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Rate-independent systems with nonconvex energies generate solutions with jumps. To resolve the full
jump path we consider two different regularizations, namely (i) small viscosity and (ii) local minimization
in the time discretized setting. After rescaling the solutions via arc-length parametrization we obtain a
new limit problem, which is again rate independent. We establish convergence results for the viscously
regularized solutions as well as for the time-discretized solutions. In general the limit function is no
longer parametrized by arc length; however, another reparametrization leads to a solution. Using a
Young-measure argument, we show that the latter reparamterization is not necessary if the dry-friction
potential and the viscous potential satisfy a structural compatibility condition.
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1. Introduction

Rate-independent evolution models originate as limits of systems with strongly separated
time scales. Typically a system with fast internal time scales is driven by an external
loading on a much slower time scale. We want to describe the model on the latter slow
time scale, in which viscous transitions are seen as instantaneous jumps. However, effects
of dry friction, which are rate-independent, will lead to nontrivial continuous solution
behavior. The purpose of this work is to present a model which is able to account for
viscous as well as for dry-friction effects and is still rate-independent. We do this by
reparametrization of the slow time variable and thus blowing up the time scale in viscous
regimes.

Our theory is based on a purely energetic approach as introduced in [CoV90, MiT04,
MTL02]. This theory is rather flexible and allows us to deal with fully nonlinear, non-
smooth systems in the infinite dimensional setting, see [Mie05] for a recent survey. How-
ever for simplicity and clarity of this work, we restrict ourselves to the case that X is
a finite-dimensional Banach space. The evolution is defined via an energy functional
I : [0, T ]×X → R; (t, z) 7→ I(t, z), where t ∈ [0, T ] is the slow process time and z ∈ X is
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the state of the system. Moreover, on the tangent space TX of X (which equals X×X in

our case) there is given a dissipation functional ∆ : TX → R, such that ∆
(

z(t), Úz(t)
)

> 0

describes the dissipation (rate of dissipated energy). The energetic evolution law takes
the form

0 ∈ ∂ Úz∆
(

z(t), Úz(t)
)

+DzI
(

t, z(t)
)

a.e. on [0, T ] . (1)

Here we assume that ∆(z, ·) : X → [0,∞) is convex and

∂ Úz∆(z, v) =
{

σ ∈ X∗ ∣
∣ ∀w ∈ X : ∆(z, w) > ∆(z, v) + 〈σ,w − v〉

}

is the subdifferential with respect to the second argument. Throughout this work we as-
sume that ∆(z, v) = ∆(v) which simplifies the presentation considerably. For a treatment
of the case that ∆ depends on the state z ∈ X and X is infinite dimensional but I(t, ·) is
convex, we refer to [MiR05].

Note that (1) contains gradient flows (viscous case) if we set ∆(v) = 1
2
〈Gv, v〉 for some

symmetric and positive definite G (Riemannian case). The rate independent case is
obtained if ∆ is homogenous of degree one, i.e. ∆(αv) = α∆(v) for all α > 0. In fact,
many of the existing rate-independent hysteresis models can be written in the form of (1),
e.g. Moreau’s sweeping processes [Mor77] or linearized elastoplasticity [Mor76, HaR95].
See [KrP89, BrS96, Vis94] for the general theory on hysteresis. In most of these models
the energy functional I(t, ·) : X → R is quadratic and coercive or at least uniformly
convex. In that case (1) is in fact equivalent to the weaker energetic form introduced in
[MiT99, MiT04, MTL02]:

(S) Stability: For all t ∈ [0, T ] and all ẑ ∈ X we have

I
(

t, z(t)
)

6 I
(

t, ẑ
)

+∆
(

ẑ − z(t)
)

.

(E) Energy inequality: For t1 6 t2 we have

I
(

t2, z(t2)
)

+

∫ t2

t1

∆
(

Úz(t)
)

dt 6 I
(

t1, z(t1)
)

+

∫ t2

t1

∂tI
(

t, z(t)
)

dt.

(2)

This energetic formulation consists of the standard energy inequality (E) and a purely

static stability condition (S): the gain in stored energy I
(

t, z(t)
)

− I
(

t, ẑ
)

is not allowed

to be larger than the energy ∆
(

ẑ − z(t)
)

lost by dissipation. In fact, if (S) and (E) hold,

then (E) holds in fact with equality, see Lemma 3.7 in [MiT04].

Of course, the energetic formulation (2) can also be used in cases where I(t, ·) is nonconvex
(see for example [Efe03, MiT04, Mie05, FrM05]), however this will lead to solutions having
jumps which may not correspond to the physically desired jumps. Instead of jumps the real
system would switch to viscous, rate-dependent behavior until it finds a suitable nearby
stable state again. Here we want to modify (1) and (2) in such a way that the viscous
transition path between two stable states is still captured. However, we will not resolve
the temporal behavior along this path and thus are able to obtain a rate-independent
model.

One way to obtain such a limit problem is by viscous regularization. We will deal with
viscous regularizations in Section 3. Indeed, assume that ∆ is homogenous of degree one.
Then, consider (1) with ∆ replaced by ∆ε : v 7→ ∆(v)+ ε

2
‖v‖2, where ‖ · ‖ is any norm on
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X. Standard theory provides solutions zε ∈ W1,2
(

[0, T ], X
)

, and the question is whether

the limit z0(t) = limε→0 z
ε(t) exists and, if so, what limit equation z0 satisfies. Since the

limit will develop jumps in general, the model remains incomplete. Instead one can ask
for convergence of the graph

{(

t, zε(t)
) ∣

∣ t ∈ [0, T ]
}

in the extended phase space [0, T ]×X.
An even stronger convergence is obtained by parametrizing this graph by arc length

τ ε(t) = t+

∫ t

0

∥

∥ Úzε(s)
∥

∥ds

and considering the rescaled functions

Ýtε(τ) =
(

τ ε
)−1

(τ) and ẑε(τ) = zε
(

Ýtε(τ)
)

.

By construction we now have ÚÝtε(τ)+
∥

∥ Ú̂z
ε
(τ)

∥

∥ ≡ 1 and, after choosing a subsequence, limit

functions Ýt = Ýt0 and ẑ = ẑ0 exists, which are again Lipschitz continuous. In Section 3 we

show that these limits satisfy the following limit equation: for a.a. τ ∈ [0, ̂T ] holds

0 ∈ ∂∆‖·‖
(

Ú̂z(τ)
)

+DzI
(

Ýt(τ), ẑ(τ)
)

,

1 = ÚÝt(τ) +
∥

∥ Ú̂z(τ)
∥

∥,

Ýt(0) = 0, Ýt
(

̂T
)

= T, ẑ(0) = z0;

(3)

where ̂T = limε→0 τ
ε(T ) and

∆‖·‖(v) =

{

∆(v) for ‖v‖ 6 1,

∞ for ‖v‖ > 1.
(4)

Here regions with ÚÝt(τ) ≡ 0 correspond to viscous slip while ÚÝt(τ) ∈ (0, 1) means motion

under dry friction and ÚÝt(τ) ≡ 1 corresponds to sticking
(

Ú̂z(τ) ≡ 0
)

. In Section 2 we will

derive our model (3) as a weak form of (1). We argue that (3) is equivalent to (1) under

the assumption that
∥

∥ Ú̂z(τ)
∥

∥ < 1 for almost all τ ∈ [0, ̂T ] (that means no viscous slips

occur).

In the series of papers [MMG94, MSGM95, GMM98, PiM03, MMP05] similar approaches
were developed to resolve discontinuities in rate-independent systems. In particular, a
similar time reparametrization was introduced and our limit problem, which is formulated
in the arc-length parametrization, has close relations to the dissipative graph solutions
in [MSGM95]. However, the regularization there does not use viscous friction but rather
kinetic terms giving rise to forces via inertia. In [MMP05] a situation with quadratic
and convex energy was considered and convergence of the regularized solutions to the
rate-independent limit solution, which is Lipschitz continuous in time, is established.

Additionally we will show that a time-incremental problem can be used to find solutions
of (3). The time discretization replaces the need of the regularization via ε

2
‖v‖2. Choosing

N ∈ N and h = ̂T/N we define τj = jh. The time-incremental problem reads:

Problem 1.1. Let Ýt0 = 0 and ẑ0 = z0. For j = 1, . . . , N find ẑj with

ẑj ∈ argmin
{

I
(

Ýtj−1, ẑ
)

+∆
(

ẑ − zj−1

) ∣

∣

∥

∥ẑ−zj−1

∥

∥ < h
}

(5)

and then let Ýtj = Ýtj−1 + h−
∥

∥ẑj−ẑj−1

∥

∥.
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In Section 4 we will show that a subsequence of the linear interpolants associated with the
solutions of (5) also converges to a solution of (3). We cannot expect convergence of the
full sequence, since problem (3) may have several solutions. Hence, different subsequences
may have different limits.

One special problem in establishing (3) is that from the weak convergence of the approx-
imate solutions, obtained by viscous regularization or time discretization, we only obtain
the inequality

1 > ÚÝt(τ) + ‖ Ú̂z(τ)‖ =: λ(τ) for a.a. τ ∈ [0, ̂T ] (6)

for the limit function (Ýt, ẑ). In Example 4.4 we show that strict inequality can occur.
For obtaining solutions to (3) there are two ways. First, we establish under rather

mild assumptions (see Condition 2.5), that λ(τ) > c∗ > 0 a.e. in [0, ̂T ]. By a suitable
reparametrization it is then possible to find a solution to (3). Second, we provide a restric-
tive compatibility condition between ∆ and ‖·‖ (see Condition 3.4) which guarantees that

any limit function (Ýt, ẑ) automatically satisfies (6) with equality, i.e., reparametrization
is not necessary.

2. Formulation of the problem

Let X be a finite-dimensional Banach space. We denote by X∗ its dual space. Be-
fore formulating our basic task we start with some motivations. First, assuming I ∈
C1

(

[0, T ]×X,R
)

and that ∆ is convex and homogenous of degree 1, we aim at solving the
following problem:

Find z ∈ W1,1([0, T ], X) such that

0 ∈ ∂∆( Úz) + DzI(t, z) ⊂ X∗ and z(0) = z0 ∈ X .
(7)

Proposition 2.1. Let z ∈ W1,1
(

[0, T ], X
)

be a solution of (7) and ̂T = T+
∫ T

0

∥

∥ Úz(s)
∥

∥ ds.

Then there exists a pair
(

Ýt, ẑ
)

∈ W1,∞(

[0, ̂T ],R×X
)

, such that for almost all (shortly a.a.)

τ ∈ [0, ̂T ] we have

0 ∈ ∂∆‖·‖
(

Ú̂z(τ)
)

+DzI
(

Ýt(τ), ẑ(τ)
)

, (8)

1 = ÚÝt(τ) +
∥

∥ Ú̂z(τ)
∥

∥ , (9)

ẑ(0) = z0 , Ýt(0) = 0 , Ýt
(

̂T
)

= T , (10)

with
∥

∥ Ú̂z(τ)
∥

∥ < 1. Conversely, let a pair (Ýt, ẑ) ∈ W1,∞(

[0, ̂T ],R×X
)

be a solution of (8)–

(10) with
∥

∥ Ú̂z(τ)
∥

∥ < 1 for a.a. τ ∈ [0, ̂T ], then (9) guarantees that Ýt : [0, ̂T ] → [0, T ] has a

continuous inverse τ : [0, T ] → [0, ̂T ] and that z : t 7→ ẑ
(

τ(t)
)

lies in W1,1
(

[0, T ], X
)

and

solves (7).

Proof. Indeed, let z ∈ W1,1
(

[0, T ], X
)

solve (7). For this z we define τ : [0, T ] → [0, ̂T ]
via

τ(t) := t+

∫ t

0

‖ Úz(s)‖ ds and ̂T = τ(T ) .
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We denote the inverse of τ by Ýt : [0, ̂T ] → [0, T ] and define ẑ : [0, ̂T ] → X via

ẑ(τ) := z
(

Ýt(τ)
)

.

Obviously Ýt ∈ W1,∞(

[0, ̂T ],R
)

, ẑ ∈ W1,∞(

[0, ̂T ], X
)

with
∥

∥ Ú̂z(τ)
∥

∥ < 1 and ÚÝt(τ)+
∥

∥ Ú̂z(τ)
∥

∥ = 1

for a.a. τ ∈ [0, ̂T ]. Moreover (Ýt, ẑ) satisfies

0 ∈ ∂∆

(

1
ÚÝt(τ)

Ú̂z(τ)

)

+DzI
(

Ýt(τ), ẑ(τ)
)

,

with Ýt(0) = 0 and ẑ(0) = z0. Taking into account that ∂∆ : X → X∗ is homogenous of

order 0 and that
∥

∥ Ú̂z(τ)
∥

∥ < 1 for a.a. τ , we obtain

0 ∈ ∂∆‖·‖
(

Ú̂z
)

+DzI
(

Ýt(τ), ẑ(τ)
)

for a.a. τ ,

where ∆‖·‖ : X → [0,∞) is defined via (4).

Conversely let a pair (Ýt, ẑ) be any solution of (8)–(10) with
∥

∥ Ú̂z(τ)
∥

∥ < 1 for a.a. τ . We set

T = Ýt(̂T ) and define τ(t) as the inverse of Ýt : [0, ̂T ] → [0, T ], which exists due to (9). Then

it is not difficult to see that z ∈ W 1,1
(

[0, T ], X
)

, defined via z(t) := ẑ
(

τ(t)
)

, satisfies (7).
This proves Proposition 2.1.

Obviously, (8)–(10) is a more general problem than (7), since equivalence (due to Propo-

sition 2.1) is only obtained in regions where
∥

∥ Ú̂z(τ)
∥

∥ < 1 for a.a. τ . Further on we will

consider a new model, namely (8)–(10) without the restriction
∥

∥ Ú̂z(τ)
∥

∥ < 1. In particular,

regions with
∥

∥ Ú̂z(τ)
∥

∥ = 1 correspond to fast motion which is much faster than the process

time which is encoded in ÚÝt(τ) = 1−
∥

∥ Ú̂z(τ)
∥

∥ = 0. Note that this situation corresponds to
the rescaled gradient flow at fixed process time. Indeed, to illustrate this, let us consider
the following example:

Example 2.2. Assume that X = Rn and that ‖ · ‖ is the Euclidean norm. Moreover for
some δ > 0 we choose ∆(w) = δ‖w‖. Then, we have

∂∆‖·‖(w) =























{ η | ‖η‖ 6 δ } for w = 0 ,
δ

‖w‖ w for 0 < ‖w‖ < 1 ,

{αw | α > δ } for ‖w‖ = 1

∅ for ‖w‖ > 1 .

For a solution ẑ of (8) assume that
∥

∥ Ú̂z(τ)
∥

∥ = 1 for τ ∈ [τ1, τ2]. Then
ÚÝt(τ) = 1−

∥

∥ Ú̂z(τ)
∥

∥ ≡ 0

for τ ∈ [τ1, τ2], hence Ýt(τ) ≡ Ýt(τ1) =: Ýt1, where Ýt1 is a fixed value of the process time.
Hence, in this case (8) leads, for a.a. τ ∈ [τ1, τ2], to

0 = α(τ) Ú̂z(τ) + DzI
(

Ýt1, ẑ(τ)
)

for some α(τ) ≥ δ, or equivalently to

Ú̂z(τ) = β(τ)DzI
(

t1, ẑ(τ)
)

∈ Sn−1 = { z ∈ Rn | ‖z‖ = 1 } ,

with β(τ) = −1/α(τ). The latter is exactly the rescaled gradient flow at fixed process

time Ýt1.
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Remark 2.3. The problem (8) is rate-independent in the following sense. If the original
functional I : [0, T ]×X → R is replaced by a time rescaled one J : [0, S]×X → R, i.e.
I(t, y) = J

(

s̃(t), y
)

for some strictly monotone function s̃ : [0, T ] → [0, S] with s̃(T ) = S,

then the rescaled problem (8)–(10) with I(t, z) replaced by J(s, y) has a solution
(

Ýs, Ýy
)

:

[0, ÝS] → [0, S]×X which is obtained from (Ýt, ẑ) by rescaling as follows:

Ýs(σ) = s̃
(

Ýt
(

τ̃(σ)
))

and Ýy(σ) = Ýz
(

τ̃(σ)
)

,

where τ̃ : [0, ÝS] → [0, ̂T ] is the rescaling of the arc length defined via

d

dσ
τ̃(σ) =

1

Ú̃s
(

Ýt(τ)
) ÚÝt(τ) +

∥

∥ Ú̂z(τ)
∥

∥

∣

∣

∣

∣

∣

τ = τ̃(σ)

.

Remark 2.4. We consider two solutions
(

Ýt1, ẑ1
)

∈ W1,∞([

0, ̂T1

]

,R×X
)

and
(

Ýt2, ẑ2
)

∈
W1,∞([

̂T1, ̂T
]

,R×X
)

of (8)–(10) on the intervals
[

0, ̂T1

]

and
[

̂T1, ̂T
]

, respectively. If

additionally Ýt1
(

̂T1

)

= Ýt2
(

̂T1

)

and ẑ1
(

̂T1

)

= ẑ2
(

̂T1

)

, then it is easy to see that the pair

(Ýt, ẑ) : [0, ̂T ] → R×X defined by

(

Ýt(τ), ẑ(τ)
)

=

{
(

Ýt1(τ), ẑ1(τ)
)

for τ ∈
[

0, ̂T1

]

,
(

Ýt2(τ), ẑ2(τ)
)

for τ ∈
[

̂T1, ̂T
]

,

is a solution of (8)–(10) belonging to W1,∞(

[0, ̂T ],R×X
)

.

In the sequel we make the following assumptions on ∆(·) and I(t, ·).
Condition 2.5. Assume that ∆ : X → [0,∞) is convex, homogenous of degree 1 and
satisfies

C∆‖v‖X 6 ∆(v) 6 C−1
∆ ‖v‖X , (11)

for all v ∈ X. Moreover, we assume that I ∈ C1
(

[0, T ]×X,R
)

with I(t, z) > 0.

Subsequently, we assume that all our solutions are contained in a suitable large ball
BR(0) =

{

z ∈ X
∣

∣ ‖z‖ 6 R
}

. We assume the estimates
∣

∣∂tI(t, z)
∣

∣ 6 CI ,
∥

∥DzI(t, z)
∥

∥ 6 M, for all z ∈ BR(0). (12)

This will enable us to make most estimates more explicit.

Condition (12) is chosen here for convenience only. In light of the more geometric formu-
lation in [Mie05] it could be replaced by the more general condition

|∂tI(t, z)|+ ‖DzI(t, z)‖ ≤ M1

(

I(t, z) +M0

)

, for all (t, z) ∈ [0, T ]×X.

After these preliminaries we state our main existence result, which is proved in two dif-
ferent ways in the subsequent sections.

Theorem 2.6. Let Condition 2.5 be satisfied. Then there exists ̂T > 0, such that problem

(8)–(10) admits at least one solution
(

Ýt, ẑ
)

∈ W1,∞([

0, ̂T
]

, R×X
)

.
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3. Convergence for the regularized problem

Here we study the limit passage for the viscously regularized problem. We define ∆ε(v) =
∆(v) + ε

2
‖v‖2 where ε > 0 is a small viscosity and ‖ · ‖ is again an arbitrary norm on X.

The regularized problem reads

z(0) = z0, 0 ∈ ∂∆ε
(

Úz(t)
)

+DzI
(

t, z(t)
)

, a.e. on [0, T ]. (13)

Since ∆ε(v) > ε
2
‖v‖2, we know from [CoV90] that (13) has a solution zε ∈ W1,2

(

(0, T ), X
)

and it satisfies, for 0 6 s < t 6 T , the energy estimate

I
(

t, zε(t)
)

+

∫ t

s

∆ε
(

Úzε(r)
)

dr 6 I(s, zε(s)) +

∫ t

s

∂rI
(

r, zε(r)
)

dr. (14)

In fact, by convexity and ∆ε(0) = 0 we have ∆ε(v) 6 〈η, v〉 for each η ∈ ∂∆ε(v). Hence,
(13) implies ∆ε( Úzε(t)) + 〈DzI(t, z

ε(t)), Úzε(t)〉 6 0 and integration over [s, t] gives (14).

With (12) we find
∫ T

0
∆ε

(

Úzε(t)
)

dt 6 C, where C is independent of ε. Using ∆ε(v) > ∆(v)

and (11) we conclude that
̂T ε = T +

∫ T

0

∥

∥ Úzε(t)
∥

∥dt

is bounded by T + C/C∆. Choosing a subsequence, we have ̂T ε → ̂T . We define the arc
length

τ ε(t) = t+

∫ t

0

∥

∥ Úzε(s)
∥

∥ds

and the rescalings
Ýtε =

(

τ ε
)−1

, ẑε(τ) = zε
(

Ýtε(τ)
)

.

By definition
( ÚÝtε

)

(τ) +
∥

∥ Ú̂z
ε
(τ)

∥

∥ ≡ 1 which implies
(

Ýtε, ẑε
)

∈ CLip
(

[0, ̂T ε],R×X
)

with the

uniform Lipschitz constant 1. For notational convenience, we extend
(

Ýtε, ẑε
)

in the case

̂T ε < ̂T on the interval [̂T ε, ̂T ] with the constant value
(

Ýtε(̂T ε), ẑε(̂T ε)
)

, such that all

functions are defined on [0, ̂T ]. By the Arzela-Ascoli theorem (use dimX < ∞), choosing

a further subsequence, we have uniform convergence on [0, ̂T ], i.e.
(

Ýtε, ẑε
)

−→
(

Ýt, ẑ
)

in C0
(

[0, ̂T ],R×X
)

as ε → 0. (15)

Theorem 3.1. Any limit function
(

Ýt, ẑ
)

constructed above satisfies for a.a. τ ∈ [0, ̂T ] the
limit problem

0 ∈ ∂∆‖·‖
(

Ú̂z(τ)
)

+DzI
(

Ýt(τ), ẑ(τ)
)

⊂ X∗ ,

1 > ÚÝt(τ) +
∥

∥ Ú̂z(τ)
∥

∥ , (16)

ẑ(0) = z0 , Ýt(0) = 0 , Ýt
(

̂T
)

= T .

Proof. We note that
∥

∥ Úzε(t)
∥

∥ is finite for a.e. t ∈ [0, T ]. For these t consider τ = τ ε(t),

then Úzε(t) =
1

1−
∥

∥ Ú̂z
ε
(τ)

∥

∥

(

Ú̂z
ε)
(τ). Moreover, with

g(ρ) =

{

−ρ− log(1−ρ) for ρ ∈ [0, 1),

∞ for ρ > 1,
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and ̂∆ε(v) = ∆(v) + εg
(

‖v‖
)

we find

∂∆ε
(

Úzε(t)
)

= ∂ ̂∆ε
(

Ú̂z
ε
(τ)

)

.

Hence, the rescaled functions Ýtε, ẑε satisfy

0 ∈ ∂ ̂∆ε
(

Ú̂z
ε
(τ)

)

+DzI
(

Ýtε(τ), ẑε(τ)
)

, 1 = ÚÝtε(τ) +
∥

∥ Ú̂z
ε
(τ)

∥

∥.

Since
(

Ýtε, ẑε
)

converges uniformly on [0, ̂T ] and DzI is continuous, we know that

σε(τ) := −DzI
(

Ýtε(τ), ẑε(τ)
)

converges uniformly as well. Moreover, since dimX < ∞, we have
(

Ú̂z
ε) ∗

⇀ Ú̂z in L∞(

[0, ̂T ], X
)

.

Using part (i) of the subsequent Lemma 3.5 we conclude that σ0 = limε→0 σ
ε = −DzI

(

Ýt, ẑ
)

satisfies σ0 ∈ ∂∆‖·‖
(

Ú̂z
)

which is the inclusion in the first line of (16). The inequality on

the second line of (16) is an easy consequence of the weak–∗ convergence of
(

Ýtε, ẑε
)

.

As we will see in Section 4 the equality ÚÝt(τ)+
∥

∥ Ú̂z(τ)
∥

∥ = 1 for a.a. τ ∈ [0, ̂T ] does not hold
automatically. However, since our problem is rate-independent, we will show through

reparametrization of time, that
(

Ýt, ẑ
)

can be transformed into a true solution
(

t̃, z̃
)

. In-

deed, for a solution
(

Ýt, ẑ
)

of (16) define L(τ) :=
∫ τ

0

(

ÚÝt(σ) +
∥

∥ Ú̂z(σ)
∥

∥

)

dσ. Reparametriza-

tion is possible if L is strictly increasing, which is a consequence of our assumptions.

Lemma 3.2. If Condition 2.5 holds, then there is c∗ > 0 such that for all limit functions

(Ýt, ẑ) we have ÚL(τ) = ÚÝt(τ) +
∥

∥ Ú̂z(τ)
∥

∥ ≥ c∗ a.e. on [0, ̂T ].

Proof. Using (11) and the energy inequality (14) we find

C∆

∫ t

s

‖ Úzε(r)‖dr 6
∫ t

s

∆ε( Úzε(r))dr

6 I(s, zε(s))− I(t, zε(t)) +

∫ t

s

∂rI(r, z
ε(r))dr

6 M‖zε(t)− zε(s)‖+ 2CI |t− s|

Using the rescaling together with rate-independence of the left-hand side we find, for

0 6 τ1 < τ2 6 ̂T ,
∫ τ2

τ1

‖ Ú̂z
ε
(σ)‖dσ ≤ M

C∆
‖ẑε(τ2)− ẑε(τ1)‖+

2CI

C∆

∣

∣

∣
Ýtε(τ2)− Ýtε(τ1)

∣

∣

∣.

Since by construction τ2 − τ1 = Ýtε(τ2)− Ýtε(τ1) +
∫ τ2
τ1

‖ Ú̂z
ε
(σ)‖dσ, we conclude

τ2 − τ1 6 C∗
(

Ýtε(τ2)−Ýtε(τ1) + ‖ẑε(τ2)−ẑε(τ1)‖
)

with C∗ = max{1+2CI/C∆,M/C∆}.

Using uniform convergence of (Ýtε, ẑε) to (Ýt, ẑ) we pass to the limit ε → 0 and find

τ2 − τ1 6 C∗
(

Ýt(τ2)− Ýt(τ1) + ‖ẑ(τ2)− ẑ(τ1)‖
)

for all 0 6 τ1 < τ2 6 ̂T .

This implies the desired result ÚL(τ) = ÚÝt(τ) + ‖ Ú̂z(τ)‖ ≥ 1/C∗ =: c∗ a.e. on [0, ̂T ].
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Denoting the inverse of L(τ) by L∨(θ), θ ∈ [0, L(̂T )], we set t̃∗(θ) = Ýt∗
(

L∨(θ)
)

, z̃∗(θ) =

ẑ∗ (L
∨(θ)). Using ÚL(τ) > 0 a.e., it is not difficult to see that

0 ∈ ∂∆‖·‖

(

ÚL
(

L∨(θ)
)

Ú̃z∗(θ)
)

+DzI
(

t̃∗(θ), z̃∗(θ)
)

,

Ú̃t∗(θ) +
∥

∥ Ú̃z∗(θ)
∥

∥ = 1 .
(17)

Simple analysis together with homogeneity of order zero of ∂∆ : X → X∗ and the fact
that ∂∆‖·‖(ξ) = ∂∆(ξ), for ‖ξ‖ < 1, yield

0 ∈ ∂∆‖·‖
(

Ú̃z∗(θ)
)

+DzI
(

t̃∗(θ), z̃∗(θ)
)

,

Ú̃t∗(θ) +
∥

∥ Ú̃z∗(θ)
∥

∥ = 1 ,
(18)

for θ ∈
[

0, L
(

̂T
)]

. Using ÚL(τ) > c∗ we have L(̂T ) ≥ c∗ ̂T , where c∗ does not depend on

initial data and Remark 2.4. Hence, we can extend
(

t̃∗, z̃∗
)

, which is a solution of (18) on
[

0, L
(

̂T
)]

, to all of [0, ̂T ].

Corollary 3.3. Problem (8)–(10) admits at least one solution.

Using the following structural compatibility condition between ∆ and ‖ · ‖ we will show
that reparametrization is not necessary.

Condition 3.4. For all σ ∈ X∗ the norm ‖ · ‖ is affine when restricted to the set

M(σ) :=
{

v ∈ X |σ ∈ ∂∆‖·‖(v)
}

.

(It is easy to see that this assumption always holds when ∆ = δ‖ · ‖ for some δ > 0.)

To establish the following results we recall that the subgradients ∂∆‖·‖, ∂ ̂∆
ε : X → 2X

∗

define (multi-valued) maximal monotone operators, see [EkT76, Zei90]. On the Hilbert

space H = L2
(

[0, ̂T ], X
)

the mapping ∂ ̂∆ε induces a maximal monotone operator Aε via

σ ∈ Aεv ⇔ σ(τ) ∈ ∂ ̂∆ε
(

v(τ)
)

for a.a. τ ∈ [0, ̂T ].

Similarly, define A0 using ∆‖·‖.

Lemma 3.5. Let vε, σε ∈ H = L2
(

[0, ̂T ], X
)

with σε ∈ Aεvε. Moreover, assume σε → σ0

in C0
(

[0, ̂T ], X
)

and ‖vε‖L∞ 6 1 and vε ⇀ v0 in H. Then,

σ0 ∈ A0v0, (i)
∥

∥vε(·)
∥

∥

X
⇀ Ýn in L2

(

[0, T ],R
)

with Ýn >
∥

∥v0(·)
∥

∥

X
. (ii)

If Condition 3.4 holds, then Ýn =
∥

∥v0(·)
∥

∥

X
. (iii)

Proof. In fact part (i) follows from the standard Browder-Minty theory together with
the convergence of Aε to A0 (see [Bre73, EkT76, Zei90]). However, since we also want
to establish (iii) we prove (i) also using Young measures. We consider the sequence

aε =
(

vε, σε
)

ε>0
in L2

(

[0, ̂T ], X×X∗). With Gε =
{

(v, σ) ∈ X×X∗ |σ ∈ ∂ ̂∆ε(v)
}

we have

aε(τ) ∈ Gε ∩K for a.e. τ ∈ [0, ̂T ],
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where K is a compact set in X×X∗. Hence, after choosing a subsequence aε gener-

ates an L∞-Young measure µ ∈ YM
((

0, ̂T
)

, X×X∗) where µ(τ) ∈ Prob
(

X×X∗) (see

[Dac82, Rou97, Mie99, Mie04]). Because of distHausdorff

(

Gε, G0
)

→ 0 for ε → 0, we con-

clude µ(τ) ∈ Prob(G0). Moreover, ‖σε − σ0‖C0 → 0 implies that a.e. µ(τ) has the form
µ(τ) = ν(τ) ⊗ δσ0(τ), with ν(τ) ∈ Prob(X). Together with µ(τ) ∈ Prob(G0) this implies

ν(τ) ∈ Prob
(

M(σ0(τ))
)

where M(σ) is defined in Condition 3.4, i.e. M(σ) is the natural

projection of G0 ∩
(

X×{σ}
)

onto X.

Since A0 is maximal monotone, the sets M(σ) are closed and convex in X. By the Young

measure theory we have for vε ⇀ v0 and
∥

∥vε(·)
∥

∥ ⇀ Ýn the identities

v0(τ) =

∫

Ýv∈X
Ýv ν(τ, dÝv) and Ýn(τ) =

∫

Ýv∈X
‖Ýv‖ ν(τ, dÝv). (19)

Convexity of M(σ0) and ν(τ) ∈ Prob
(

M(σ0(τ))
)

imply v0(τ) ∈ M(σ0) and hence σ0(τ) ∈
∂∆‖·‖

(

v0(τ)
)

. This proves part (i).

Part (ii) follows from (19) by Jensen’s inequality since ‖ · ‖X is convex.

To obtain part (iii) we note that on each set M(σ) the function ‖ · ‖X is affine, namely
we have

‖v‖ =
∥

∥v0(τ)
∥

∥+
〈

σ0(τ), v − Ýv0(τ)
〉

for all v ∈ M
(

σ0(τ)
)

.

Integration with respect to the measure ν(τ) then gives

Ýn(τ) =

∫

v∈X
‖v‖ν(τ, dv) =

∫

v∈X

(

∥

∥v0(τ)
∥

∥+
〈

σ0(τ), v−v0(τ)
〉

)

ν(τ, dv) =
∥

∥v0(τ)
∥

∥.

This proves Lemma 3.5.

Corollary 3.6. Let Condition 3.4 hold. Then any limit function
(

Ýt, ẑ
)

constructed above

is a solution of (8)–(10) (i.e., reparametrization is not necessary).

Indeed, for this purpose we apply Lemma 3.5. In our case, Aε = ∂ ̂∆ε, A0 = ∂∆‖·‖, v
ε = Úzε

and the compatibility condition 3.4 allow us to pass to the limit in Útε +
∥

∥ Úzε
∥

∥ = 1.

4. Time discretization

Here we provide a second alternative to obtain an approximate solution whose limit will
provide solutions for (8)–(10). This approach is close to the numerical treatment of the

rate-independent problem. Indeed, let 0 = τ0 < τ1 < . . . < τN = ̂T be any partition, with
τj − τj−1 = h, j = 1, . . . , N . Consider the following minimization problem:

Problem 4.1. For given Ýt0 = 0, ẑ0 = z0 find pairs
(

Ýtj, ẑj
)

∈ [0, ̂T ]×X, for j = 1, . . . , N ,

such that for all w ∈ X and with ‖w − ẑj−1‖ 6 h

I
(

Ýtj−1, ẑj
)

+∆(ẑj − ẑj−1) 6 I(Ýtj−1, w) + ∆(w − ẑj−1) (IP)

and Ýtj := Ýtj−1 + h−
∥

∥ẑj − ẑj−1

∥

∥, for j = 1, . . . , N .
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For notational convenience, we use the following shorthand of (IP):

ẑj ∈ argmin
{

I
(

Ýtj−1, w
)

+∆
(

w − ẑj−1

) ∣

∣

∥

∥w − ẑj−1

∥

∥ 6 h
}

= argmin

{

I
(

Ýtj−1, w
)

+ h∆‖·‖

(

w − ẑj−1

h

) ∣

∣

∣

∣

w ∈ X

}

,

where “argminÔ denotes the set of minimizers.

Proposition 4.2. The problem (IP) always has a solution
(

Ýtj, ẑj
)

j=1,...N
. Any solution

satisfies

(a) I
(

Ýtj, ẑj
)

− I
(

Ýtj−1, ẑj−1

)

+∆
(

ẑj − ẑj−1

)

6
∫ Ýtj

Ýtj−1

∂tI
(

σ, ẑj
)

ds ,

(b) 0 ∈ ∂∆‖·‖

(

ẑj − ẑj−1

h

)

+DzI
(

Ýtj−1, ẑj
)

,

(c)
Ýtj − Ýtj−1

h
+

∥

∥ẑj − ẑj−1

∥

∥

h
= 1 .

Proof. From I(t, z) > 0 it follows that

I
(

Ýtj−1, w
)

+∆
(

w − ẑj−1

)

> C∆

∥

∥w − ẑj−1

∥

∥ .

Since the balls
{

w ∈ X
∣

∣

∥

∥w− ẑj−1

∥

∥ 6 h
}

are compact in X, and I and ∆ are continuous,

the existence of minimizers ẑj is classical. Next we prove part (a). Indeed, by construction,

for all
∥

∥w − ẑj−1

∥

∥ 6 h, we have

I
(

Ýtj−1, ẑj
)

+∆
(

ẑj − ẑj−1

)

6 I
(

Ýtj−1, w
)

+∆
(

w − ẑj−1

)

. (20)

Taking in (20) w = ẑj−1 we obtain

I
(

Ýtj−1, ẑj
)

+∆
(

ẑj − ẑj−1

)

6 I
(

Ýtj−1, ẑj−1

)

, (21)

or

I
(

Ýtj, ẑj
)

− I
(

Ýtj−1, ẑj−1

)

+∆
(

ẑj − ẑj−1

)

6 I
(

Ýtj, ẑj
)

− I
(

Ýtj−1, ẑj
)

, (22)

which is estimate (a).

Part (b) is in fact a standard consequence of the fact that ẑj is a minimizer. Hence, 0
is in the subdifferential of any suitable version of the multivalued differentials, e.g. the
Clarke differential or the Mordukhovich differential, see e.g., Thm. 4.3 in [MoS95]. For

this purpose note that we minimize w 7→ ψ(w) + φ(w) where ψ : w 7→ I(Ýtj−1, w) is a

C1 function and φ : w 7→ 1
h
∆‖·‖

(

w−ẑj−1

h

)

is convex and lower semicontinuous. For the

readers convenience we give a short self-contained proof.

With ψ and φ defined as before, we use that ẑj minimizes the sum ψ + φ, i.e.,

0 6 A(v) = ψ(v)− ψ(ẑj) + φ(v + ẑj)− φ(ẑj) for all v ∈ X.

Since ψ is differentiable we may also consider

B(v) = 〈Dψ(ẑj), v〉+ φ(ẑj + v)− φ(ẑj).



162 M. A. Efendiev, A. Mielke / On the Rate-Independent Limit of Systems with ...

Clearly, B(v) > 0 for all v ∈ X is equivalent to the desired relation (b). Now assume that
B attains a negative value, namely B(v0) < 0. By convexity we conclude B(θv0) ≤ θB(v0)
for θ ∈ [0, 1]. Using ψ ∈ C1(X,R) we easily find A(θv0) = B(θv0)+ o(|θ|) for θ → 0. This
implies A(θv0) < 0 for 0 < θ ¼ 1, which is a contradiction to A(v) > 0 for all v ∈ X.
Hence, we conclude B > 0 and (b) is proved.

The assertion (c) is an immediate consequence of the definition of
(

Ýtj, ẑj
)

. This proves
Proposition 4.2.

Based on Proposition 4.2 we are in the position to construct an approximate solution for
(8)–(10). To this end, for τ ∈

(

τj−1, τj
]

, we define piecewise linear (“plÔ) and piecewise

constant (“pcÔ) interpolants via

Ýt pl
h (τ) := Ýtj−1 + (τ − τj−1)

Ýtj − Ýtj−1

τj − τj−1
, (23)

ẑ pl
h (τ) := ẑj−1 + (τ − τj−1)

ẑj − ẑj−1

τj − τj−1
, (24)

Ýt pc
h (τ) := Ýtj , ẑ

pc
h (τ) := ẑj . (25)

Lemma 4.3. A pair
(

Ýt pl
h (τ), ẑ pl

h (τ)
)

satisfies

0 ∈ ∂∆·‖
(

Ú̂z
pl

h (τ)
)

+DzI
(

Ýt pc
h (τ), ẑ pc

h (τ)
)

, (26)

ÚÝt pl
h (τ) +

∥

∥ Ú̂z
pl

h (τ)
∥

∥ = 1 (27)

on each τ ∈
(

τj−1, τj
)

, j = 1, . . . , N . Moreover we have

I
(

τk, ẑ
pl
h (τk)

)

+

∫ τk

τj

∆
(

Ú̂z
pl

h (s)
)

ds

6 I
(

τj, ẑ
pl
h (τj)

)

+

∫ τk

τj

∂tI
(

Ýt pl
h (s), ẑ pc

h (s)
) ÚÝt pl

h (s) ds .

(28)

Assertions (26) and (27) are the best discrete replacements of (8)–(10) for the time con-
tinuous case.

Proof. Is is easy to see that (26) and (27) are an immediate consequence of Proposition
4.2(b) and (c). As to inequality (28) it is a consequence of the discrete energy inequality
4.2(a). Indeed, for 1 6 j < k 6 N it follows from (a) that

I
(

Ýtk, ẑk
)

− I
(

Ýtj, ẑj
)

+
k

∑

m=j+1

∆
(

ẑm − ẑm−1

)

6
k

∑

m=j+1

∫ Ýtj

Ýtj−1

∂tI
(

s, ẑj
)

ds . (29)

This can be rewritten as

I
(

Ýt pl
h (τk), ẑ

pl
h (τk)

)

− I
(

Ýt pl
h (τj), ẑ

pl
h (τj)

)

+
∑k

m=j+1 ∆
(

ẑ pl
h (τm)− ẑ pl

h (τm−1)
)

6
∫ τk
τj

∂
∂t
I
(

Ýt pl
h (σ), ẑ pc

h (σ)
) ÚÝt pl

h (σ) ds ,

which in turn leads to (28). This proves Lemma 4.3.
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For notational convenience we write
(

Ýth, ẑh
)

instead of
(

Ýt pl
h , ẑ pl

h

)

further on. Taking into

account that ẑh ∈ W1,∞(

[0, ̂T ], X
)

, Ýth ∈ W1,∞(

[0, ̂T ],R
)

are uniformly bounded for all

time increments h = 1
N
, N ∈ N, and using the Arzela–Ascoli theorem, we can extract a

subsequence from Ýth, ẑh (still denoted by Ýth, ẑh) such that

Ýth(τ) converges uniformly to Ýt∗(τ) as h → 0, and

ẑh(τ) converges uniformly to ẑ∗(τ) as h → 0.

Moreover, again using dimX < ∞,

ÚÝth converges weak−∗ to ÚÝt∗ in L∞(

[0, ̂T ],R
)

as h → 0, and

Ú̂zh converges weak−∗ to Ú̂z∗ in L∞(

[0, ̂T ], X
)

as h → 0.

In the same manner as in Section 3, one can show that any limit
(

Ýt∗, ẑ∗
)

in the above

sense of
(

Ýth, ẑh
)

∈ W1,∞(

[0, ̂T ],R×X
)

satisfies

0 ∈ ∂∆‖·‖
(

Ú̂z∗(τ)
)

+DzI
(

Ýt∗(τ), ẑ∗(τ)
)

,

ÚÝt∗(τ) +
∥

∥ Ú̂z∗(τ)
∥

∥ 6 1 .
(30)

Example 4.4. Here we show that, if Assumption 3.4 is violated, then in (30) the strict
inequality may hold. Indeed, let X = R2 and for z = (u,w) we set I(t, z) = −u − w,

∆(z) = |z|1 := |u| + |w|, ‖z‖ = |z|2 :=
√
u2 + w2. In this case M

(

(1, 1)
)

=
{

z =
(

ũ, w̃
) ∣

∣ ũ > 0, w̃ > 0 with |z|2 ≤ 1
}

and | · |2 is not affine on M
(

(1, 1)
)

. Moreover (IP)
given by

ẑk ∈ argmin
|z−ẑk−1|26h

{I(Ýtk−1, z) + |z − ẑk−1|1}

Ýtk := Ýtk−1 + h− |ẑk − ẑk−1|2

with t0 = 0, z0 = (0, 0) has, among others, the following solution

Ýtk = 0, for all k and ẑk =

{(

hk
2
, hk

2

)

, if k even,
(

h(k+1)
2

, h(k−1)
2

)

, if k odd.

Clearly,
∣

∣ẑk − ẑk−1

∣

∣

1
=

∣

∣ẑk − ẑk−1

∣

∣

2
= h and the uniform limit is Ýt∗ ≡ 0, ẑ∗(τ) =

(

τ
2
, τ
2

)

.

Hence, Ú̂z∗(τ) =
(

1
2
, 1
2

)

whereas Ú̂zh(τ) oscillates between (1, 0) and (0, 1). In particular,

ÚÝth + | Ú̂zh|1 = 1 >
1√
2
= ÚÝt∗ + | Ú̂z∗|2

a.e. on
[

0, ̂T
]

. Choosing ‖z‖ = |z|1 = ∆(z) would allow for the same approximating

solutions ẑh with oscillating derivative Ú̂zh. But Assumption 3.4 holds and
∣

∣ Ú̂z∗
∣

∣

1
≡ 1.

As in Section 3 it remains to show that we can reparametrize
(

Ýt∗, ẑ∗
)

such that the

reparametrized solution
(

t̃∗, z̃∗
)

solves problem (8)–(10). Again, we have to show that the

limit functions satisfy ÚL(τ) = ÚÝt(τ) + ‖ Ú̂z(τ)| ≥ c∗ > 0 a.e. on [0, ̂T ]. In complete analogy
to Lemma 3.2 we have the following result.
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Lemma 4.5. Let Condition 2.5 hold and let (Ýt, ẑ) be any limit obtained from (Ýtplh , ẑ
pl
h )

constructed above. Then, there exists c∗ > 0 such that ÚL(τ) ≥ c∗ for a.a. τ ∈ [0, ̂T ].

Proof. The discrete energy inequality (29) and (12) imply

I
(

Ýtk, ẑk
)

− I
(

Ýtj, ẑj
)

+Dj,k 6 CI

(

Ýtk − Ýtj
)

with Dj,k =
∑k

m=j+1 ∆
(

ẑm − ẑm−1

)

,

for 0 6 j < k 6 N . Again using (12) we find Dj,k 6 2CI

(

Ýtk − Ýtj
)

+M
∥

∥ẑk − ẑj
∥

∥ and (11)
leads to

Nj,k 6 1
C∆

(

2CI

(

Ýtk − Ýtj
)

+M
∥

∥ẑk − ẑj
∥

∥

)

with Nj,k =
∑k

m=j+1

∥

∥ẑm − ẑm−1

∥

∥ .

By construction (see Prop. 4.2(c)) we have Nj,k +
(

Ýtk−Ýtj
)

= h(k−j) and conclude

τk − τj = h(k−j) ≤ C∗
(∥

∥ẑk − ẑj
∥

∥+ Ýtk − Ýtj
)

where C∗ = max {1+2CI/C∆,M/C∆} .

Taking the limit as h → 0 and uniform convergence of a subsequence of
(

Ýth(τ), ẑh(τ)
)

to

the limit (Ýt, ẑ) we arrive at

|Ýt∗(τ2)−Ýt∗(τ1)|+
∥

∥ẑ∗(τ2)−ẑ∗(τ1)
∥

∥ > c∗|τ2−τ1| with c∗ = 1/C∗ ,

for all τ1, τ2 ∈ [0, ̂T ]. This gives ÚL(τ) = ÚÝt∗(τ) +
∥

∥ Ú̂z∗
∥

∥ > c∗ and proves Lemma 4.5.

Thus, reparametrization works the same way as in Section 3. Moreover, the arguments
involving the compatibility condition 3.4 (i.e., Lemma 3.5 and Corollary 3.6) apply for
the discrete approximations in exactly the same way. Summarizing, the results of this
section are the following.

Theorem 4.6. Let Condition 2.5 be satisfied. Then, a subsequence of the discrete ap-

proximations
(

Ýtplh , ẑ pl
h

)

converges uniformly to limit function
(

Ýt∗, ẑ∗
)

which is a solution

of (16). The latter, after reparametrization of time, gives a solution of (8)–(10).

Moreover, if ∆ and ‖ · ‖ satisfy the additional compatibility condition 3.4, then
(

Ýt∗, ẑ∗
)

solves (8)–(10) without reparametrization of time.

Example 4.7. Finally we provide a simple one-dimensional example which displays the
different features of our model. Since the function I is nonconvex we will have sticking

( Ú̂z = 0), dry friction (0 < ‖ Ú̂z‖ < 1) and also viscous slips (| ÚÝt| = 0 and ‖ Ú̂z‖ = 1).

Let X = R and ∆(v) = δ|v|, δ > 0, and I(t, z) = J(z)− g(t)z, where

J(z) =











1
2
(z + 2)2 , for z 6 −1,

1− 1
2
z2 , for −1 6 z 6 1,

1
2
(z − 2)2 , for z > 1,

(31)

and g(t) = min {t, 2a− t}, with a > 2 + δ. Then direct computation of the solutions
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PSfrag replacements

J ′(z)

g(t)

Figure 4.1: Stress-strain diagram for the model in Example 4.7: Horizontal lines corre-

spond to sticking ( Ú̂z = 0), lines parallel to the diagonal correspond to motion under dry

friction (0 < | Ú̂z| < 1), and vertical lines correspond to viscously slipping motions (| ÚÝt| = 0).

of (8)–(10), with Ýt(0) = 0, ẑ(0) = −2, leads to

(

Ýt(τ)

ẑ(τ)

)

=























































































































































(

τ

−2

)

in [0, δ], Ú̂z ≡ 0 sticking

(

δ+1
2
(τ−δ)

−2+1
2
(τ−δ)

)

in [δ, 2+δ], Ú̂z ≡ 1
2

dry fric.

(

1+δ

−1+
(

τ−(2+δ)
)

)

, in [2+δ, 4+δ], Ú̂z ≡ 1 viscous

(

1+δ

1+
(

τ−(4+δ)
)

)

in [4+δ, 6+δ], Ú̂z ≡ 1 viscous

(

1+δ+1
2

(

τ−(6+δ)
)

3+1
2

(

τ−(6+δ)
)

)

in [6+δ, 2a+4−δ], Ú̂z ≡ 1
2

dry fric.

(

a+
(

τ−(2a+4−δ)
)

a+2−δ)

)

in [2a+4−δ, 2a+4+δ], Ú̂z ≡ 0 sticking

(

2δ+1
2

(

τ−(4+δ)
)

2−δ−1
2

(

τ−(4+δ)
)

)

in [2a+4+δ, 4a+6−δ], Ú̂z ≡ −1
2
dry fric.

(

2a+δ+1

1−
(

τ−(4a+6−δ)
)

)

in [4a+6−δ, 4a+8−δ], Ú̂z ≡ −1 viscous
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which show possible hysteretic behavior of
(

g
(

Ýt(τ)
)

, J ′(ẑ(τ)
))

, see Figure 4.1.
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