volume II). By definition,

$$-\left(\frac{1}{f}\right)^{*}(p) = \inf_{x \in X} \left[\frac{1}{f(x)} - \langle p, x \rangle\right] = \inf_{x \in C} \left[-\frac{1}{-f(x)} - \langle p, x \rangle\right]$$
$$= \inf_{x \in X, r < 0} \left[-\frac{1}{r} - \langle p, x \rangle \mid (-f)(x) \le r\right]$$
(5)

(because  $r \mapsto -\frac{1}{r}$  is increasing on  $(-\infty, 0)$ ).

Let us define

$$f_1: (x,r) \in X \times \mathbb{R} \longmapsto f_1(x,r) := \begin{cases} -\langle p, x \rangle - \frac{1}{r} & \text{if } x \in X \text{ and } r < 0, \\ +\infty & \text{otherwise;} \end{cases}$$

 $f_2 := i_{epi(-f)}$  (indicator function of the epigraph of -f).

Thus, (5) can be written as

$$-(\frac{1}{f})^*(p) = \inf_{(x,r)\in X\times\mathbb{R}} \left[f_1(x,r) + f_2(x,r)\right].$$

We then have to compute the conjugate of a sum of functions, however in a favorable context since  $int(dom f_1) = X \times (-\infty, 0)$  and  $dom f_2 = epi(-f)$  overlap. According to the classical Fenchel duality theorem

$$\left(\frac{1}{f}\right)^{*}(p) = \min_{(s,\alpha)\in X^{*}\times\mathbb{R}} \left[f_{1}^{*}(-s,\alpha) + f_{2}^{*}(s,-\alpha)\right].$$
(6)

The computation of the above two conjugate functions is easy and gives:

$$f_1^*(-s,\alpha) = -2\sqrt{\alpha} \text{ if } s = p \text{ and } \alpha \ge 0, +\infty \text{ otherwise;}$$
$$f_2^*(s,-\alpha) = \sigma_{epi(-f)}(s,-\alpha) = \begin{cases} \alpha(-f)^*(\frac{s}{\alpha}) & \text{if } \alpha > 0, \\ \sigma_C(s) & \text{if } \alpha = 0, \\ +\infty & \text{if } \alpha < 0. \end{cases}$$

Plugging these results into (6) yields (3).

Observe that the function

$$\alpha \in \mathbb{R} \longmapsto \Theta(\alpha) := \begin{cases} \alpha(-f)^* (\frac{p}{\alpha}) - 2\sqrt{\alpha} & \text{if } \alpha > 0, \\ \sigma_C(p) & \text{if } \alpha = 0, \\ +\infty & \text{if } \alpha < 0 \end{cases}$$

is convex and lower-semicontinuous; its value at 0, that is  $\sigma_C(p)$ , is the limit of  $\Theta(\alpha)$  when  $\alpha \in \operatorname{dom} \Theta \to 0^+$ .

If p belongs to  $\mathbb{R}^*_+ dom(-f)^*$ , the domain of  $\Theta$  cannot reduce to  $\{0\}$ , whence

$$\min_{\alpha \ge 0} \Theta(\alpha) = \inf_{\alpha > 0} \Theta(\alpha),$$

that is to say (4).

**Remarks 2.2.** – It may happen that  $p_0 \in dom\left(\frac{1}{f}\right)^*$  but  $p_0 \notin \mathbb{R}^*_+ dom\left(-f\right)^*$ . In that case, (4) is invalid and the minimal value in (3) is achieved "at the limit  $\alpha_0 = 0$ ", thus  $\left(\frac{1}{f}\right)^*(p_0) = \sigma_C(p_0)$ . See Example 2.5 below for an illustration of such a situation.

- According to formula (3),  $dom\left(\frac{1}{f}\right)^*$  contains  $\mathbb{R}^*_+ dom\left(-f\right)^*$ . We will see later on that the closed (convex) cones generated by  $dom\left(-f\right)^*$  and  $dom\left(\frac{1}{f}\right)^*$  are equal. Accordingly,



Example 2.3

 $p_0 \in dom\left(\frac{1}{f}\right)^*$  belongs to  $\mathbb{R}^*_+ dom\left(-f\right)^*$  "generically", i.e. at the exception of some "boundary-situations" such as that described above.

In view of the formulas (3) and (4) on  $(\frac{1}{f})^*(p)$ , on may ask the following questions:

- Could we delineate those p for which the infimum in (4) is achieved for some  $\alpha > 0$ ? - If so, is there any way of determining such  $\alpha$  in terms of the given p?

Before tackling these questions, it is worthwile to consider the next simple examples in order to grasp what can be expected and what not.

**Example 2.3.** Let C = [-1, +1] and

$$f: x \in \mathbb{R} \longmapsto f(x) := \begin{cases} 2 - |x| & \text{if } x \in C, \\ -\infty & \text{otherwise.} \end{cases}$$

Then,  $(-f)^*$  and  $(\frac{1}{f})^*$  are even functions with:

$$(-f)^*(p) = \begin{cases} 2 & \text{if } 0 \le p \le 1, \\ p+1 & \text{if } p \ge 1; \end{cases}$$
$$(\frac{1}{f})^*(p) = \begin{cases} -1/2 & \text{if } 0 \le p \le 1/4, \\ 2(p-\sqrt{p}) & \text{if } 1/4 \le p \le 1, \\ p-1 & \text{if } p \ge 1. \end{cases}$$

Let, for instance,  $\frac{1}{4} \leq p_0 \leq 1$ . The minimum value in the right-hand side of the formula

$$(\frac{1}{f})^*(p_0) = \min\left\{ \left[ \alpha(-f)^*(\frac{p_0}{\alpha}) - 2\sqrt{\alpha} \right]_{\alpha > 0}, \ p_0 \right\}$$

is achieved for  $\alpha_0 = p_0$ .

**Example 2.4.** Let  $C = [0, +\infty)$  and

$$f: x \in \mathbb{R} \longmapsto f(x) := \begin{cases} 2 - e^{-x} & \text{if } x \ge 0, \\ -\infty & \text{otherwise.} \end{cases}$$



Example 2.4

Then, an easy calculation leads to

$$(-f)^{*}(p) = \begin{cases} 1 & \text{if } p \leq -1, \\ -p \log(-p) + p + 2 & \text{if } -1 \leq p \leq 0, \\ +\infty & \text{if } p \geq 0; \end{cases}$$

while the explicit expression of  $(\frac{1}{f})^*(p)$  is fairly complicated (see however the Figure above for a sketch of its graph). Let  $p_0 = 0$ . Then the minimum value in the right-hand side of the formula

$$\left(\frac{1}{f}\right)^*(0) = \min\left\{\left[2\alpha - 2\sqrt{\alpha}\right]_{\alpha>0}, 0\right\}$$

is achieved for  $\alpha_0 = \frac{1}{4}$ .

This is a general rule. Suppose  $M := \sup_{x \in C} f(x) < +\infty$  (as it is the case in Example 2.3 and the present one). Then the minimum value in the right-hand side of the formula expressing  $(\frac{1}{f})^*(0)$  is achieved at  $\alpha_0 = \frac{1}{M^2}$ ; the corresponding value is  $-\frac{1}{M}$ , as expected.

**Example 2.5.** Let  $C = [0, +\infty)$  and

$$f: x \in \mathbb{R} \longmapsto f(x) := \begin{cases} x+1 & \text{if } x \ge 0, \\ -\infty & \text{otherwise.} \end{cases}$$

Then

$$(-f)^{*}(p) = \begin{cases} 1 & \text{if } p \leq -1, \\ +\infty & \text{if } p > -1; \end{cases}$$
$$(\frac{1}{f})^{*}(p) = \begin{cases} -1 & \text{if } p \leq -1, \\ -p - 2\sqrt{-p} & \text{if } -1 \leq p \leq 0, \\ +\infty & \text{if } p > 0. \end{cases}$$



Example 2.5

Let  $p_0 = 0$ . Here  $p_0 \in dom\left(\frac{1}{f}\right)^*$  but  $p_0 \notin \mathbb{R}^*_+ dom\left(-f\right)^*$ . This is an example where

$$\alpha(-f)^*(\frac{p_0}{\alpha}) - 2\sqrt{\alpha} = +\infty \text{ for all } \alpha > 0,$$

whence the minimum value in the formula (3) yielding  $(\frac{1}{f})^*(p_0)$  is achieved "at the limit  $\alpha_0 = 0$ " and has the value  $\sigma_{\mathbf{C}}(p_0) = 0$ .

To answer the questions posed as an introduction to the examples listed above, we need to explore furthermore the relationship between  $dom \left(\frac{1}{f}\right)^*$  and  $dom \left(-f\right)^*$  by establishing a link between the subdifferential of  $\frac{1}{f}$  that of -f. The connecting formula, as expected, is the one given in the statement below.

**Proposition 2.6.** For all  $x \in C$ ,

$$\partial(\frac{1}{f})(x) = \frac{\partial(-f)(x)}{[f(x)]^2}.$$
(7)

**Proof.** We proceed to compare the directional derivates  $(\frac{1}{f})'(x,d)$  and (-f)'(x,d) for all  $d \in X$ . **First case:**  $x + td \notin C$  for all t > 0.

In that case, both  $(\frac{1}{f})'(x,d)$  and (f)'(x,d) equal  $+\infty$ .

Second case:  $x + \overline{t}d \in C$  for som  $\overline{t} > 0$ .

Thus, the line-segment  $[x, x + \bar{t}d]$  is entirely contained in C; therefore it comes from the assumption made on f (an upper-semicontinuous concave function) that the function (of

the real variable)  $t \mapsto f(x + td)$  is continuous on  $[0, \bar{t}]$ . We infer from that,

$$\frac{\frac{1}{f(x+td)} - \frac{1}{f(x)}}{t} = \frac{\frac{(-f)(x+td) - (-f)(x)}{t}}{\frac{f(x+td)f(x)}{f(x+td)f(x)}}$$
$$\longrightarrow_{t \to 0^+} \frac{1}{[f(x)]^2} \lim_{t \to 0^+} \frac{(-f)(x+td) - (-f)(x)}{t},$$

whence

$$\left(\frac{1}{f}\right)'(x,d) = \frac{(-f)'(x,d)}{[f(x)]^2}.$$
(8)

In summary, the equality (8) holds for all  $d \in X$ . Since we have for any convex function  $\varphi$  on X

$$\partial \varphi(x) = \left\{ p \in X^* \mid \langle p, d \rangle \le \varphi'(x, d) \text{ for all } d \in X \right\},\$$

the announced relationship (7) readily follows from (8).

Not all the p in  $dom(\frac{1}{f})^*$  are in  $Im \partial(\frac{1}{f})$ ; however we have

$$Im \,\partial(\frac{1}{f}) \subset dom \,(\frac{1}{f})^* \subset \overline{Im \,\partial(\frac{1}{f})} \tag{9}$$

(the second inclusion follows from the approximation theorem of Brøndsted-Rockafellar (1965)). For those p which are in  $Im \partial(\frac{1}{f})$ , we are able to provide  $\alpha > 0$  at which the infimum is achieved in the formula (4).

**Theorem 2.7.** Let 
$$p_0 \in Im \,\partial(\frac{1}{f})$$
, and consider  $x_0$  such that  $p_0 \in \partial(\frac{1}{f})(x_0)$ . Then,  
 $(\frac{1}{f})^*(p_0) = \frac{(-f)^* \{[f(x_0)]^2 p_0\}}{[f(x_0)]^2} - \frac{2}{f(x_0)}.$  (10)

In other words: we are in a situation where  $p_0$  belongs to the convex cone  $\mathbf{R}^*_+ dom (-f)^*$ , and the minimizer in the right-hand side of (4) is  $\alpha_0 = \frac{1}{[f(x_0)]^2}$ .

**Proof.** We have  $p_0 \in \partial(\frac{1}{f})(x_0)$  and, according to (7),  $[f(x_0)]^2 p_0 \in \partial(-f)(x_0)$ . Using the characterization of the subdifferential of  $\varphi$  in terms of its conjugate  $(s_0 \in \partial \varphi(x_0))$  if and only if  $\varphi^*(s_0) + \varphi(x_0) - \langle s_0, x_0 \rangle = 0$ , we have:

$$(-f)^* \left\{ [f(x_0)]^2 p_0 \right\} - f(x_0) + \left\langle [f(x_0)]^2 p_0, x_0 \right\rangle = 0, \tag{11}$$

$$\left(\frac{1}{f}\right)^*(p_0) + \frac{1}{f(x_0)} - \langle p_0, x_0 \rangle = 0.$$
(12)

### 78 J.-B. Hiriart-Urruty / Conjugating the Inverse of a Concave Function

Dividing (11) by  $[f(x_0)]^2$  and comparing the resulting equality to (12), we derive (10). When  $p_0 \in Im \partial(\frac{1}{f})$ , we clearly are in a situation where  $p_0 \in \mathbf{R}^*_+ dom (-f)^*$  since (according to (7))  $p_0 \in \mathbf{R}^*_+ Im \partial(-f) \subset \mathbf{R}^*_+ dom (-f)^*$ . Then the (strictly) convex function

$$\alpha > 0 \longmapsto \alpha (-f)^* (\frac{p_0}{\alpha}) - 2\sqrt{\alpha}$$

is minimized at  $\alpha_0 = \frac{1}{[f(x_0)]^2}$ .

**Remarks 2.8.** – Even if  $p_0 \notin Im \partial(\frac{1}{f})$ , it may happen that the infimum in the righthand side of (4) is achieved at some  $\alpha_0 > 0$ , but such  $\alpha_0$  is not necessarily  $\frac{1}{[f(x_0)]^2}$  for some  $x_0 \in C$ . Indeed, consider again Example 2.4 and  $p_0 = 0$ . We note that

$$p_0 \notin Im \,\partial(\frac{1}{f}), \, p_0 \in \mathbf{R}^*_+ dom \,(-f)^*,$$
$$(\frac{1}{f})^*(p_0) = \inf_{\alpha>0} \left[\alpha(-f)^*(\frac{p_0}{\alpha}) - 2\sqrt{\alpha}\right]$$
$$= \left[\alpha(-f)^*(\frac{p_0}{\alpha_0}) - 2\sqrt{\alpha_0}\right] \text{ for } \alpha_0 = \frac{1}{4}$$

but there is no  $x_0 \in C$  such that  $\frac{1}{4} = \frac{1}{[f(x_0)]^2}$  (such an  $x_0$  is "rejected at the infinity on C").

– We have :

$$\overline{\operatorname{dom}\left(\frac{1}{f}\right)^{*}} = \overline{\operatorname{Im}\partial(\frac{1}{f})}, \quad \overline{\operatorname{dom}\left(-f\right)^{*}} = \overline{\operatorname{Im}\partial(-f)}$$
(13)

(see the comments about (9));

$$\mathbf{R}_{+}^{*} Im \,\partial(-f) = \mathbf{R}_{+}^{*} Im \,\partial(\frac{1}{f}) \tag{14}$$

,

(this results from (7)).

Combining (13) and (14) gives rise to the following relationship between  $dom\left(\frac{1}{f}\right)^*$  and  $dom\left(-f\right)^*$ :

$$\overline{\mathbf{R}_{+}^{*}dom\left(\frac{1}{f}\right)^{*}} = \overline{\mathbf{R}_{+}^{*}dom\left(-f\right)^{*}}.$$
(15)

- There are several possible situations where  $Im \partial(\frac{1}{f}) = dom(\frac{1}{f})^*$ ; one of them is when X is *reflexive* and C is bounded. Indeed, in that case,  $(\frac{1}{f})^*$  is continuous throughout  $X^*$ 

and  $Im \partial(\frac{1}{f}) = dom(\frac{1}{f})^* = X^*$  ([4], Corollary 7G); thus formula (10) holds true at any  $p_0 \in X^*$ .

The expression (10) for  $(\frac{1}{f})^*(p)$ , more comfortable and easier to handle than (3) (provided one can solve the equation  $p \in \partial(\frac{1}{f})(x)$ ), would then allow us to pursue further the study of possible relations between the mathematical objects (from the viewpoint of convex analysis) associated with the convex functions -f and  $\frac{1}{f}$ .

#### References

- [1] I. Ekeland, R. Temam: Convex Analysis and Variational Problems, North Holland (1976); reprinted by SIAM (1999).
- [2] J.-B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis and Minimization Algorithms, Grundlehren der Mathematischen Wissenschaften 305-306, Springer, Berlin (1993) (two volumes).
- [3] J.-B. Hiriart-Urruty, J. E. Martínez-Legaz: New formulas for the Legendre-Fenchel transform, J. Math. Anal. Appl. 288(2) (2003) 544–555.
- [4] R. T. Rockafellar: Level sets and continuity of conjugate convex functions, Trans. Amer. Math. Soc. 123 (1966) 46–63.
- [5] M. Volle: A formula on the conjugate of the max of a convex function and a concave function, J. Math. Anal. Appl. 220 (1998) 313–321.