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We make use of VU-space decomposition theory to connect three minimization-oriented objects. These ob-
jects are U-Lagrangians obtained from minimizing a function over V-space, proximal points depending on
minimization over IRn = U ⊕V, and epi-derivatives determined by lower limits associated with epigraphs.
We relate second-order epi-derivatives of a function to the Hessian of its associated U-Lagrangian. We also
show that the function’s proximal points are on a trajectory determined by certain V-space minimizers.
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1. Introduction and motivation

In his seminal work from 1980 [17, Section 5.5.3 Information du second ordre ], C. Lémare-
chal addressed the question of defining generalized second-order objects for functions
lacking second-order derivatives:

Existe-t-il une géneralisation adéquate de la notion de Hessien?. . .Cette question
est la plus passionnante qui se pose actuellement, et une réponse satisfaisante
marquerait probablement pour longtemps une étape décisive dans les recherches
fondamentales en programmation mathématique.1

Indeed, the need for defining second-order objects for lower semicontinuous (lsc) functions
appears both for theoretical and algorithmic reasons. An important theoretical example
is given by “second-orderÔ optimality conditions, such as in [3], [13], [14], [41]. As for
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basic research in mathematical programming.”
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algorithmic reasons, they are essentially related to the extension of Newton-like methods
for minimization of functions that are not continuously differentiable, [20], [1], [37], [5],
[8], [36], [24], [30], [2], [22], [38].

Second-order Nonsmooth Analysis is a vast and complex subject. Without going into
details, we mention here that, depending on the choice of tangent cone and/or convergence
notion, it is possible to define B-derivatives [39]; proto-derivatives [40], epi-derivatives;
pseudo-derivatives [4], [7]; second-order sub-derivatives, [16]; graphical derivatives; sub-
Hessians, [33]; as well as other second-order objects. Chapter 13 in [42] gives an exhaustive
presentation and unification of these (many) concepts.

In this paper, we focus on another approach, that was suggested early on in [18] and
[23]. Consider the graph of a convex function f , near a point x̄ ∈ IRn. Two distinctively
different situations, calling for different techniques, may appear:

– Either graph f is a smooth curve, which for n = 1 means it is U -shaped (here, a
Newton method, employing successive quadratic models for f is suitable)

– Or graph f is “sharpÔ, which for n = 1 gives a V -shaped graph (here, a cutting-plane
method, using successive piecewise-linear models for f is preferable).

As a result, it seems reasonable to look for second-order derivatives only where f is not
“sharpÔ, i.e., only on the U -subspace, perpendicular to the V-subspace, a subspace that
is parallel to the subdifferential of f at x̄. This is the basis for the so-called U -Lagrangian
theory, introduced in [21] and formalized in [19] for convex functions. Later on, in [12], [28],
and [29], VU -space decomposition theory was extended to certain nonconvex functions.
In particular, [12] develops the quadratic sub-Lagrangian (cf. (5) below) as an extension
of the U -Lagrangian to prox-regular functions ([35]) that are prox-bounded.

For our development we consider trajectories χ(u) parameterized by u ∈ U which are given
by the quadratic sub-Lagrangian. These trajectories converge to x̄ and are tangent to U
there. When the sub-Lagrangian has a Hessian at 0 ∈ U (i.e., when f has a “U -HessianÔ),
f has second-order epi-derivatives which agree with the sub-Lagrangian Hessian on U .
Furthermore, those trajectories that are C2 give a second order expansion for f(χ(u)).
We also show that, near a minimizer, the proximal mapping sends points onto a particular
trajectory. This is an important result, because it is known that a bundle mechanism can
approximate proximal points with any desired accuracy; see [6], [15].

Our paper is organized as follows: Section 2 reviews Variational Analysis, VU -theory
and U - and sub- Lagrangian definitions and results. Section 3, with our main results, is
divided into two parts. In Subsection 3.1 we give the tangency property of a trajectory, the
second-order expansion for its corresponding sub-Lagrangian, and show that the second-
order epi-derivative of f and the U -Hessian are equivalent second-order objects. Finally,
in Subsection 3.2 we give the connection between proximal points and a special trajectory
that we call a proximal-track.

2. Basic definitions and previous results

Here we recall from previous work important concepts and relations that we use in our
development. We start with some basic Variational Analysis definitions. Then we review
some elements of VU -space decomposition and U -Lagrangian theory from [19], as well as
results for quadratic sub-Lagrangians from [12].
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Our notation essentially follows that of [42] and [32]. In particular, from [32], given a
sequence of vectors {zk} converging to 0,

– ζk = o(|zk|) ⇐⇒ ∀ε > 0 ∃kε > 0 such that |ζk| ≤ ε|zk| for all k ≥ kε.

– ζk = O(|zk|) ⇐⇒ ∃C > 0 such that |ζk| ≤ C|zk| for all k ≥ 1.

2.1. Some notions from Variational Analysis

For a set C ⊂ IRn and a point x ∈ C:

– A vector v is normal to C at x if there are sequences xν →C x and vν → v such that
〈vν , z − xν〉 ≤ o(|z − xν |) for all z ∈ C.

– A set C is said to be Clarke regular at x ∈ C when C is locally closed at x and each
normal vector v satisfies 〈v, z − x〉 ≤ o(|z − x|) for all z ∈ C.

Let f : IRn → IR be an lsc function, so that its epigraph, denoted and defined by epi f :=
{(x, β) ∈ IRn × IR : β ≥ f(x)}, is a closed set in IRn+1. Take x̄ ∈ IRn where f is
finite-valued.

– We use the Mordukhovich subdifferential ([31]) denoted by ∂f(x̄) in [42]; see p. 301
and Definition 8.3 therein.

– The function f is said to be subdifferentially regular at x̄ if epi f is a Clarke regular
set at (x̄, f(x̄)); see [42, Definition 7.25, p. 260]. For such a function, the set ∂f(x̄)
is convex.

– The function f is said to be prox-regular at x̄ for a subgradient ḡ ∈ ∂f(x̄) (with
parameter ρ) if there exists ρ > 0 such that

f(x′) ≥ f(x) + 〈g, x′ − x〉 − ρ

2
|x′ − x|2

whenever x and x′ are near x̄ with f(x) near f(x̄) and g ∈ ∂f(x) near ḡ.
When this property holds for all subgradients in ∂f(x̄), the function is said to be
prox-regular at x̄; see [35], [42, Definition 13.27, p. 610]. Moreover, in this case it
can be shown that f is subdifferentially regular at x̄, [9].

Convex functions are both subdifferentially regular and prox-regular, and in this case ∂f
is the subdifferential from Convex Analysis. Lower C2 and strongly amenable functions
are also prox-regular; see [42, p. 613 and 612].

The epigraphical convergence theory developed in [42, Chapter 7] includes the following
useful characterization of epi-limits:

– Let {qν} be a sequence of functions on IRn, and let w be any point in IRn. The value
q(w) is the epi-limit of the sequence qν at w if and only if

{

liminfν q
ν(wν) ≥ q(w) for every sequence wν → w ,

limsupν q
ν(wν) ≤ q(w) for some sequence wν → w .

For a function h : IRn → IR and point x̄ with h(x̄) finite we consider the second-order

difference quotient: h(x̄+τ ·)−h(x̄)−τ〈y,·〉
1
2 τ

2 for τ > 0 and y ∈ IRn.

– The second subderivative of h at x̄ relative to y in the direction w is denoted and
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defined by

d2h(x̄|y)(w) := liminf
τ↘0 ,w′→w

h(x̄+ τw′)− h(x̄)− τ 〈y, w′〉
1
2
τ 2

.

When the second-order difference quotient has an epi-limit at w as τ ↘ 0 then
d2h(x̄|y)(w) is this limit and it is then called the second epi-derivative of h at x̄
relative to y in the direction w.

2.2. VU-space decomposition

For a function f at a point x̄ ∈ IRn where f is finite, let g be any subgradient in ∂f(x̄).
Then, letting linY denote the linear hull of a given set Y , the orthogonal subspaces

V := lin(∂f(x̄)− g) and U := V⊥ (1)

define the VU -space decomposition at x̄ of [19, §2]. We use the compact notation ⊕ for
such decomposition, and write IRn = U ⊕ V, as well as

IRn 3 x = xU ⊕ xV ∈ U × V .

From (1), the relative interior of ∂f(x̄), denoted by ri∂f(x̄), is the interior of ∂f(x̄) relative
to its affine hull, a manifold that is parallel to V (cf. [19, Definition 2.1 and Proposition
2.2]). Accordingly,

ḡ ∈ ri∂f(x̄) =⇒ ḡ +
(

B(0, η) ∩ V
)

⊂ ∂f(x̄) for some η > 0, (2)

where B(0, η) denotes a ball in IRn centered at 0, with radius η.

Throughout the following we assume that dim U ≥ 1 and dimV ≥ 1.

2.3. U-Lagrangians for convex functions

Suppose f is a convex function on IRn. Given a subgradient ḡ ∈ ∂f(x̄) with V-component
ḡV , the U -Lagrangian of f , depending on ḡV , is defined by

U 3 u 7→ LU(u; ḡV) := inf
v∈V

{

f(x̄+ u⊕ v)− 〈ḡV , v〉V
}

, (3)

where 〈·, ·〉V(U) denotes a scalar product induced in the subspace V(U), and similarly
for the norms. When the infimum in (3) is attained, the set of corresponding V-space
minimizers is defined by

W (u; ḡV) :=
{

v ∈ V : LU(u; ḡV) = f(x̄+ u⊕ v)− 〈ḡV , v〉V
}

.

When W (u; ḡV) is nonempty, the associated U -Lagrangian is a convex function that is
differentiable at u = 0 with

∇LU(0; ḡV) = ḡU = gU for all g ∈ ∂f(x̄). (4)

Finally, when ḡ ∈ ri∂f(x̄), W (u; ḡV) is nonempty with W (0; ḡV) = {0} and each w(u) ∈
W (u; ḡV) being o(|u|U), see [19, Corollary 3.5]. In Lemma 3.1 below we extend this result
to prox-regular functions, via the quadratic sub-Lagrangian from [12], which is the subject
of our next subsection.
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2.4. Quadratic sub-Lagrangians for prox-regular functions

Suppose f is a function that is finite at x̄. Given a subgradient ḡ ∈ ∂f(x̄) with V-
component ḡV , the quadratic sub-Lagrangian of f , depending on a positive parameter R,
is defined by

U 3 u 7→ ΦR(u; ḡV) := inf
v∈V

{

f(x̄+ u⊕ v)− 〈ḡV , v〉V +
R

2
|v|2V

}

. (5)

In Lemma 2.1 below we give conditions for the corresponding set of V-space minimizers

WR(u; ḡV) :=

{

v ∈ V : ΦR(u; ḡV) = f(x̄+ u⊕ v)− 〈ḡV , v〉V +
R

2
|v|2V

}

(6)

to be nonempty.

The envelope function ΦR extends many properties of the U -Lagrangian to certain non-
convex functions f . The following lemma states some of these properties, that are relevant
for our development.

Lemma 2.1. Suppose that f is subdifferentially regular x̄ ∈ IRn and prox-regular there
for ḡ ∈ ∂f(x̄) with parameter ρ > 0, and that

∀x ∈ IRn f(x) ≥ f(x̄) + 〈ḡ, x− x̄〉 − ρ

2
|x− x̄|2. (7)

Then for any R ≥ ρ, the function ΦR(·; ḡV) is well defined with ΦR(0; ḡV) = f(x̄). Fur-
thermore, the following hold for any R > ρ:

(i) ΦR(·; ḡV) is strictly continuous and strictly differentiable at 0 (see Definitions 9.1
and 9.17 in [42]), with ∇ΦR(0; ḡV) = ḡU .

(ii) WR(u; ḡV) is nonempty for all u near 0, WR(0; ḡV) = {0}, and WR(·; ḡV) is outer
semicontinuous at 0.

Proof. Condition A in [12, p. 1120] gathers together our assumptions. The facts that
ΦR(·; ḡV) is well defined and WR(0; ḡV) = {0} come from Theorem 5 in [12]. Item (i) is
part of Theorem 14 in [12]. Nonemptiness and outer semicontinuity of WR(·; ḡV) follow,
respectively, from Proposition 6 in [12] and the continuity in item (i) combined with
Theorem 7 in [12].

Condition (7) above is a strong form of prox-boundedness for f , see [42, Definition 1.23, p.
20]. This property is required for the proximal point mapping of a prox-regular function
to be single valued; see Lemma 3.4 below.

Finally, we mention that for the case of convex functions, quadratic sub-Lagrangians can
be traced back to the function φV in [21, 3.2], which corresponds to ΦR with R = 1 in the
notation of this paper. Later on, in [19, Section 5], the same function was shown to agree
up to second order with LU . More precisely, Lemma 5.1 in [19] (whose proof holds using
R instead of 1 to define φV) gives the following relation: If f is convex and ḡ ∈ ri∂f(x̄)
then

∀ε > 0 ∃δ > 0 : |u|U ≤ δ =⇒ |ΦR(u; ḡV)− LU(u; ḡV)| ≤ ε|u|2U ; (8)
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In particular, from (4), this means that ∇ΦR(0; ḡV) = ḡU , an equality which is consistent
with item (i) in Lemma 2.1. Also, if LU(·; ḡV) has a Hessian at 0, then ΦR(·; ḡV) has the
same one; see Remark 3.3 below.

3. Main results

The results presented so far show how VU decomposition theory provides a set of smooth-
ness for f , via the envelope functions LU and ΦR. Because of relation (4) and its left hand
equality analog for ΦR in Lemma 2.1(i), the gradient ḡU is called the U-gradient of f at
x̄. Similarly, whenever the Hessian ∇2ΦR(0; ḡV) exists, we call it a U-Hessian for f at x̄
relative to ḡ and R.

We now show how the quadratic sub-Lagrangian captures a function’s second-order epi-
differential behavior with respect to U via ordinary second derivatives.

3.1. U-Hessians give 2nd-order epi-derivatives

We start by showing U -tangency properties of trajectories of the form χ(u) := x̄+u⊕v(u),
where v(u) is a V-space minimizer defining a sub-Lagrangian corresponding to a particular
subgradient at x̄. A similar result can be found in [9, Chapter 4].

Lemma 3.1. Suppose that f is subdifferentially regular x̄ ∈ IRn and prox-regular there
for ḡ ∈ ∂f(x̄) with parameter ρ > 0, and that (7) holds. Also, suppose that ḡ ∈ ri∂f(x̄)
and for R > ρ consider a V-space minimizer function v(u) ∈ WR(u; ḡV) from (6). Then
the following hold for all u small enough:

(i) v(u) → 0 as u → 0.

(ii) If, in addition, ΦR(·; ḡV) has a Hessian at 0, then v(u) = O(|u|2U) and

f(x̄+ u⊕ v(u)) = f(x̄) + 〈ḡ, u⊕ v(u)〉+ 1

2
〈u,Hu〉U + o(|u|2U), (9)

where H := ∇2ΦR(0; ḡV).

Proof. The first assertion is straightforward from item (ii) in Lemma 2.1, since it implies
that v(u) → WR(0; ḡV) = 0 as u → 0.
To see (ii), use Lemma 2.1 to write the following second-order expansion for ΦR(·; ḡV):

ΦR(u; ḡV) = ΦR(0; ḡV) + 〈∇ΦR(0; ḡV), u〉U +
1

2
〈u,Hu〉U + o(|u|2U)

= f(x̄) + 〈ḡU , u〉U +
1

2
〈u,Hu〉U + o(|u|2U).

Together with the fact that, by (6),

ΦR(u; ḡV) = f(x̄+ u⊕ v(u))− 〈ḡV , v(u)〉V +
R

2
|v(u)|2V ,

we obtain that

f(x̄+ u⊕ v(u)) = f(x̄) + 〈ḡ, u⊕ v(u)〉 − R

2
|v(u)|2V +

1

2
〈u,Hu〉U + o(|u|2U). (10)
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From (2) we have that for η > 0 sufficiently small

γ := ḡ +

(

0⊕ ηv(u)

|v(u)|V

)

∈ ∂f(x̄),

which, by prox-regularity (with η sufficiently small to have γ near enough to ḡ), implies
that

f(x′) ≥ f(x̄) + 〈γ, x′ − x̄〉 − ρ

2
|x′ − x̄|2

for all x′ close x̄ such that f(x′) is close to f(x̄). In particular, for x′ = x̄+ u⊕ v(u) (10)
and item (i) imply that f(x′) → f(x̄) as u → 0, so

f(x̄+ u⊕ v(u)) ≥ f(x̄) +

〈

ḡ +

(

0⊕ ηv(u)

|v(u)|V

)

, u⊕ v(u)

〉

− ρ

2
|u⊕ v(u)|2

= f(x̄) + 〈ḡ, u⊕ v(u)〉+ η|v(u)|V − ρ

2

(

|u|2U + |v(u)|2V
)

.

Together with (10), the last inequality gives, after rearrangement of terms,

1

2
〈u,Hu〉U +

ρ

2
|u|2U + o(|u|2U) ≥ η|v(u)|V +

R− ρ

2
|v(u)|2V ,

which implies that v(u) = O(|u|2U). Then the desired result (9) follows from (10).

In the epigraphical setting, the second-order epi-derivative provides a second-order ap-
proximation in the sense of closeness of the epigraphs of the second-order difference quo-
tient function and d2f(x̄|y)(·); see [34]. In contrast, a quadratic sub-Lagrangian ΦR(u; ḡV)
can provide a second-order approximation with respect to u in the classical sense, of local
uniform convergence.

We now establish a relation between these second-order objects.

Theorem 3.2. Suppose that f is subdifferentially regular at x̄ ∈ IRn and prox-regular
there for ḡ ∈ ∂f(x̄) with parameter ρ > 0, and that (7) holds. Also, suppose that ḡ ∈
ri∂f(x̄) and for R > ρ the sub-Lagrangian ΦR(·; ḡV) has a Hessian at 0. Then the second-
order epi-derivative of f at x̄ relative to ḡ for each w ∈ U is given by

d2f(x̄|ḡ)(w) =
〈

w,∇2ΦR(0; ḡV)w
〉

U .

Proof. For convenience, we let H := ∇2ΦR(0; ḡV) and χ(u) := x̄ + u ⊕ v(u), where
v(u) ∈ WR(u; ḡV). Then for all v ∈ V

ΦR(u; ḡV) = f(χ(u))− 〈ḡV , v(u)〉V +
R

2
|v(u)|2V ≤ f(x̄+ u⊕ v)− 〈ḡV , v〉V +

R

2
|v|2V .

Subtracting f(x̄) + 〈ḡU , u〉U from both sides of the inequality above gives

f(χ(u))−f(x̄)−〈ḡ, χ(u)−x̄〉+R

2
|v(u)|2V ≤f(x̄+u⊕ v)−f(x̄)−〈ḡ, u⊕ v〉+R

2
|v|2V . (11)

Then, since the left hand side above involves ΦR(u; ḡV), which can be expanded up to
second order as in (9) of Lemma 3.1(ii), we obtain that for all u ∈ U small enough and
all v ∈ V

1

2
〈u,Hu〉U + o(|u|2U) ≤ f(x̄+ u⊕ v)− f(x̄)− 〈ḡ, u⊕ v〉+ R

2
|v|2V . (12)
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Suppose w ∈ U so that w = wU ⊕ 0. Take any sequence (w′, τ) with w′ → w and τ ↘ 0,
and let u′ := w′

U . Then
w′ = w′

U ⊕ w′
V = u′ ⊕ w′

V

and
x̄+ τw′ = x̄+ τ

(

u′ ⊕ w′
V

)

= x̄+
(

τu′
)

⊕
(

τw′
V

)

.

From (12) with u = τu′ ∈ U , τ small enough and v = τw′
V ∈ V we obtain

1

2
〈τu′, Hτu′〉U + o(|τu′|2U) ≤ f(x̄+ τw′)− f(x̄)− τ 〈ḡ, w′〉+ R

2
|τw′

V |2V . (13)

Dividing both sides of this inequality by 1
2
τ 2 yields

〈u′, Hu′〉U +
o(τ 2|u′|2)

1
2
τ 2

≤ f(x̄+ τw′)− f(x̄)− τ 〈ḡ, w′〉
1
2
τ 2

+R|w′
V |2V .

Note that since w′ → w ∈ U , w′
V → 0, and the definition of u′ implies that u′ → wU .

Hence, passing to the limit as w′ → w and τ ↘ 0 and using the fact that w = wU ⊕ 0
gives the following inequality involving the second subderivative:

〈w,Hw〉U ≤ d2f(x̄|ḡ)(w).
To show that the left hand side is an epi-limit for w ∈ U we reexamine the above proof
concentrating on the left hand sides of the inequalities. Given w ∈ U we define a sequence
wτ

e converging to w as follows: Let uτ be any sequence such that uτ → wU as τ ↘ 0 and
let

wτ
e := uτ ⊕ 1

τ
v(τuτ ) which implies x̄+ τwτ

e = χ(τuτ ).

From Lemma 3.1(ii) we have
v(τuτ ) = O(|τuτ |2U), (14)

so 1
τ
v(τuτ ) → 0 with τ and, hence, wτ

e → wU ⊕ 0 = w.
Furthermore, since x̄+ τwτ

e = χ(τuτ ), the left hand side in (11) with u = τuτ , divided by
1
2
τ 2, can be written as

[

f(x̄+ τwτ
e )− f(x̄)− τ 〈ḡ, wτ

e 〉
1
2
τ 2

]

+
R
2
|v(τuτ )|2V

1
2
τ 2

.

By the above argument, as τ ↘ 0 this two term expression converges to 〈w,Hw〉U . Its
second term converges to zero by (14). Therefore, its first term converges to 〈w,Hw〉U
and the proof is complete.

Similar expressions are given in [27] for convex finite max functions and in [28] for more
general “pdg-structuredÔ functions. In addition, the first reference gives second order
epi-derivatives for three specific examples while the second gives them for an example
that is not prox-regular, cf. [11, Section 7].

Remark 3.3. Suppose in the statements of Lemma 3.1 and Theorem 3.2 we replace the
first sentence by the assumption that f is convex on IRn and replace WR, ΦR, R, and ρ
by W , LU , 0, and 0, respectively. Then we can conclude that if LU(·, ḡV) has a Hessian
at 0 for some ḡ ∈ ri∂f(x̄) then for all w ∈ U

d2f(x̄|ḡ)(w) =
〈

w,∇2LU(0; ḡV)w
〉

U ,

using in the proofs the ΦR-like properties of LU from Subsection 2.3.
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3.2. Proximal points correspond to V-space minimizers

The following Lemma, extracted from [42, Proposition 13.37, p. 617], gives basic proper-
ties of the proximal point mapping for a prox-regular function; see also [35]. It depends
on condition (7), that implies prox-boundedness.

Lemma 3.4. Suppose that f is prox-regular at x̄ ∈ IRn for ḡ = 0 ∈ ∂f(x̄) with parameter
ρ > 0 and that (7) holds. Then for each µ > 0 sufficiently large there is a neighborhood
of x̄ on which the proximal point mapping

pµ(x) := argminw

{

f(w) +
µ

2
|w − x|2

}

is well defined, single valued and Lipschitz continuous. In addition,

gµ(x) := µ (x− pµ(x)) ∈ ∂f(pµ(x)) and pµ(x̄) = x̄.

We now relate the proximal point mapping to a very particular trajectory x̄+ u⊕ v∂f(u),
where the V-space minimizer function v∂f(u) is the same for all relative interior subgra-
dients at x̄.

Theorem 3.5. Suppose that f is prox-regular at x̄ ∈ IRn with parameter ρ > 0 and that
(7) holds for all ḡ ∈ ri∂f(x̄). In addition, suppose 0 ∈ ri∂f(x̄) and for some R > ρ there
is a function v∂f : U → V such that, for all u small enough, v∂f(u) ∈ WR(u; ḡV) for all
ḡ ∈ ri∂f(x̄). Then, for all µ > 0 sufficiently large and x close enough to x̄,

pµ(x) = x̄+ πU(x)⊕ v∂f

(

πU(x)
)

where πU(x) := (pµ(x)− x̄)U .

Proof. For x close enough to x̄, we write its proximal point using VU coordinates, as
follows:

pµ(x) = x̄+ πU(x)⊕ πV(x) where πU(x) := (pµ(x)− x̄)U and πV(x) := (pµ(x)− x̄)V .

By Lemma 3.4, as x → x̄, x − pµ(x) → x̄ − pµ(x̄) = 0, and likewise, for the components
πU(x) and πV(x). Since πU(x) → 0, by Lemma 3.1(i), for any relative interior ḡ, any
v ∈ WR(πU(x); ḡV) converges to 0. In particular, v∂f

(

πU(x)
)

→ 0. As a result, the function
γV : IRn → V defined by

γV(x) := µ(x̄− x)V +

(

R− µ

2

)

(

v∂f

(

πU(x)
)

+ πV(x)
)

converges to 0 as x → x̄. From (2) written with ḡ = 0 ∈ ri∂f(x̄), we obtain that

γ := 0⊕ γV(x) ∈ ∂f(x̄) for x close enough to x̄

(in fact, γ ∈ ri∂f(x̄), by definition of relative interior). Thus, by Lemma 2.1, the function
ΦR(·; γV(x)) corresponding to the subgradient γ is well defined. In particular, at u = πU(x),
using (6) and letting χ(πU) := x̄+ πU(x)⊕ v∂f

(

πU(x)
)

,

ΦR

(

πU(x); γV(x)
)

= f(χ(πU(x)))−
〈

γV(x),v∂f

(

πU(x)
)〉

V +
R

2
|v∂f

(

πU(x)
)

|2V .
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Since πV(x) ∈ V, definition (5) of the sub-Lagrangian implies that

ΦR

(

πU(x); γV(x)
)

≤ f(x̄+ πU(x)⊕ πV(x))− 〈γV(x), πV(x)〉V +
R

2
|πV(x)|2V .

As a result,

f(χ(πU(x)))−
〈

γV(x),v∂f

(

πU(x)
)〉

V +
R

2
|v∂f

(

πU(x)
)

|2V

≤ f(pµ(x))− 〈γV(x), πV(x)〉V +
R

2
|πV(x)|2V . (15)

By the definition of the proximal point mapping in Lemma 3.4,

f(pµ(x)) +
µ

2
|pµ(x)− x|2 ≤ f(χ(πU(x))) +

µ

2
|χ(πU(x))− x|2. (16)

Combining the two inequalities above yields, after rearrangement of terms,

R

2
|v∂f

(

πU(x)
)

|2V ≤ µ

2

(

|χ(πU(x))− x|2 − |pµ(x)− x|2
)

+
〈

γV(x),v∂f

(

πU(x)
)

− πV(x)
〉

V (17)

+
R

2
|πV(x)|2V .

We now show that the inequality above is in fact an equality. To abbreviate notation, we
drop the argument “(x)Ô in πU(x), pµ(x), v∂f

(

πU(x)
)

, πV(x), and γV(x), and write instead
πU , pµ, v∂f(πU), πV , and γV . First we expand the difference of squares factor in (17) and
use the fact that χ(πU) and pµ have the same U -component:

|χ(πU)− x|2 − |pµ − x|2 = 〈χ(πU)− pµ, χ(πU) + pµ − 2x〉

=
〈

v∂f(πU)− πV ,
(

χ(πU) + pµ − 2x
)

V

〉

V

= 〈v∂f(πU)− πV ,v∂f(πU) + πV − 2(x− x̄)V〉V
= |v∂f(πU)|2V − |πV |2V + 2 〈v∂f(πU)− πV , (x− x̄)V〉V .

Then

µ

2

(

|χ(πU)− x|2 − |pµ − x|2
)

=
µ

2

(

|v∂f(πU)|2V − |πV |2V
)

− 〈v∂f(πU)− πV , µ(x̄− x)V〉V .

Now we use the definition of γV to write the second right hand side term in (17) as follows:

〈γV ,v∂f(πU)− πV〉V =

〈

µ(x̄− x)V +
R− µ

2

(

v∂f(πU) + πV

)

,v∂f(πU)− πV

〉

V

= 〈µ(x̄− x)V ,v∂f(πU)− πV〉V +
R− µ

2

(

|v∂f(πU)|2V − |πV |2V
)

Using these expressions in the right hand side in (17), we obtain that (17) holds with
equality. Since the (in)equality in (17) cannot be strict, we deduce that neither the
inequality in (15) nor the one in (16) can be strictly satisfied. In particular, since pµ(x)
is unique, from (16) we obtain that pµ(x) = χ(πU(x)), i.e., that πV(x) = v∂f

(

πU(x)
)

.
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Trajectories obtained using the special function v∂f(·) are called fast tracks in [26] when-
ever v∂f(·) and LU(·; 0) are C2 functions. The proximal-track result in Theorem 3.5,
obtained without requiring a second order assumption on ΦR, is similar to the fast track
results in [26, Theorem 5.2] for f convex and in [29, Theorem 9] for f having a strongly
transversal pdg-structure. Another related result can be found in [10], where it is shown
that, for a convex function f , fast tracks, partly smooth functions, and identifiable sur-
faces are equivalent concepts. It should be noted, however, that the proximal-track in
Theorem 3.5 above may not be “fastÔ unless ΦR(·; 0) and v∂f(·) have continuous Hessians.
These are desirable VU -smoothness conditions that are important for rapid convergence
of minimization algorithms.

Remark 3.6. If in Theorem 3.5 we replace the first sentence by the assumption that f
is convex on IRn, delete ρ, and replace R, WR, and ΦR by 0, W , and LU , respectively
(which are well defined objects for all subgradients ḡ ∈ ri∂f(x̄)), we can use its proof to
obtain the same result for the proximal-track of a convex function.

Remark 3.7. In the nonconvex case ∂f(x̄) can be unbounded and making assumptions
for all ḡ ∈ ri∂f(x̄) may be somewhat strong. We could weaken the assumptions of
Theorem 3.5 as follows:

Suppose that f is prox-regular at x̄ ∈ IRn with parameter ρ > 0 and that (7)
holds for all ḡ ∈ ri∂f(x̄) near 0 ∈ ∂f(x̄). In addition, suppose 0 ∈ ri∂f(x̄),
and for some R > ρ, v∂f(u) ∈ WR(u; ḡV) for all ḡ ∈ ri∂f(x̄) near 0.

Then use the fact that the subgradient γ in the proof is near enough to 0 for x close
enough to x̄ to obtain the proximal-track result.

Acknowledgements. We thank W. Hare for beneficial comments, including a suggestion for

improvement of the statement of Theorem 3.5.
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[26] R. Mifflin, C. Sagastizábal: Proximal points are on the fast track, J. Convex Analysis 9(2)
(2002) 563–579.
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