Journal of Convex Analysis
Volume 12 (2005), No. 1, 71-79

Conjugating the Inverse of a Concave Function

J.-B. Hiriart-Urruty

Université Paul Sabatier,
118, route de Narbonne, 81062 Toulouse Cedex 4, France
jbhu@cict. fr

Dedicated to C. Lemaréchal on the occasion of his 6018 birthday.

Received July 17, 2003

1
This note is devoted to the clarification of the relationship between the Legendre-Fenchel conjugate of —

f

and that of —f when f is a positive concave function.
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1. Introduction

The Legendre-Fenchel conjugate (or transform) of a function f : X — RU {400} is a
function defined on the topological dual space X* of X as

p€ X+ f*(p):= sup [(p,z) — f(z)]. (1)

In convex analysis the conjugacy operation f ~~ f* plays a central role, therefore a large
body of calculus rules have been developed for it; they can be found in any book on the
subject. There however are some particular calculus rules which have been considered
only recently, see for example [5, 3]. The present note is devoted to clarifying the calculus

1
rule giving the conjugate of ? in terms of that —f when f turns out to be a positive

concave function. At first glance this situation can be viewed as a particular instance
of a general calculus rule concerning a convex function post-composed with an increas-
ing convex function ([2], Section 2.5 in chapter X): z —— (—f)(z) post-composed with

0>yr— —— . We nevertheless provide a self-contained proof, insisting on the distinctive

)
features of the resulting formula.

1
2. The conjugate of ?

The context of our work is the following one:

e X is a (real) Banach space; by X* we denote the topological dual space of X, and
(p,z) € X* x X — (p, x) stands for the duality pairing.
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e f: X — RU({—o0} is a concave upper-semicontinuous (or closed) function, strictly
positive on C := {z € X | f(z) > —oo} (assumed nonempty).

If we formulate this assumption in a way more familiar to practitioners of convex analysis
or optimization, this gives: —f : X — R U {+o0} is a convexr lower-semicontinuous (or
closed) function, strictly negative on dom (—f) = C.

If C' turns out to be the whole of X, then f is constant on X, so that this situation is
not of much interest. In applications, C' happens to be a bounded (convex) set of X, on
which f is strictly positive.

The assumptions listed above are in force throughout the paper.

1
The inverse function of f , denoted as ?, is defined on X as follows:

1
—— ifzxeC

<}><x> ={ 7@ 2)

+00  otherwise.

1
A classical and easily proved result is that — is now convexr on X, with domain C'.

S

1
The theorem below gives the expression of (=)* in terms of that of (—f)*.

Theorem 2.1. For all p € X*,

Lo — mi (P
(50 = min{ [a(-) () ~ 2
where oo denotes the support function of C. If p belongs to the cone generated by
dom (—f)* (i.e. if p € Ri.dom (—f)*), then

oc)}. 3)

a>0

(30 = inf [a(=f)"(5)—2val. (4)

f a>0 o

Proof. We mimic here the proof devised in [2] (p. 69 of Volume II). By definition,

o= m [ ] = |- - 00)
= ) W <] 6
(hecause r — —% is increasing on (=00, 0)).

Let us define

ifz e X and r <0,

1
fi:(z,r) e X xR— fi(z,r) = —(p,z) — .
+00 otherwise;
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fa = lepi(—yp) (indicator function of the epigraph of —f).

Thus, (5) can be written as

_( )*(p>: inf [f1<l’,7’)+f2($,7”)}.

1
f (z,r)eX xR

We then have to compute the conjugate of a sum of functions, however in a favorable
context since int(dom f;) = X x (—o00,0) and dom fy = epi(—f) overlap. According to
the classical Fenchel duality theorem

)'(p) = min  [fi(=s,a)+ f3(s, )] (6)

(s,0)EX* xR
The computation of the above two conjugate functions is easy and gives:

fi(=s,a) = —2y/a if s = p and a > 0, +00 otherwise;
a(—f)*(ﬁ) if >0,
. a
f3(s,—a) = oepi—p) (s, —a) = oc(s) it a =0,
400 if a <0.
Plugging these results into (6) yields (3).
Observe that the function

a(—f)*(g) —2/a ifa>0,
oc(p) ifa=0,
+00 if a <0

a€R+— O(a) =

is convex and lower-semicontinuous; its value at 0, that is o¢(p), is the limit of O(«) when
a € dom® — 07,

If p belongs to R* dom (—f)*, the domain of © cannot reduce to {0}, whence

min O(a) = inf O(a),

a>0 a>0
that is to say (4). O

1
Remarks 2.2. — It may happen that py € dom(?)* but po ¢ Ridom (—f)* . In that

case, (4) is invalid and the minimal value in (3) is achieved “at the limit oy = 0", thus

1
(=)"(po) = oc(po). See Example 2.5 below for an illustration of such a situation.

f

1
— According to formula (3), dom (?)* contains R dom (—f)*. We will see later on that

1
the closed (convex) cones generated by dom (—f)* and dom (=) are equal. Accordingly,
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il y

-1 0|1 1
-1/2——-/
f(x) F)*(p) @)*(p)
Example 2.3

1
Do € dom(?)* belongs to R*%dom (—f)* “generically”, i.e. at the exception of some

“boundary-situations” such as that described above.

1
In view of the formulas (3) and (4) on (?)*(p), on may ask the following questions:

— Could we delineate those p for which the infimum in (4) is achieved for some o > 07
— If so, is there any way of determining such « in terms of the given p ?

Before tackling these questions, it is worthwile to consider the next simple examples in
order to grasp what can be expected and what not.

Example 2.3. Let C' = [—1,+1] and

f:x€R|—>f(x);:{ 2—z| ifreC,

—00 otherwise.
L., : .
Then, (—f)* and (=)* are even functions with:
sy _ )2 f0<p<1,
. —1/2 if0<p<1/4,
(77 ) =4 2 —vp) Hl/isps<l,
p—1 if p>1.

1
Let, for instance, 1 < po < 1. The minimum value in the right-hand side of the formula

L, : «(Po
()" (o) = min {[a(~ )" () ~ 2/aleco, o}

is achieved for ay = py.

Example 2.4. Let C' = [0, +00) and

2—e® ifx>0,
—00 otherwise.

ﬂxERﬁﬁfmrz{
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2 2
147 -1 0
f(x) f)*(p) (17%)*(p)
Example 2.4
Then, an easy calculation leads to
1 if p < —1,
(=f)(p)=q —plog(=p)+p+2 if —1<p<0,

+00 if p>0;

1
while the explicit expression of (?)*(p) is fairly complicated (see however the Figure above

for a sketch of its graph). Let pg = 0. Then the minimum value in the right-hand side of
the formula

(2)*(0) = min { 20— 2], _, 0}

1
/
. . 1
is achieved for ag = T

This is a general rule. Suppose M :=sup _ . f(z) < +oo (as it is the case in Example

ec
2.3 and the present one). Then the minimum value in the right-hand side of the formula

1 1 1
expressing (—)*(0) is achieved at oy = e the corresponding value is —p expected.

f
Example 2.5. Let C' = [0, +00) and

. Jx+1 if x>0,
frzeRr— f(z):= { —oo  otherwise.
Then

o= {1l B

) —1 ifp < —1,
(?)*(p) =q —p—2y=p if —1<p<O0,
+00 if p>0.
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!

() t)*(p) (1/76)*(p)

1 0 1
Example 2.5

1
Let po = 0. Here py € dom (?)* but py ¢ R%dom (—f)*. This is an example where
a(—f)*(22) = 2y/a = +00 for all & > 0,
a

1
whence the minimum value in the formula (3) yielding (?)*(po) is achieved “at the limit

ap = 07 and has the value oc(pg) = 0.

To answer the questions posed as an introduction to the examples listed above, we need

1
to explore furthermore the relationship between dom (?)* and dom (—f)* by establishing

1
a link between the subdifferential of ? that of —f. The connecting formula, as expected,

is the one given in the statement below.

Proposition 2.6. For all z € C,

1 ’ ’
Proof. We proceed to compare the directional derivates (?) (x,d) and (—f) (x,d) for all
de X.
First case: z+td ¢ C for all t > 0.

1 / !/
In that case, both (?) (x,d) and (f) (x,d) equal +o0.

Second case: z +td € C for som t > 0.

Thus, the line-segment [x,x + td] is entirely contained in C'; therefore it comes from the
assumption made on f (an upper-semicontinuous concave function) that the function (of
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the real variable) ¢t — f(x + td) is continuous on [0,¢]. We infer from that,

L 1 (—fHa+td)— ()
fla+td) fl@) _ t
t flz+td) f(z)
Lo (SN +td) = (=)(@)
=0t [f()]2 =0+ t ’
whence
Lo o G (@.d)
P D= )

In summary, the equality (8) holds for all d € X. Since we have for any convex function
pon X

Jo(z) = {p e X*| (p,d) < ¢ (x,d) for all d € X} :

the announced relationship (7) readily follows from (8). O

1 1
Not all the p in dom (})* are in I'm 0(=); however we have

f

Im@(%) C dom (%)* c Im a(%) ()

(the second inclusion follows from the approximation theorem of Brgndsted-Rockafellar
1
(1965)). For those p which are in Im 6(?), we are able to provide o > 0 at which the

infimum is achieved in the formula (4).
1 1
Theorem 2.7. Let py € Im 8(?), and consider xq such that py € 3(?)(:100). Then,

1 (=) {lf (@) Ppo} 2

(?)*(po) = 7 (ro) o)

(10)

In other words: we are in a situation where py belongs to the convex cone R .dom (—f)*,
1

[f (zo)]*

and the minimizer in the right-hand side of (4) is o =

1
S
characterization of the subdifferential of ¢ in terms of its conjugate (s € dp(zo) if and
only if ¢*(s9) + ¢(z0) — (S0, z0) = 0), we have:

Proof. We have py € (= )(x¢) and, according to (7), [f(z0)]*po € (—f)(xo). Using the

(=) {[f(@0)po} — f(x0) + ([f(20)]*po, x0) = 0, (11)
1., 1 B
(?) (po) + T (po, wo) = 0. (12)
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Dividing (11) by [f(z0)]* and comparing the resulting equality to (12), we derive (10).

1
When py € Ima(?

cording to (7)) po € RiImO(—f) C Ri.dom (—f)* . Then the (strictly) convex function

), we clearly are in a situation where p; € R’ dom (—f)* since (ac-

a>0— a(—f) () —2va

a
s minimized at 1 =
is minimized at ag = :
T o)
1
Remarks 2.8. — Even if py ¢ Im 8(?), it may happen that the infimum in the right-
1
hand side of (4) is achieved at some ag > 0, but such ag is not necessarily W for
Lo
some xg € C'. Indeed, consider again Example 2.4 and py = 0. We note that
1 * *
Po ¢ ]m@(?), po € R dom (—f),
L. : (P
(2)"(po) = inf [a(=f)"(=2) —2V/a]
f a>0 a
1
= [a(=)"(22) — 2y/aq] for ap = 7,
(67} 4
1
but there is no xy € C such that 1= Tl (such an z¢ is “rejected at the infinity on
Zo
C”)‘
— We have :
1 1
dom (?)* =1Im 8(?), dom (—f)* = Ima(—f) (13)
(see the comments about (9));
* * 1
RYImo(—f) :R+Im8(?) (14)

(this results from (7)).

1
Combining (13) and (14) gives rise to the following relationship between dom (?)* and
dom (—f)*:

R’ dom (%)* = Ridom (—f)*. (15)

— There are several possible situations where Im d(—) = dom (—)*; one of them is when

f f

1
X is reflexive and C' is bounded. Indeed, in that case, (—)* is continuous throughout X*
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1 1
?) = dom (=) = X* ([4], Corollary 7G); thus formula (10) holds true at any

and I'm O( 7

po € X*.
1
The expression (10) for (?)*(p), more comfortable and easier to handle than (3) (provided

1
one can solve the equation p € 8(?)(95)), would then allow us to pursue further the study
of possible relations between the mathematical objects (from the viewpoint of convex

analysis) associated with the convex functions —f and —.

f
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