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We give direct estimates for the quasiconvex polytopes Q(K) generated by a finite set K ⊂ MN×n. More
precisely, we bound the quasiconvex envelope Q dist(·,K) near a convex exposed face of C(X) which
does not have rank-one connections. Our estimates depend on the weak-(1,1) bounds for certain singular
integral operators and the geometric features of the convex polytope C(K). We show by an example
that our estimate is ‘local’ and independent of the ‘size’ of K, hence it is a better estimate than the
polyconvex hull P (K) which is ‘size’ dependent.

In the variational approach to material microstructure [2, 3, 12], the notion of quasiconvex
hull Q(K) for a compact set K ⊂ MN×n was introduced in [17] to locate the average of
microstructure. Although there are some examples of explicit calculation of quasiconvex
hulls, in general, no methods have been developed to calculate Q(K). Let #(K) be the
number of elements of a finite set K. It is known that if #(K) = 2 or 3, Q(K) = K if
and only if K does not have rank-one connections [2, 18, 4]. When #(K) ≥ 4, this is no
longer the case (see, e.g. [4, 20, 12]) and it is not known how one calculates Q(K) even for
a general four-point set K. It is well-known [2] that if A, B ∈ K and rank(A − B) = 1,
then the line segment [A, B] ⊂ Q(K). There are two extreme cases which indicate that
in general, it is very difficult to calculate Q(K) even for a finite set: (i) if K is contained
in a subspace without rank-one matrices [4], then Q(K) = K; (ii) if all points of K are
rank-one connected, e.g., when N = 1 or n = 1, Q(K) = C(K).

There are various notions of semiconvex hulls forK to bound Q(K) both from outside and
inside. Let Lc(K), R(K) and P (K) be the closed lamination convex hull, the rank-one
convex hull and the polyconvex hull of K respectively [17, 13, 22], then one has

Lc(K) ⊂ R(K) ⊂ Q(K) ⊂ P (K) ⊂ C(K).

However, except C(K) and Lc(K), other semiconvex hulls are also difficult to calculate
even if K is a finite set.

A qualitative result known as the equal hull property was obtained in [22] (also see [7]
for generalizations) which implies that Q(K) = C(K) if and only if Lc(K) = C(K). A
key observation in [22] that motivates the present work is that if Q(K) is not convex,
the ‘non-convexity’ must occur near the boundary ∂C(K). The example of Tartar’s four
point set [20, 4, 12] (see Example 8 below) suggests that to bound the quasiconvex hull
Q(K) from outside with limited information that K is finite and Q(K) is not convex, one
has to bound Q(K) near ∂C(K).
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An interesting feature of quasiconvexity analysis for vector-valued mappings is the fact
that the projection of the gradient on certain subspaces can ‘control’ the whole gradient.
More precisely, suppose E ⊂ MN×n is a subspace without rank-one matrices and let PE⊥

be the orthogonal projection to its orthogonal complement, then [4],

∫

Ω

|PE⊥(Dφ(x))|2dx ≥ c0

∫

Ω

|Dφ(x)|2dx,

for φ ∈ W 1,2
0 (Ω, RN), where c0 > 0 is a constant depending only on E. In this paper we

use the weak-(1,1) version of this inequality to study quasiconvex hull for a finite set. We
call the quasiconvex hull Q(K) of a finite set K ⊂ MN×n a quasiconvex polytope. In
this paper, we give a more quantitative estimate of Q(K) by establishing a lower bound
of the quasiconvex envelope Q dist(X,K) of the distance function near an exposed face
E of C(K) that does not have rank-one connections. Intuitively, suppose dimC(K) = 3
and the exposed face E is one dimensional, then along E we can chip a wedge like slice
off C(K) without touching Q(K) (see Example 9).

From the structure of convex polytopes [5, 14], we see that a k dimensional polytope P is
the convex hull of all of its i-dimensional (exposed) faces (i = 0, 1, . . . , k − 1). Therefore,
if Q(K) 6= C(K) and K is finite, we may claim that there is at least one 1-face (i.e., an
exposed edge) which does not have rank-one connections [22].

Before we state our main results, let us first introduce some notation. We say that two
matrices A, B ∈ MN×n are rank-one connected if rank(A − B) = 1. A set K ⊂ MN×n

has a rank-one connection there are two elements in K which are rank-one connected.

From now on, we denote by K ⊂ MN×n a non-empty finite set with Q(K) 6= C(K).
Let d = dimC(K) be the affine dimension of the convex hull C(K) and we assume that
d > 1 as the case d = 1 is trivial. Let M ⊂ MN×n be the plane containing C(K) with
dimM = d. For a point X ∈ MN×n and a set V ⊂ MN×n, let V −X = {Y −X, Y ∈ V }.
Suppose L ⊂ C(K) is a non-trivial (0 < dimL < d) exposed face of polytope C(K) which
does not have rank-one connections. Let E be the plane that contains K0 = L ∩K with
dim(L) = dim(E). Since it is well-known and easy to check by definition that quasiconvex
hull is translation invariant in the sense Q(K − X) = Q(K) − X, we may assume that
0 ∈ K0 hence E is a linear subspace of MN×n.

Let W be a supporting plane of C(K) such that L = C(K)∩W . Obviously, E ⊂ W ⊂ M ,
hence bothW andM are subspaces and dimW = d−1. We denote by V be the orthogonal
complement of E in W . Denote by e the unit normal vector (a matrix with norm 1) of W
in M pointing to the half-space of M containing C(K). Let F = span[e]⊕ V and define

cos θW = inf

{

e ·X
|PF (X)|

, X ∈ K \ E, PF (X) 6= 0

}

, (1)

where PF is the orthogonal projection from MN×n to F . Since K is finite, we have
cos θW > 0 and

e ·X ≥ cos θW |PF (X)|

for all X ∈ K. The above inequality still hold if X ∈ K and PF (X) = 0 because in this
case X ⊥ e.



K. Zhang / Estimates of Quasiconvex Polytopes in the Calculus of Variations 39

Next we may optimize the angle θW by varying the possible supporting planesW satisfying
W ∩ C(K) = L. Let W be the collection of supporting planes of C(K) such that L =
W ∩ C(K). Then the optimal angle θ0 ∈ (0, π/2) is defined as

cos θ0 = sup{cos θW , W ∈ W}.

Since K is finite and M is a finite dimensional plane, it is easy to see that cos θ0 can be
reached by some W ∗ with W ∗

0 = E ⊕ V ∗ and F ∗ = span[e]⊕ V ∗.

From now on we drop the superscript ∗ and denote by W the optimal supporting plane
and W , F , V the corresponding subspaces given above. Thus we have, for X ∈ K,

e ·X ≥ cos θ0|PF (X)|. (2)

Note that E is the subspace generated by the exposed face L which contains 0. In general,
E itself is not a supporting plane of C(K). In case it is, that is, E = W , we have θ0 = 0,
hence cos θ0 = 1. Also note that θ0 is the angle which makes cos(θ0) the largest among
all θW .

We also need some estimates for certain singular integral operators. Let E ⊂ MN×n be
a subspace without rank-one matrices and let PE⊥ be the orthogonal projection to the
orthogonal complement E⊥ of E. In a joint work with the author, Z. Iqbal [9] established
both the strong-(p, p) and the weak-(1, 1) estimates

‖Du‖Lp(Rn) ≤ C(p, E)‖PE⊥(Du)‖Lp(Rn), 1 < p < ∞, u ∈ W 1,p,

meas({x ∈ Rn, |Du(x)| ≥ λ}) ≤ CE

λ
‖PE⊥(Du)‖L1(Rn), u ∈ W 1,1,

where C(p, E) > 0 and CE are constants.

In this paper we give a more explicit description of the singular integral operator TE

involved in these estimates. Since E does not have rank-one matrices, we have [4]

inf{|PE⊥(a⊗ b)|2, a ∈ RN , b ∈ Rn, |a| = |b| = 1} = µE > 0. (3)

If we let
λE = sup{|PE(a⊗ b)|2, a ∈ RN , b ∈ Rn, |a| = |b| = 1},

then 1− λE = µE > 0.

Theorem 1. Let E ⊂ MN×n be a subspace without rank-one matrices and assume that
dimE = k ≥ 1. Then for every φ ∈ C∞

0 (Rn, RN),

meas({x ∈ Rn, |Dφ(x)| ≥ λ}) ≤ CE

λ

∫

Rn

|PE⊥(Dφ(y))|dy, for all λ > 0, (4)

where CE > 0 is a constant in the form

CE = C(n,N)

(

1 +
1

µ
[n/2]+1
E

)

, (4′)

with C(n,N) > 0 a constant depending only on n, N while [n/2] being the integer part of
n/2.
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Our estimate for CE in (4’) follows from [15, 16]. There might be sharper estimates
than (4’). However, since our approach in this paper uses only exposed faces, even if
sharp estimate exists for CE, it is unlikely that (6) below gives sharp estimates for the
quasiconvex hull.

The weak-(1,1) estimate for projection to a subspace was first used by Müller [11] to
construct a non-convex quasiconvex homogeneous function of degree 1 in M2×2, where
the subspace E⊥ is the anti-conformal subspace [15, pp. 60]. For further applications in
M2×2, see [23]. The following is the main result of this paper.

Theorem 2. Let K ⊂ MN×n be a finite set such that C(K) 6= Q(K). Assume that
d = dim(C(K)) with 1 < d ≤ Nn and let L ⊂ C(K) be a non-trivial face without
rank-one connections, K0 = K ∩ L, 0 ∈ K0 and E = span[L]. Then

Q dist(X,K) ≥ C(E, θ0, σ)

(

dist(X,K)− (1 + σ)CE
1 + cos θ0
cos θ0

|PE⊥(X)|
)

, (5)

for any σ > 0, where C(E, θ0, σ) > 0 is a constant given by (15) below, and PE⊥ is the
orthogonal projection from MN×n to the orthogonal complement of E. Furthermore,

dist(X,K) > CE
1 + cos θ0
cos θ0

|PE⊥(X)| implies X /∈ Q(K). (6)

Remark 3. In case 0 /∈ inK, we may change the above estimates by taking X0 ∈ K0,
replacing E by E0 = E −X0 and (5) and (6) being replaced respectively by

Q dist(X,K) ≥ C(E0, θ0, σ)

(

dist(X,K)− (1 + σ)CE0

1 + cos θ0
cos θ0

|PE⊥
0
(X −X0)|

)

, (5′)

and

dist(X,K) > CE0

1 + cos θ0
cos θ0

|PE⊥
0
(X −X0)| implies X /∈ Q(K). (6′)

due to the translation from Q(K −X0) to Q(K).

If we apply Theorem 2 to each non-trivial exposed faces of C(K) without rank-one connec-
tions, we may define a non-convex set which stays betweenQ(K) and C(K). An important
feature of Theorem 2 is that our estimate (6) gives an alternative way of bounding Q(K)
from outside that depends only on the local property of C(K) near the exposed face L
and the ellipticity property of E through PE⊥ . It is independent of the diameter (size)
of C(K). More precisely, let the unbounded convex set M+ ⊂ M containing C(K) be
defined as

M+ = {X ∈ M, e ·X ≥ cos θ0|PF (X)|}

with the relative boundary

∂M+ = {X ∈ M, e ·X = cos θ0|PF (X)|},

we see that our estimate (6) is not affected by the size of C(K) for points near L as long
as C(K) stays in M+, that is, C(K) is bounded by the ‘wall’ ∂M+.
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Inequality (6) sometimes gives better estimates of Q(K) than the widely used polyconvex
hull P (K) that may depend on the ‘size’ of C(K) (see Example 10), even if the constant
CE in (6) is not sharp.

After notation and preliminaries, we establish Theorem 2 first, followed by that of The-
orem 1. At the end of this paper, we give examples related to Theorem 1 and Theorem
2.

We denote by MN×n the space of all real N ×n matrices, with RNn norm, meas(U) is the
Lebesgue measure of a measurable subset U ⊂ Rn and let dist(A,K) = infP∈K |A − P |
be the distance function from a point A ∈ MN×n to a set K ⊂ MN×n. From now on let
Ω be a nonempty, open and bounded subset of Rn. We denote by Du the gradient of a
(vector-valued) function u and we define the space Ck

0 (Ω,RN), Lebesgue spaces Lp(Ω,RN)
and Sobolev spaces W 1,p(Ω, RN) in the usual way.

A continuous function f : MN×n → R is quasiconvex at A ∈ MN×n if for any smooth
function φ : Ω → RN compactly supported in Ω,

∫

Ω

f(A+Dφ(x))dx ≥
∫

Ω

f(A)dx.

If f is quasiconvex at every A ∈ MN×n, it is called a quasiconvex function [10, 1, 6]. The
class of quasiconvex functions is independent of the choice of Ω.

A continuous function f : MN×n → R is polyconvex if f(A) = convex function of minors
of the matrix A. It is well known that polyconvexity implies quasiconvexity [2] while the
converse is not true.

For a given continuous function f : MN×n → R, the quasiconvex envelope Q(f) is defined
by

Q(f) = sup{g ≤ f, g is quasiconvex},

and can be calculated by using the formula

Q(f)(A) = inf
φ∈C∞

0 (D,RN )

∫

D

f(A+Dφ(x)) dx,

where D ⊂ Rn is the unit cube [6]. Similarly, the polyconvex envelope is defined as

P (f) = sup{g ≤ f, g is polyconvex},

In the study of material microstructure, the notion of quasiconvex hull Q(K) for a
closed set K ⊂ MN×n was introduced in [17]. Roughly speaking, Q(K) contains all
the weak limits that can be generated by a sequence of gradients Duj approaching K: If
dist(Duj, K) → 0 in L1 and Duj converges weakly in L1 to Du, then Du(x) ∈ Q(K) a.e.
The quasiconvex hull and polyconvex hull are defined as

Q(K) = {X ∈ MN×n, f(X) ≤ sup
Y ∈K

f(Y ), for every quasiconvex f : MN×n → R};

P (K) = {X ∈ MN×n, f(X) ≤ sup
Y ∈K

f(Y ), for every polyconvex f : MN×n → R}.
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When K is compact, the quasiconvex hull Q(K) can be defined by a single quasiconvex
function [21] as

Q(K) = {A ∈ MN×n, Q distp(A,K) = 0}

for each 1 ≤ p < ∞. This characterization of Q(K) will be used later in the proof of
Theorem 2.

For a finite set K = {Ai}mi=1 ⊂ M2×2, the polyconvex hull of K is given by

P (K) = {X =
m
∑

i=1

λiAi,
m
∑

i=1

λi detAi) = det(
m
∑

i=1

λiAi), λi ≥ 0,
m
∑

i=1

λi = 1}.

In particular [17, 18], if there is a point X0 ∈ M2×2 and a real number α such that
det(Ai − X0) = α for 1 ≤ i ≤ m, then P (K) = {X ∈ C(K), det(X − X0) = α}. We
need this characterization for P (K) in this special case to calculate P (K) in Example 10
below.

We conclude our preparation by stating the following result [8] which is a consequence of
the measurable selection lemma.

Proposition 4. Let K ⊂ Rn be a compact subset and let u : Ω → Rn be a continuous
mapping. Then there exists a measurable mapping ũ : Ω → K such that for all x ∈ Ω

|u(x)− ũ(x)| = dist(u(x), K).

Now we establish our main results. We prove Theorem 2 first, accepting Theorem 1 for
the moment.

Proof of Theorem 2. If K is contained in a plane E without rank-one connections, it
was established in [9] for any compact set K that

Q dist(·, K) ≥ CE dist(·, K),

where CE > 0 is a constant depending on E. So we consider the general case that C(K)
may have rank-one connections.

Let X ∈ MN×n be fixed and let D ⊂ Rn be the unit cube. Suppose (φj) is a sequence in
C∞

0 (D,RN) such that

lim
j→∞

∫

D

dist(X +Dφj, K)dx = Q dist(X,K) := a ≥ 0.

We extend φj to Rn by zero outside D so that φj ∈ C∞
0 (Rn, RN).

Now we apply the measurable selection lemma (Proposition 1) to the function

F (x,Q) = |X +Dφj(x)−Q|

for x ∈ D̄ and Q ∈ K. There exists a measurable mapping Xj : Ω → K, such that

|X +Dφj(x)−Xj(x)| = dist(X +Dφj(x), K),
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almost everywhere in Ω. From (2), we see that e ·Xj ≥ cos θ0|PFXj| a.e. in Ω. Let

∫

D

dist(X +Dφj, K)dx = a+ δj,

where δj ≥ 0 and limj→∞ δj = 0. Since φj is zero on the boundary of D,
∫

D
Dφj = 0. We

have

a+ δj =

∫

D

|X +Dφj(x)−Xj(x)|dx ≥
∫

D

|e · (X +Dφj(x)−Xj(x))|dx

≥
∣

∣

∣

∣

∫

D

e · (X +Dφj(x)−Xj(x))dx

∣

∣

∣

∣

≥
∫

D

e ·Xj(x)dx− |e ·X|.
(7)

From (2) we have,
∫

D

e ·Xj(x)dx ≥ cos θ0

∫

D

|PFXj|dx. (8)

Combining (7) and (8) we have

a+ δj ≥ cos θ0

∫

D

|PFXj|dx− |e ·X|

so that
∫

D

|PFXj|dx ≤ 1

cos θ0
(a+ δj + |e ·X|). (9)

On the other hand, note that Xj(x) ∈ K ⊂ M a.e., and E⊥ = F ⊕M⊥, hence PM⊥(Xj) =
0 a.e. and

a+ δj =

∫

D

dist(X +Dφj, K)dx =

∫

D

|X +Dφj −Xj|dx

≥
∫

D

|PE⊥(X+Dφj −Xj)|dx ≥
∫

D

|PE⊥(Dφj)|dx−|PE⊥(X)| −
∫

D

|PFXj|dx.
(10)

Therefore, by (9) and (10),

∫

D

|PE⊥(Dφj)|dx ≤ (a+ δj) + |PE⊥(X)|+
∫

D

|PFXj|dx

≤ (a+ δj) + |PE⊥(X)|+ 1

cos θ0
(a+ δj + |e ·X|) ≤ 1 + cos θ0

cos θ0
(|PE⊥(X)|+ a+ δj) .

(11)

From Theorem 1 we have,

meas ({x ∈ Rn, |Dφj(x)| > λ}) ≤ CE

λ

∫

D

|PE⊥Dφj|dx

≤ CE
1 + cos θ0
λ cos θ0

(|PE⊥(X)|+ a+ δj) ,

for every λ > 0, where CE > 0 is the constant in Theorem 1 given by (4’). Since the
distance function dist(·, K) satisfies

| dist(A,K)− dist(B,K)| ≤ |A−B|
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for A, B ∈ MN×n, we see that

dist(X, K) > dist(X +Dφj(x), K) + λ implies |Dφj(x)| > λ.

In other words,

D
(j)
λ :={x ∈ D, dist(X,K) > dist(X +Dφj(x), K) + λ}

⊂ {x ∈ D, |Dφj(x)| > λ},

so that

meas(D
(j)
λ ) ≤ CE

1 + cos θ0
λ cos θ0

(|PE⊥(X)|+ a+ δj) .

Choosing, for each fixed σ > 0,

λ = (1 + σ)CE
1 + cos θ0
cos θ0

(|PE⊥(X)|+ a) , (12)

we see that for sufficiently large j > 0, meas ({x ∈ Rn, |Dφj(x)| > λ}) < 1, so that

a+ δj =

∫

D

dist(X +Dφj(x), K)dx ≥
∫

D\D(j)
λ

dist(X +Dφj(x), K)dx

≥ [dist(X, K−)− λ]

[

1− CE
1 + cos θ0
λ cos θ0

(|PE⊥(X)|+ a+ δj)

]

,

for sufficiently large j > 0. Passing to the limit in the above inequality, we obtain

a ≥ [dist(X, K)− λ]

[

1− CE
1 + cos θ0
λ cos θ0

(|PE⊥(X)|+ a)

]

. (13)

Substituting (12) into (13), we have

a ≥ 1

1 + σCE
1+cos θ0
cos θ0

(

σ

1 + σ

)(

dist(X,K)− (1 + σ)CE
1 + cos θ0
cos θ0

|PE⊥(X)|
)

.

Thus

Q dist(X,K) ≥ C(E, θ0, σ)

(

dist(X,K)− (1 + σ)CE
1 + cos θ0
cos θ0

|PE⊥(X)|
)

(14)

for each fixed σ > 0, where

C(E, θ0, σ) =
1

1 + σCE
1+cos θ0
cos θ0

(

σ

1 + σ

)

. (15)

Now if X ∈ MN×n satisfies

dist(X,K) > CE
1 + cos θ0
cos θ0

|PE⊥(X)|, (16)

there is some σ > 0 such that

dist(X,K)− (1 + σ)CE
1 + cos θ0
cos θ0

|PE⊥(X)| > 0,

hence from (14), Q dist(X,K) > 0, which implies X /∈ Q(K). The proof is finished.
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Proof of Theorem 1. We first define a multiplier. Let E1, . . . , Ek be an orthonormal
basis of E. We define a linear mapping for each ξ ∈ Rn with ξ 6= 0 as L(ξ) : MN×n

c →
MN×n

c as

L(ξ)(X) =







[

IN×N −
k

∑

j=1

(

Ej

(

ξ

|ξ|

))(

Ej

(

ξ

|ξ|

))T
]−1

X

(

ξ

|ξ|

)







⊗
(

ξ

|ξ|

)

,

where MN×n
c is the space of complex N ×n matrices. Clearly L is homogeneous of degree

0 in ξ and we if we write X as a vector in CNn, there is an Nn×Nn matrix M(ξ) such
that

L(ξ)(X) = M(ξ)X,

with the right hand side of the above equality the product of a matrix and a vector. We
also have

L(ξ)(PE⊥(η ⊗ ξ))

=







[

IN×N −
k

∑

j=1

(

Ej

(

ξ

|ξ|

))(

Ej

(

ξ

|ξ|

))T
]−1

(PE⊥(η ⊗ ξ))

(

ξ

|ξ|

)







⊗
(

ξ

|ξ|

)







[

IN×N −
k

∑

j=1

(

Ej

(

ξ

|ξ|

))(

Ej

(

ξ

|ξ|

))T
]−1

[

IN×N −
k

∑

j=1

(

Ej

(

ξ

|ξ|

))(

Ej

(

ξ

|ξ|

))T
]

η

}

⊗ ξ

=η ⊗ ξ.

Now if we define an operator T from L2(MN×n) to L2(MN×n) by its Fourier transform

ÝTf = L(ξ)
(

Ýf(ξ))
)

,

we see that [15] T is bounded with T (PE⊥(Du)) = Du for any u ∈ W 1,2(Rn, RN) since
the components of L(ξ) are all of C∞ in Rn \ {0}. Let

H(ξ) = IN×N −
k

∑

j=1

(

Ej

(

ξ

|ξ|

))(

Ej

(

ξ

|ξ|

))T

, we have
∥

∥H(ξ)−1
∥

∥

op
≤ 1

µE

, (17)

where ‖ · ‖op is the operator norm of a matrix. Moreover, we have

DξH
−1(ξ) = −H−1(ξ)DξH(ξ)H−1(ξ),

∣

∣

∣

∣

Dξ

(

ξ

|ξ|

)∣

∣

∣

∣

≤ C(n)

|ξ|
,

∣

∣DξH
−1(ξ)

∣

∣ ≤ C(n,N)

µ2
E|ξ|

,

by noticing that |Ej| = 1 and 0 < µE < 1. Thus we have, for each fixed m ≥ 1

|Dm
ξ H

−1(ξ)| ≤ C(n,N,m)

µk+1
E |ξ|m

.
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This implies that

|Dm
ξ M(ξ)| ≤ C(n,N,m)

µk+1
E |ξ|m

. (18)

Therefore conditions for [16, pp. 246–247, Prop. 2.(b)] are satisfied, hence the weak-(1,1)
estimate for T holds [15, pp. 29, pp. 34]:

meas({x ∈ Rn, |(Tf)(x)| ≥ λ}) ≤ CE

λ

∫

Rn

|f |dx,

where CE is in the form (4’) due to the fact that we need estimate (18) up to the order
m = [n/2] + 1 in [16, pp. 246–247, Prop. 2.(b)]. In particular if f = PE⊥(Du) for u ∈
C∞

0 (Rn, RN), then T (PE⊥(Du)) = Du, hence

meas({x ∈ Rn, |Du(x)| ≥ λ}) ≤ CE

λ

∫

Rn

|PE⊥(Du)|dx.

Remark 5. The referee of this paper have made the following observations which make
the definition of the multiplier faster and smoother than what I did above.

Define H(ξ) : RN → RN by

H(ξ)η = η − PE(η ⊗ ζ)ζ

for each η ∈ RN , where ζ = ξ/|ξ| for ξ ∈ Rn \{0}. Similar to the proof above, we see that
H(ξ) is invertible and satisfies the inequality in (17). Then the multiplier L(ξ) is defined
by

L(ξ)(X) = (H(ξ)−1Xζ)⊗ ζ

for each X ∈ MN×n. This definition can then avoid some of the long formulas used in
the original proof and no basis needs to be introduced. However, it would be nice to have
more than one way to define the multiplier L(ξ). The original proof also gives explicit
formulas in Example 7 below.

Remark 6. By using the bound and the proofs of the relevant results in [15, 16] men-
tioned above, one can give explicit estimates of CE. A rough estimate is CE = C(N, n, k)
(1 + 1/µn+1

E ). Since the calculation of the explicit bound is quite long by chasing each
explicit constant in the pages cited above, we will not work this out here.

Example 7. As we mentioned earlier, it is known [15, pp. 60] that for a complex valued
smooth function defined on R2 with compact support, one has

meas({x ∈ R2, |Df(x)| ≥ λ}) ≤ C

λ

∥

∥

∥

∥

∂f

∂x1
+ i

∂f

∂x2

∥

∥

∥

∥

L1

.

If we write f = f1 + if2 and let u = (f1, f2) as a R2-valued mapping, we have, after a
slight change of the constant C > 0,

meas({x ∈ R2, |Du(x)| ≥ λ}) ≤ C

λ

∥

∥PE∂̄
(Du)

∥

∥

L1 ,
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where E∂̄ is the subspace of anti-conformal matrices with the basis

E1 =

√
2

2

(

1 0
0 −1

)

, E2 =

√
2

2

(

0 1
1 0

)

.

Example 8. We can give an explicit form of the multiplier corresponding to T for the
one dimensional subspace E = span[A0] ⊂ MN×n with rank(A0) > 1 and |A0| = 1. The
mapping L(ξ) associated with PE⊥ now is

L(ξ)(X) =





(

I −
(

A0

(

ξ

|ξ|

))(

A0

(

ξ

|ξ|

))T
)−1

X

(

ξ

|ξ|

)



⊗
(

ξ

|ξ|

)

=











I +

(

A0

(

ξ
|ξ|

))(

A0

(

ξ
|ξ|

))T

1−
∣

∣

∣A0

(

ξ
|ξ|

)∣

∣

∣

2





X

(

ξ

|ξ|

)





⊗
(

ξ

|ξ|

)

.

Therefore, it might be possible to calculate an explicit bound CE in this case for Theorem
1.

We conclude this paper by the following examples illustrating the effect of Theorem 2
near an exposed face of C(K) without rank-one connections on Q(K).

Example 9. We first consider Tartar’s four-point configurationK = {A, B, C, D} with-
out rank-one connections [4] in the subspace of diagonal matrices (Fig.1). The line seg-
ments are rank-one connections. By using a special quasiconvex function constructed in
[19], one can show that Q(K) is given by the four ‘legs’ and the square (the figure on the
left). Now suppose we only know that K ⊂ MN×n is a four-point set in a 2-dimensional
plane without rank-one connections, we would like to bound Q(K) based on this very
limited information. By using Theorem 2, we see that Q(K) is contained in the set given
by the figure on the right.

A

B

C

D

A

B

C

D

Figure 1: Left: Tartar’s four point set and its quasiconvex hull. Right: The bound of
Q(K) given by Theorem 2

Example 10. We illustrate the effect of Theorem 2 along an edge [A, B] with rank(B−
A) > 1. We can chip off a slice from C(K) without touching Q(K). Also note that if
we translate the origin to the mid point of A and B, then F = span[e]⊕ V is the two
dimensional subspace facing us.
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A

B

e

V
O

Example 11. This example shows that our estimate (6’) in Theorem 2, Remark 3 is
‘local’ as we mentioned earlier, hence may give a better estimate for the quasiconvex hull
Q(K) for a finite set K than the polyconvex hull P (K) which is widely used in bounding
the quasiconvex hull. We show that P (K) depends on the size of K, hence is not ‘local’.

We consider a Tartar’s construction in the subspace of diagonal matrices of M2×2 as in
Example 8. This time, we fix two neighbouring points A and B and allows the other two
to move. Let A = diag(2, 0), B = diag(0, 2), , Ch = diag(−h, −h), Dh = diag(1, −h−1)
with h > 0.

Since A − B = diag(2,−2), rank(A − B) > 1, if we let E0 = span[A−B] as in Remark
3, we have an estimate similar to (6’) and it is easy to see that the bound near the line
segment [A, B] is independent of large h > 0.

Now we calculate P (K). The idea is simple. We take any three point subset of K
and calculate its polyconvex hull which is contained in P (K). It is easy to see that the
polyconvex hull is the lamination convex hull of the resulting union of polyconvex hulls
for this three-point subsets.

As described in [17, 18], we have, for the three point set K1 = {A, B, Ch} ⊂ K ⊂ M2×2,
there is a matrix X0 and a real number α such that det(A − X0) = det(B − X0) =
det(Ch − X0) = α. In our case, it is easy to see that X0 = −(h2/2(h + 1))I and α =
h2(h+ 2)2/(4(h+ 1)2), where I is the 2× 2 identity matrix. Then

P (K1) = {Y = (diag(x, y), det(Y −X0) = α, 0 ≤ x ≤ 2} ∪ {Ch},

which is the union of the single point set {Ch} and the part of a hyperbola connecting
A and B which contains K1 one the plane of diagonal 2× 2 matrices. Note that the set
{Y = diag(x, y), det(Y −X0) ≤ α} is a polyconvex set. If we repeat this calculation for
the other three choices of three-point subsets of K, we see that there are four-pieces of
hyperbola connecting neighbouring points which are in P (K). We connect points in this
set by laminates, we see that P (K) is the region in the plane of 2× 2 diagonal matrices
bounded by these four-pieces of hyperbola.

Now we show that P (K) depends on h > 0 and for large h, Theorem 2 gives a better
estimate of Q(K) than P (K). To see this, we only need to check the mid-point Xh

of the part of hyperbola between A and B and show that Xh converges to the mid-
point diag(1, 1) of the line segment [A, B]. Let Xh = diag(x, x) be the mid-point of the
hyperbola, we see that det(Xh − C) = α, thus

(

x+
h2

2(h+ 1)

)2

=
h2(h+ 2)2

4(h+ 1)2
, hence x =

h

h+ 1
, Xh =

h

h+ 1
I.
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A

B

C

D

O

X

Clearly, Xh → diag(1, 1), P (K) is size dependent and our claim that (6) gives a better
estimate then follows.

Acknowledgements. I wish to thank the referee for several very helpful suggestions.
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