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In this paper we extend the standard bundle proximal method for finding the minimum of a convex not
necessarily differentiable function on the nonnegative orthant. The strategy consists in approximating the
objective function by a piecewise linear convex function and using distance–like functions based on second
order homogeneous kernels. First we prove the convergence of this new bundle interior proximal method
under the same assumptions as for the standard bundle method and then we report some preliminary
numerical experiences for a particular distance function.

1. Introduction

In this paper we consider the convex minimization problem

(P)

{

minimize f(x)
subject to x ∈ X,

(1)

where f : IRp → IR ∪ {+∞} is a closed proper convex function and X is a closed convex
subset of IRp (see, e.g., [7] and [14] for all the definitions concerning Convex Analysis).
When X = IRp, a very well-known method, called the proximal method, has been intro-
duced by Martinet [12] and Rockafellar [15]. This method generates a sequence {xk} via
the scheme

xk+1 = arg min{f(x) + 1

2λk

‖x− xk‖2 : x ∈ IRp}, (2)

where {λk} is a sequence of positive numbers. Applied to the dual of a convex mathe-
matical programming problem, this method gives rise to the classical multiplier method.
When X 6= IRp, several authors have proposed to replace the quadratic term ‖x − xk‖2
in (2) by another distance between x and xk. The aim is that the new unconstrained
minimization problem (2) yields automatically a feasible solution. This avoids to solving
constrained subproblems. Among the distances recently proposed in the literature, let
us mention two classes of distances. The first class is based on Bregman functions (see,
e.g., Burachik and Iusem [5] and Kiwiel [9]) and the second class on logarithmic–entropy
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functions (see, e.g., Auslender and Haddou [1], Ben–Tal and Zibulesky [4] and Tseng and
Bertsekas [16] and the references therein). When X = IRp

+ = {x ∈ IRp
+ : x ≥ 0}, a

distance-like function corresponding to the second class has the form

dϕ(x, y) =

p
∑

j=1

yj ϕ

(

xj

yj

)

, (3)

where x = (x1, ..., xp) ∈ IRp
+, y = (y1, ..., yp) ∈ IRp

++ and ϕ is a strictly convex function.
With this distance, the scheme (2) becomes

xk+1 = arg min{f(x) + 1

λk

dϕ(x, x
k) : x ∈ IRp

+}. (4)

Moreover, by choosing ϕ in an appropriate class of functions, all the iterates xk belong to
IRp

++ = {x ∈ IRp : x > 0}. Hence the name Ôinterior proximal methodÔ. However, when
applied within the dual framework, the corresponding primal sequence can be shown to
converge only in an ergodic sense to an optimal solution of the primal problem. The same
difficulties are encountered with methods based on Bregman functions (see Kiwiel [9] for
more details). To avoid these drawbacks, Auslender, Teboulle and Ben-Tiba [2], proposed
to modify the distance–function (3) as follows

dϕ(x, y) =

p
∑

j=1

yj
2ϕ

(

xj

yj

)

. (5)

They proved the global convergence of the corresponding scheme (4) - (5) and although
they also consider inexact versions of this scheme, their algorithms remain conceptual. In
a remark ([2], Remark 2.1), they suggest to extend a bundle type algorithm as developed
for the classical proximal algorithm (see, e.g., Correa and Lemaréchal [6]) to the class of
interior proximal methods. Motivated by this remark, we propose in this paper a new
approximate interior proximal method to make implementable the scheme (4) - (5). We
prove the convergence of the new algorithm and we examine its behavior on some test–
functions. Let us mention that such an extension has already been done in [10] but for
the distance–like functions based on Bregman functions.

The paper is organized as follows: in Section 2, we define the class of functions ϕ we
will use in our approximate interior proximal method and we display its main properties.
Then we briefly recall the convergence results obtained in [2] for the interior proximal
method. In Section 3 we present our bundle proximal method for solving a constrained
convex minimization problem. The nonsmooth convex function is approximated by a
piecewise linear convex function and conditions on this approximation are given to ensure
the convergence of the method. Finally in the last section, we examine how to implement
the method and we report some preliminary numerical experiences using the Matlab
environment. For a very comprehensive survey on the standard proximal bundle methods,
we refer the reader to the book by Hiriart–Urruty and Lemaréchal ([7]).

2. Interior Proximal Method

Let f : IRp → IR ∪ {+∞} be a closed proper convex function such that IRp
+ ⊆ int dom f .

The problem is to find the minimum of f on IRp
+. For solving this problem, we use the
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proximal–like scheme defined by (4) where {λk} is a sequence of positive real numbers and
dϕ(x, y) is the distance–function (5) based on a function ϕ. In order to define it properly,
we first consider a class of functions denoted by Φ. This class Φ contains all the closed,
proper and convex functions ϕ : IR → IR ∪ {+∞} that satisfy the following properties:

(i) dom ϕ ⊆ [0,+∞);

(ii) ϕ is twice continuously differentiable on int(domϕ) = (0,+∞);

(iii) ϕ is strictly convex on its domain;

(iv) lim
t→0+

ϕ′(t) = −∞;

(v) ϕ(1) = ϕ′(1) = 0 and ϕ′′(1) > 0.

Let ϕ ∈ Φ. Then the distance dϕ is defined by

dϕ(x, y) =

p
∑

j=1

yj
2ϕ

(

xj

yj

)

∀x, y ∈ IRp
++.

It is easy to see that the function dϕ has the following basic properties:

• dϕ is an homogeneous function of order 2, i.e.,
dϕ(αx, αy) = α2 dϕ(x, y), ∀α > 0, ∀x, y ∈ IRp

++

• dϕ(x, y) ≥ 0, ∀x, y ∈ IRp
++

• dϕ(x, y) = 0 if and only if x = y.

The function ϕ being differentiable and convex on (0,+∞), the function dϕ(·, y) is differ-
entiable and convex on IRp

++ for any y ∈ IRp
++. Hence xk is a minimum of the function

f + dϕ(·, xk−1) if and only if

0 ∈ ∂f(xk) +
1

λk

Ψ(xk, xk−1),

where ∂f denotes the subdifferential of f and

Ψ(a, b) =

(

b1 ϕ′
(

a1
b1

)

, b2 ϕ′
(

a2
b2

)

, ..., bp ϕ′
(

ap
bp

))

∀a, b ∈ IRp
++. (6)

With these definitions, the basic iteration scheme (BIS) introduced by Auslender and al.
for finding the minimum of f on IRp

+ can be expressed as

Given ϕ ∈ Φ, x0 ∈ IRp
++, εk ≥ 0, λk > 0, generate the sequences {xk} ⊆ IRp

++ and {gk}
satisfying

gk ∈ ∂εkf(x
k) and λkg

k +Ψ(xk, xk−1) = 0, (7)

where ∂εkf(x
k) denotes the εk–subdifferential of f at xk.

From (7), we have that

0 ∈ ∂εkf(x
k) +

1

λk

Ψ(xk, xk−1).

This means that xk is an εk–minimum of the function f + dϕ(·, xk−1).
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Our aim is to present a bundle version of this algorithm and to study its convergence. In
that purpose, we need to introduce a subclass of Φ defined by

Φ0 = {h ∈ Φ : h′′(1)(1− 1

t
) ≤ h′(t) ≤ h′′(1)(t− 1),∀t > 0}, (8)

and to consider a specific choice for the functions ϕ we will use, namely,

ϕ(t) := µh(t) +
ν

2
(t− 1)2, (9)

where µ > 0, ν > 0 and h ∈ Φ0.
The kernel h is used to enforce the iterates to stay in the interior of the nonnegative orthant
while the quadratic term (t−1)2 gives rise to the usual term used in ÔregularizationÔ (see,
e.g., [13]). It is easy to see that the following functions belong to Φ0:

h1(t) = t log t− t+ 1, domh1 = [ 0,+∞);

h2(t) = − log t+ t− 1, domh2 = (0,+∞);

h3(t) = 2(
√
t− 1)2, domh3 = [0,+∞).

When the functions ϕ are defined by (9) with h ∈ Φ0 and ν ≥ µh′′(1) > 0, Auslender
and al. ([2], Theorem 3.2) proved that the sequence {xk} generated by the BIS algorithm
converges to a minimum of f on IRp

+ provided that
∑

λk = +∞ and
∑

λkεk < +∞.

3. Bundle Interior Proximal Method

Let f : IRp → IR be a convex function. Since f can be nondifferentiable, we observe
that finding xk+1 by using (4) is often as difficult as finding the minimum of f over IRp

+.
So the strategy to get an implementable algorithm, is to approximate f at iteration k
by a simpler convex function in such a way that the resulting problem is easy to solve.
The same strategy has been used for the classical proximal method. First we recall the
corresponding algorithm for the sake of completeness.

Approximate Proximal Algorithm

Let σ ∈ (0, 1) be a tolerance and {λk}k∈IN be a sequence of positive numbers. Choose a
starting point x0 and set y0 = x0, k = 0 and i = 1.

Step 1. Choose a convex function ̂f i : IRp → IR and solve the problem

(SPi) min{ ̂f i(y) +
1

2λk

‖y − xk‖2}

to get the unique optimal solution yi as well as the aggregate subgradient

γi =
1

λk

(xk − yi) ∈ ∂ ̂f i(yi).

Step 2. Compute f(yi). If f(xk) − f(yi) ≥ σ[f(xk) − ̂f i(yi)], then set xk+1 = yi and
increase k by 1.
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Step 3. Increase i by 1 and go to Step 1.

If we consider (4) instead of (2), this algorithm becomes

Approximate Interior Proximal Method

Let σ ∈ (0, 1) be a tolerance and {λk}k∈IN be a sequence of positive numbers. Choose a
starting point x0 ∈ IRp

++ and set y0 = x0, k = 0 and i = 1.

Step 1. Choose a convex function ̂f i : IRp → IR, ̂f i ≤ f . Solve

{

minimize ̂f i(y) + 1
λk
dϕ(y, x

k)

subject to y ∈ IRp
++

to get yi ∈ IRp
++ as well as the aggregate subgradient

γi = − 1

λk

Ψ(yi, xk) ∈ ∂ ̂f i(yi).

Step 2. Compute f(yi). If f(xk) − f(yi) ≥ σ[f(xk) − ̂f i(yi)], then set xk+1 = yi and
increase k by 1.

Step 3. Increase i by 1 and go to Step 1.

When the reduction on f is sufficient, i.e., when f(xk) − f(yi) ≥ σ[f(xk) − ̂f i(yi)], we

say that a serious step is done; otherwise, the step is called a null step and a new ̂f i+1

is chosen to improve the approximation ̂f i of f . The way to choose the approximate
functions ̂f i is crucial to get an implementable algorithm. So, for instance, if ̂f i has the
following form

̂f i(y) = max
1≤j≤m

{aTj y + bj}, ∀y ∈ IRp,

then the subproblem in Step 1 is equivalent to the linearly constrained problem

{

minimize v + 1
λk
dϕ(y, x

k)

subject to aTj y + bj ≤ v, j = 1, . . . ,m.

We will discuss the way for solving this problem in the next section.

In order to give rules for choosing ̂f i, we need to define the function

li : IRp → IR li(y) = ̂f i(yi) + 〈γi, y − yi〉 ∀y ∈ IRp.

This function satisfies li ≤ ̂f i. Indeed, since γi ∈ ∂ ̂f i(yi), we have, for all y, that

̂f i(y) ≥ ̂f i(yi) + 〈γi, y − yi〉 = li(y).

As usual in the bundle methods, we impose the following assumption on the function f :
(A) At each x ∈ IRp, one subgradient of f at x can be computed (this subgradient is
denoted by s(x) in the sequel).
This assumption is realistic because computing the whole subdifferential is often very
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expensive or impossible while obtaining one subgradient is often easy. This situation
occurs, for instance, if the function f is the dual function associated with a mathematical
programming problem.

Now to obtain the convergence of the bundle method, we impose the following conditions
on the sequence { ̂f i},
(A1) ̂f i ≤ f for all i = 1, 2, . . .
(A2) If the ith iteration gives rise to a null–step, then

(i) li ≤ ̂f i+1,

(ii) f(yi) + 〈s(yi), · − yi〉 ≤ ̂f i+1,

where s(yi) denotes the subgradient of f available at yi. These conditions have already
been used in [6] for the standard proximal method.

Here are some examples of functions ̂f i satisfying conditions (A1) and (A2). In the first
example, we suppose that all the subgradients collected at the previous iterates are kept
in mind. So, for i = 0, 1, . . . , we define

̂f i+1(y) = max{ f(yj) + 〈s(yj), y − yj〉 | j = 0, . . . , i }.

Conditions (A1) and (A2)(ii) are obviously satisfied by ̂f i+1. Moreover, since li ≤ ̂f i ≤
̂f i+1, condition (A2)(i) is also satisfied. In the second example, we only keep the function
li and the latest subgradient s(yi) to have

̂f i+1(y) = max {li(y), f(yi) + 〈s(yi), y − yi〉}. (10)

Conditions (A1) and (A2) are obviously satisfied.

Remark 3.1. Observe that the reduction predicted by the model ̂f i, namely f(xk) −
̂f i(yi) is nonnegative. Indeed, since f ≥ ̂f i and γi ∈ ∂ ̂f i(yi), we have

f(xk)− ̂f i(yi) ≥ ̂f i(xk)− ̂f i(yi) ≥ 〈γi, xk − yi〉

= − 1
λk
〈Ψ(yi, xk), xk − yi〉 ≥ 0.

To prove the convergence of the bundle interior proximal method, we also need to intro-
duce the following notations

l̃i(y) = li(y) + λ−1
k dϕ(y, x

k),

f̃ i(y) = ̂f i(y) + λ−1
k dϕ(y, x

k).

Then we have
f̃ i(xk) = ̂f i(xk) and l̃i(yi) = f̃ i(yi). (11)

Indeed, dϕ(x
k, xk) = 0 and

l̃i(yi) = li(yi) + λ−1
k dϕ(y

i, xk) = ̂f i(yi) + λ−1
k dϕ(y

i, xk) = f̃ i(yi).
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Lemma 3.2. There exists β > 0 such that, for all i,

l̃i(y) ≥ l̃i(yi) +
β

2λk

‖y − yi‖2.

Proof. By definition of l̃i, we have

l̃i(y)− l̃i(yi) = li(y) + λ−1
k dϕ(y, x

k)− li(yi)− λ−1
k dϕ(y

i, xk)

= 〈γi, y − yi〉+ λ−1
k [ dϕ(y, x

k)− dϕ(y
i, xk) ].

(12)

Since dϕ(x, x
k) =

p
∑

i=1

(xk
i )

2ϕ(
xi

xk
i

) and ϕ is strongly convex on {t ∈ IR | t > 0}, the function

dϕ is itself strongly convex on IRp
++, i.e., there exists β > 0 such that, for all y ∈ IRp

++,

dϕ(y, x
k)− dϕ(y

i, xk) ≥ 〈Ψ(yi, xk), y − yi〉+ β

2
‖y − yi‖2.

Using this inequality in (12) and noting that Ψ(yi, xk) = −λkγ
i, we obtain

l̃i(y)− l̃i(yi) ≥ β

2λk

‖y − yi‖2.

Proposition 3.3. Suppose that after xk has been obtained in the bundle interior proximal
algorithm, the test of sufficient reduction is suppressed : only null–steps are made. If the
sequence { ̂f i} satisfies conditions (A1) and (A2), then

(1) f(yi)− ̂f i(yi) → 0,

(2) yi → y∗ = argminx>0{f(x) + λ−1
k dϕ(x, x

k)}.

Proof

(1) We use three steps to prove this part.

(i) l̃i(yi) is convergent and yi+1 − yi → 0.
For i = 1, . . . , we have

f(xk) ≥ ̂f i+1(xk) by (A1)

= f̃ i+1(xk) by (11)

≥ f̃ i+1(yi+1) by definition of yi+1

= l̃i+1(yi+1) by (11)

≥ l̃i(yi+1) by (A2)(i)

≥ l̃i(yi) + β
2λk

‖yi+1 − yi‖2 by Lemma 3.2 with y = yi+1.

From these relations, we have for all i,

l̃i(yi) ≤ l̃i+1(yi+1) and l̃i(yi) ≤ f(xk).
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Hence the sequence {l̃i(yi)} is convergent in IR. Moreover, by Lemma 3.2, we have

l̃i+1(yi+1)− l̃i(yi) ≥ β

2λk

‖yi+1 − yi‖2 ≥ 0.

Hence yi+1 − yi → 0.

(ii) The sequence {yi} is bounded.
We have (for y fixed)

f(y) + 1
λk
dϕ(y, x

k) ≥ ̂f i+1(y) + 1
λk
dϕ(y, x

k) by (A1)

= f̃ i+1(y) by definition of f̃ i+1

≥ l̃i(y) by (A2)

≥ l̃i(yi) + β
2λk

‖y − yi‖2 by Lemma 3.2.

Since the sequence {l̃i(yi)} is convergent, it is bounded and thus also the sequences {‖y−
yi‖2} and {yi}.

(iii) f(yi+1)− ̂f i+1(yi+1) → 0.
By definition of s(yi+1), we have

〈s(yi), yi+1 − yi〉 ≤ ̂f i+1(yi+1)− f(yi) ≤ f(yi+1)− f(yi) ≤ 〈s(yi+1), yi+1 − yi〉.

Since the subdifferential ∂f is bounded on bounded subsets of IRp
++ and the sequence {yi}

is bounded, then the sequence {s(yi)} is also bounded. Taking the limit of the opposite
sides of the previous inequalities, we obtain

〈s(yi), yi+1 − yi〉 → 0 and 〈s(yi+1), yi+1 − yi〉 → 0,

and hence
̂f i+1(yi+1)− f(yi) → 0 and f(yi+1)− f(yi) → 0.

So

f(yi+1)− ̂f i+1(yi+1) = f(yi+1)− f(yi) + f(yi)− ̂f i+1(yi+1) → 0.

(2) We also use three steps to prove this part.

(i) Any limit point ȳ of {yi} is such that ȳj > 0, ∀j = 1, . . . , p.
Let {yi}i∈K be a subsequence of {yi} converging to ȳ and suppose, to get a contradiction
that J := { j | ȳj = 0 } is nonempty. By definition of γi, we can write

γi = −λ−1
k Ψ(yi, xk) ∈ ∂ ̂f i(yi).

Then, since f ≥ ̂f i, we have

∀y ∈ IRp f(y) ≥ ̂f i(y) ≥ ̂f i(yi) + 〈γi, y − yi〉,

i.e.,

∀y ∈ IRp f(y) ≥ ̂f i(yi)− λ−1
k 〈Ψ(yi, xk), y − yi〉. (13)
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On the other hand

Ψ(yi, xk) =

(

xk
1ϕ

′
(

yi1
xk
1

)

, ..., xk
jϕ

′
(

yij
xi
j

)

, . . . , xk
pϕ

′
(

yip
xk
p

))

.

Then it is easy to see that for all j ∈ J , we have

yij
xk
j

→ 0+ and ϕ′

(

yij
xk
j

)

→ −∞ (by property (iv) of ϕ) (14)

while, for j 6∈ J , we obtain

ϕ′

(

yij
xk
j

)

→ ϕ′

(

ȳij
xk
j

)

∈ IR. (15)

Choose y = (1, . . . , 1)T . Then, for all i, we deduce from (13) that

f(y) ≥ ̂f i(yi)− f(yi) + f(yi)− λ−1
k

∑

j∈J

xk
jϕ

′

(

yij
xk
j

)

(1− yij)− λ−1
k

∑

j /∈J

xk
jϕ

′

(

yij
xk
j

)

(1− yij).

Taking the limit as i → +∞, using part (1), the continuity of f , (14) and (15), we obtain

f(y) ≥ +∞.

This is impossible, so J is empty.

(ii) Any limit point ȳ of {yi} is a solution of

{

minimize f(x) + λ−1
k dϕ(x, x

k),
subject to x > 0.

Let yi → ȳ, i ∈ K ⊆ IN . By part 2(i), ȳj > 0 for all j = 1, . . . , p. To obtain that ȳ is a
minimum of f + λ−1

k dϕ(·, xk), we have to prove that 0 ∈ ∂f(ȳ) + λ−1
k Ψ(ȳ, xk), i.e.,

∀y ∈ IRp f(y) ≥ f(ȳ)− λ−1
k 〈Ψ(ȳ, xk), y − ȳ〉. (16)

Let then y ∈ IRp. By definition of γi ∈ ∂ ̂f i(yi) and since f ≥ ̂f i, we have

f(y) ≥ ̂f i(y) ≥ ̂f i(yi)− λ−1
k 〈Ψ(yi, xk), y − yi〉,

i.e.,
f(y) ≥ ̂f i(yi)− f(yi) + f(yi)− λ−1

k 〈Ψ(yi, xk), y − yi〉.
Taking the limit as i → +∞, using part (1)(iii), the continuity of f and Ψ(·, xk), we
obtain the required inequality (16).

(iii) yi → y∗ = arg min{f(x) + λ−1
k dϕ(x, x

k)} when i → +∞.

By part 2(ii), any limit point of {yi} is a solution of the problem

{

minimize f(x) + λ−1
k dϕ(x, x

k)
subject to x > 0.
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However, this problem has exactly one solution because dϕ(·, xk) is strongly convex. So,
all the limit points of {yi} coincide and thus the whole sequence {yi} converges to y∗. £

Now we can apply these results to prove the convergence of the bundle interior proximal
method. But first we need a lemma.

Lemma 3.4. If xk = argmin{f(x)+λ−1
k dϕ(x, x

k)/x > 0} then xk is a minimum of f on
IRp

+.

Proof. By optimality of xk, we have

0 ∈ ∂f(xk) + λ−1
k Ψ(xk, xk).

Since Ψ(xk, xk) = 0 by definition of ϕ, we obtain 0 ∈ ∂f(xk) and, since xk > 0, xk is a
minimum of f over IRp

+. £

Theorem 3.5. Let ϕ(t) = µh(t)+(ν/2)(t−1)2, with h ∈ Φ0, µ > 0 and ν ≥ µh′′(1) > 0.
Then in the bundle interior proximal algorithm, there are two possibilities
(1) The index k remains fixed, i.e., only null steps are made from xk. In this case, xk is
a minimum of f on IRp

+.
(2) The index k → +∞. Then

•
+∞
∑

k=1

λk = +∞ =⇒ f(xk) → f̄ := inf
x∈IRp

+

f(x).

• If, in addition, {λk} is bounded, then xk → x∗, minimum of f (if there exists some
minimum).

Proof.
(1) Let ik be the iteration index that has produced xk. Since only null–steps are made
from xk, we have

∀i > ik f(xk)− f(yi) < σ[f(xk)− ̂f i(yi)]. (17)

By Proposition 3.3, we have yi → y∗ ≡ arg min{f(x)+λ−1
k dϕ(x, x

k)} and f(yi)− ̂f i(yi) →
0. Taking the limit in (17), we obtain

f(xk)− f(y∗) ≤ σ[f(xk)− f(y∗)],

because ̂f i(yi) = ̂f i(yi)− f(yi) + f(yi) → f(y∗) and f is continuous. Hence

(1− σ)[f(xk)− f(y∗)] ≤ 0.

Since 1− σ > 0, we have f(xk) ≤ f(y∗), or again by definition of dϕ(., x
k),

f(xk) + λ−1
k dϕ(x

k, xk) = f(xk) ≤ f(y∗) ≤ f(y∗) + λ−1
k dϕ(y

∗, xk).

Since the solution y∗ is unique, we deduce that xk = y∗ and by Lemma 3.4, xk is a
minimum of f on IRp

+.

(2) Denote by i(k) the iteration index where xk is updated. Then we have yi(k) = xk+1.

Let us also define γk ≡ γi(k) ∈ ∂ ̂f i(k)(xk+1). We know that

γk = −λ−1
k Ψ(xk+1, xk).
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With these notations, we prove the following assertions.

a. {f(xk)} is nonincreasing.
Since

f(xk)− f(xk+1) ≥ σ[f(xk)− ̂f i(k)(xk+1)] (18)

and since, by Remark 3.1, the reduction f(xk) − ̂f i(k)(xk+1) predicted by the model is
nonnegative, it follows that {f(xk)} is nonincreasing. In the sequel, we suppose that
{f(xk)} is bounded from below (otherwise f(xk) → −∞ and the proof is finished).

b. γk ∈ ∂εkf(x
k) with

εk = f(xk)− ̂f i(k)(xk+1) + λ−1
k 〈Ψ(xk+1, xk), xk − xk+1〉.

By definition of γk, we observe immediately that

εk = f(xk)− ̂f i(k)(xk+1)− 〈γk, xk − xk+1〉.

Moreover, since f ≥ ̂f i(k) and γk ∈ ∂ ̂f i(k)(xk+1), we have for all y, that

f(y) ≥ ̂f i(k)(y) ≥ ̂f i(k)(xk+1) + 〈γk, y − xk+1〉. (19)

In particular, for y = xk, we obtain that εk ≥ 0. Now, from (19), we also have for all y,
that

f(y) ≥ f(xk) + ̂f i(k)(xk+1)− f(xk) + 〈γk, y − xk〉+ 〈γk, xk − xk+1〉,

i.e., γk ∈ ∂εkf(x
k).

c.
+∞
∑

k=1

{εk − λ−1
k 〈Ψ(xk+1, xk), xk − xk+1〉} < +∞.

By (18) we have

εk = f(xk)− ̂f i(k)(xk+1) + λ−1
k 〈Ψ(xk+1, xk), xk − xk+1〉

≤ σ−1[f(xk)− f(xk+1)] + λ−1
k 〈Ψ(xk+1, xk), xk − xk+1〉.

Thus

n
∑

k=1

{εk − λ−1
k < Ψ(xk+1, xk), xk − xk+1 >} ≤ σ−1

n
∑

k=1

[f(xk)− f(xk+1)]

= σ−1[f(x1)− f(xn+1)].

Since f is bounded from below, then

+∞
∑

k=1

{εk − λ−1
k 〈Ψ(xk+1, xk), xk − xk+1〉} < +∞.

d. f(xk) → f̄ = inf{f(x) |x ≥ 0}.
Since the sequence {f(xk)} is nonincreasing, it converges to some f̄ . Suppose now, to get
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a contradiction, that f̄ > f∗ := infx≥0 f(x). Then there exist y ∈ IRp
+ and δ > 0 such

that, for all k, f(y) + δ < f(xk). Since

εk − λ−1
k 〈Ψ(xk+1, xk), xk − xk+1〉 → 0,

there exists k0 such that, for k ≥ k0,

εk − λ−1
k 〈Ψ(xk+1, xk), xk − xk+1〉 < δ

2
. (20)

Using Lemma 3.4 of [2] with a = xk, b = xk+1 and c = y, we obtain

‖y − xk+1‖2 − ‖y − xk‖2 ≤ −θ〈y − xk+1,Ψ(xk+1, xk)〉

=− θ〈y − xk,Ψ(xk+1, xk)〉 − θ〈xk − xk+1,Ψ(xk+1, xk)〉, (21)

where θ = [(ν + µh′′(1))/2]−1.
By (20), we have immediately

−θ〈xk − xk+1,Ψ(xk+1, xk)〉 < λkθ

(

δ

2
− εk

)

. (22)

On the other hand, by definition of γk = −λ−1
k Ψ(xk+1, xk) ∈ ∂εkf(x

k), and by part b., we
have successively

−θ〈y − xk,Ψ(xk+1, xk)〉 = λkθ〈γk, y − xk〉 (23)

and

f(xk)− δ > f(y) ≥ f(xk) + 〈γk, y − xk〉 − εk. (24)

Combining (23) and (24) yields

−θ〈y − xk,Ψ(xk+1, xk)〉 < λkθ[−δ + εk]. (25)

Finally we obtain, from (21), (22) and (25), that

‖y − xk+1‖2 ≤ ‖y − xk‖2 + λkθ[
δ

2
− εk − δ + εk] = ‖y − xk‖2 − λkθ

δ

2
.

Summing up, we obtain, for all k > k0,

0 ≤ ‖xk − y‖2 ≤ ‖xk0 − y‖2 − δθ

2

k−1
∑

k=k0

λk.

Taking the limit as k → +∞, we have
+∞
∑

k=k0

λk ≤ 2θ−1δ−1‖xk0 − y‖2 < +∞ which contra-

dicts the assumption
+∞
∑

k=1

λk = +∞.

Now suppose that f has a minimum x̄ on IRp
+ and that the sequence {λk} is bounded.
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e. {xk} is bounded.
Using inequality (21) with y = x̄, we obtain

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 − θ〈x̄− xk,Ψ(xk+1, xk)〉 − θ〈xk − xk+1,Ψ(xk+1, xk)〉.

By definition of γk = −λ−1
k Ψ(xk+1, xk) ∈ ∂εkf(x

k), we have

−θ〈x̄− xk,Ψ(xk+1, xk)〉 = λkθ〈γk, x̄− xk〉

≤ λkθ[f(x̄)− f(xk) + εk] ≤ λkθεk.

So
‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 + λkθ[εk − λ−1

k 〈Ψ(xk+1, xk), xk − xk+1〉]. (26)

Since {λk} is bounded (by assumption) and since, by part c., we have

+∞
∑

k=1

λkθ[εk − λ−1
k 〈Ψ(xk+1, xk), xk − xk+1〉] < +∞.

Using Lemma 3.1 of [2], we deduce that the sequence {‖xk − x‖}k is convergent. Thus
{xk} is bounded.

f. Any limit point x∗ of {xk} is a minimum of f on IRp
+ and xk → x∗.

Let xnk → x∗. By continuity of f , we have f(xnk) → f(x∗). By part d., f(xk) → f̄ =
infx≥0 f(x). So f(x

nk) → f̄ and, by the uniqueness of the limit, f(x∗) = f̄ . Since x∗ ∈ IRp
+,

then x∗ is a minimum of f on IRp
+. Using (26) with x∗ instead of x̄, we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + δk,

where
δk = λkθ[εk − λ−1

k 〈Ψ(xk+1, xk), xk − xk+1〉].

Since
+∞
∑

k=1

δk < +∞, it follows from Proposition 1.3 of [6] that the whole sequence {xk}

converges to x∗. £

4. Numerical Results

To obtain that the approximate interior proximal algorithm is implementable, it remains
to explain how to solve the subproblem

{

minimize ̂f i(y) + 1
λk
dϕ(y, x

k)

subject to y ∈ IRp
++.

Since ̂f i(y) = max{f(yj) + 〈s(yj), y− yj〉 | j = 0, . . . , i− 1}, this problem is equivalent to

(SP )k,i







minimize v + 1
λk
dϕ(y, x

k)

subject to v ≥ f(yj) + 〈s(yj), y − yj〉 j = 0, . . . , i− 1
y ∈ IRp

++.
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Observe that if (yi, vi) is a solution of this problem, then

vi = max
0≤j≤i−1

{f(yj) + 〈s(yj), y − yj〉}

so that the stopping criterion for the inner iterations is

f(xk)− f(yi) ≥ σ[f(xk)− vi].

Since ϕ(t) = µh(t) + ν
2
(t − 1)2, the objective function of (SP )k,i is highly nonlinear and

finding the solution of (SP )k,i can be very hard. However, if we observe that

dϕ(y, x
k) =

p
∑

m=1

(xk
m)

2 ϕ

(

ym
xk
m

)

,

then the objective function is separable and one way of solving such a problem is to solve
its dual. Setting zm = ym

xk
m

for all m = 1, . . . , p and z = (zm), problem (SP )k,i can be
expressed as

(MSP )k,i











minimize v +

p
∑

m=1

αmϕ(zm)

subject to 〈sj, z〉 − v ≤ bj j = 0, . . . , i− 1,

where αm = λ−1
k (xk

m)
2, sjm = s(yj)mx

k
m, m = 1, . . . , p and bj = 〈s(yj), yj〉 − f(yj), j =

0, . . . , i− 1. Then the Lagrangian function associated with (MSP )k,i is

L(v, z, λ) = v +

p
∑

m=1

αmϕ(zm) +
i−1
∑

j=0

λj [〈sj, z〉 − v − bj ]

and the dual function

d(λ) = infL(v, z, λ)

=











inf v +

p
∑

m=1

αmϕ(zm) +
i−1
∑

j=0

λj[〈sj, z〉 − v − bj] if
∑

λj = 1,

−∞ otherwise.

So the dual problem is

(D)

{

maximize d(λ)

subject to
∑

λj = 1 λj ≥ 0, j = 0, . . . , i− 1,

where

d(λ) =

p
∑

m=1

dm(λ)−
i−1
∑

j=0

λjbj with dm(λ) = inf
zm

{αmϕ(zm) +
i−1
∑

j=0

λjs
j
mzm}.

Moreover, each function dm is differentiable and

∇d(λ) =

(

p
∑

m=1

sjmz̃m

)

0≤j≤i−1

− b,
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where, for each m, z̃m = argminzm{αmϕ(zm) +
i−1
∑

j=0

λjs
j
mzm}.

Since (D) is a smooth problem whose objective function is easily evaluated, we can use any
classical method for solving it. Let λ∗ be the solution of (D). Then the vector z∗ = (z∗m)
where, for each m,

z∗m = arg min {α∗
mϕ(zm) +

i−1
∑

j=0

λ∗
js

j
mzm}

and the scalar

v∗ = 〈
i−1
∑

j=0

λ∗
js

j, z∗〉 −
i−1
∑

j=0

λ∗
jbj

are solutions of problem (SP )k,i. Indeed by the complementarity conditions

i−1
∑

j=0

λ∗
j [〈sj, z∗〉 − v∗ − bj] = 0,

i.e., since
i−1
∑

j=0

λ∗
j = 1,

v∗ =
i−1
∑

j=0

λ∗
jv

∗ = 〈
i−1
∑

j=0

λ∗
js

j, z∗〉 −
i−1
∑

j=0

λ∗
jbj.

The computational results presented here are obtained by using the MATLAB environ-
ment. The function f used in the tests, is defined on IR10 and is the maximum of five
quadratic functions:

qj(x) = xTCjx− djTx, j = 1, . . . , 5,

where Cj is a 10× 10 symmetric matrix defined by

Cj
ik = exp(

i

k
) cos(ik) sin j, i < k and Cj

ii =
i

n
| sin j | +

∑

i6=k

| Cj
ik |,

and dj is a vector in IR10 whose components are dji = exp(i/k) sin(ij). This function f is
well–known in nonsmooth optimization ([11], Test problem 1: Maxquad, p.151).

The parameters of the method and the function h are chosen as follows: ν = 2, µ = 1,
λk = 0.1 for all k and h(t) = − log t+ t− 1 for all t > 0 so that the function ϕ becomes

ϕ(t) = h(t) + (t− 1)2 = t2 − t− log t ∀t > 0.

The stopping criterion for the outer iterations is ‖xk+1 − xk‖ ≤ ε where ε = 10−3. Two
values for the parameter σ are used in the numerical experiences, σ = 0.1 and σ = 0.05.
The results are reported in Table 1 where for each outer iteration (denoted by k), the
number of subproblems to be solved is mentioned. As in nonsmooth convex optimization,
let us mention that it is possible to limit the size of the bundle, i.e., the number of
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

σ = 1 4 1 3 1 2 3 4 5 5 6 6 10 8 12 9 10 15 12 49

σ = 0.5 3 1 2 1 1 2 2 3 2 4 5 6 7 8 13 8 10 16 26

Table 4.1: The bundle interior proximal method. Number of inner iterations (for σ = 1
and σ = 0.5) for each outer iteration denoted by k.

constraints in the subproblems, by using aggregation ([8]). Although our convergence
theorems allow us to use this technique (see (10)), we have not applied it to illustrate the
behavior of our method given the small size of the test problems.

From this table, we can observe that the number of subproblems per outer iteration is
relatively small. Furthermore, for fixed k, each subproblem is the previous one with an
additional linear inequality constraint. So, these problems can be solved very efficiently
if the solution of a subproblem is the starting point of the next one. We also observe
that the number of subproblems become smaller when the value of the parameter σ is
reduced. The smaller is the value of σ, the faster is the stopping criterion satisfied for
inner iterations. Contrary to the standard proximal methods, the subproblems are no
more quadratic and the way to solve them is crucial for the rate of convergence of the
algorithm. The preliminary results are encouraging but more efforts should be devoted
to design appropriate numerical methods for solving them. This could be the subject of
a future research.
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