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1. Introduction and statement of results

The classical theorem of Young in one of its versions states that if Ω ⊆ Rn is an open
bounded domain, f : Rm → R is a continuous function vanishing at infinity and uν : Ω →
Rm is a sequence of measurable functions which satisfies tightness condition (see formulae
(6) below) then there exists a subsequence {uk} of {uν} such that the sequence {f(uk)}
converges ∗-weakly in L∞(Ω) to the function f determined by an integral formula

f(x) =

∫

Rm

f(λ)µx(dλ), (1)

where µx are probability measures on Rm depending measurably on x ∈ Ω independent
of f (see e.g. [4], [16], [31], [34], [38]).

The discovery that the weak limit of {f(uk)} can be represented as an integral given
by (1) turned out to be widely applicable in many disciplines of analysis such as calcu-
lus of variations, partial differential equations, optimal control theory, game theory and
numerical analysis, see for example [3, 9, 10, 28, 31, 34] and their references.

Up to now the theorem of Young has evolved in many directions. Let me mention two of
them, which are related to this work (I refer to Chapter 3 of [34] and references therein
for their detailed description, as well as for description of some other generalizations):

1. Diperna and Majda [8] assume that the sequence uν : Ω → Rm is bounded in Lp(Ω)
(where 1 ≤ p < ∞ ) and f is of the form f̃(λ)(1+|λ|p) where f̃ is continuous and bounded
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on Rm. Then the limit of {f(uν)} does not belong to L1(Ω) but it belongs to the space
of measures on Ω. Its restriction to the subspace of measures on Ω can be identified with

∫

γRm

f̃(λ)ν̃x(dλ)m̃, (2)

where m̃ is a measure on Ω generated by the sequence {uν} (it does not depend on f),
γRm is some compactification ofRm, f̃ : γRm → R is the continuous function (it depends
on f) and {ν̃x}x∈Ω are probability measures on γRm which are independent of f .

2. Alibert and Bouchitté [1] present the detailed analysis of Diperna and Majda ap-
proach in the case when a compactification γRm of Rm is homeomorphic to the unit
m-dimensional ball, so that Sm−1 is the remainder. Their techniques allow also to study
oscillation effects for sequences. It is shown (roughly speaking) that the measure obtained
as a limit of {f(uν)} can be recorded in the space of measures on Ω and describes as

∫

Rm

f(λ)µx(dλ)dx+

∫

Sm−1

f∞(λ)ν̃x(dλ)m̃, (3)

where m̃ is the measure on Ω generated by the sequence (independent of f), f∞(λ) =
limt→∞ f(tλ)/t is assumed to be the continuous function on Sm−1 , {ν̃x}x∈Ω is a fam-
ily of probability measures on Sm−1 and {µx}x∈Ω are classical Young measures, identical
with those in the classical theorem of Young. In particular the restriction of the mea-
sure given by (3) to the space of measures on Ω gives the formulae (2) for this specific
compactification.

For some other interesting works handling DiPerna-Majda measures we refer e.g. to [20,
21].

In all approaches mentioned above it is assumed that f is continuous. Then it is natural
to ask what can be said about the limit of {f(uν)} if f is allowed to be discontinuous.
In this paper we deal with such a situation. If the sequence uν tends to some function
u in measure then the answer is given by the Convergence Theorem, the powerful tool
in Set-Valued analysis (see e.g. Chapter 7.2 in [2]). Some other related results, where
the assumption that the sequence {uν} converges in the measure is violated, are also
known. The general technique by Fattorini, see e.g. Sect. 12.5 in [10] admits the function
f : Rm → R to be continuous with respect to an arbitrary normal topology in Rm. In
particular even the discrete topology is possible and the function f under consideration
can be discontinuous with respect to the conventional Euclidean topology. Some other
approaches can be found in the works of Balder, see e.g. [3], and also in the works by
Chentsov, see e.g. [6], where essentially more abstract constructions are discussed. In all
the works mentioned above the concentration effects have not been studied.

Our approach in its simplest variant can be explained in the following way (the exact
formulation is given in Theorem 3.1). Function f may be discontinuous but it must
be “piecewise continuousÔ i.e. continuous on Borel subsets Ai (where i ∈ {1, . . . ,m})
whose union is the whole of Rm. We set fi := fχAi

and deal with sequences which take
their values in a compactification γAi of the set Ai. Then we apply techniques known
from Diperna and Majda and Alibert and Bouchitté approaches to represent the limit of
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{fi(uν)} in the space of measures on Ω in the similar way as in in (2) by

∫

γAi

f̃i(λ)ν̃
i
x(dλ)m̃

i, (4)

where m̃i is the measure on Ω generated by the sequence {uν} (it does not depend on
f), f̃i : γAi → R is the continuous function (determined by fi) and ν̃i

x are probability
measures on γAi. Next, applying techniques of Alibert and Bouchitté we recognize that
(4) reads as

∫

intAi

f(λ)µx(dλ)(dx) +

∫

∂Ai∩Ai

f(λ)νi
x(dλ)m

i(dx) +

∫

γAi\Ai

f̃i(λ)ν
i
x(dλ)m

i(dx) (5)

with measuresmi, mi defined on Ω and probability measures νi
x, ν

i
x, µx defined on ∂Ai∩Ai,

γAi \ Ai and Rm respectively (where µx are the same as in the theorem of Young), all:
mi, mi and νi

x, ν
i
x, µx are independent of f , the set γAi \Ai is the remainder (see Section

2 for the detailed explanation).

Finally we sum up the limits of {fi(uν)} together with respect to i and obtain the repre-
sentation of the limit of {f(uν)}.
Note that we do not compactify the whole Rm as it was done in the previously discussed
approaches, but each set Ai separately. In particular our embedding of Rm equipped with
the conventional Euclidean topology into its compactification need not to be continuous.
However, it is continuous if one equips Rm with some finer topology than the Euclidean
one.

Like in [1] we study also the oscillation effects for {f(uν)} and similarly as in [1] the
classical Young measures {µx}x∈Ω appear in the representation formulae (5) for new Young
measures.

This main result is presented in Section 3. In Section 4 we discuss the cases when f
has its discontinuities in a finite number of points and along a submanifold and also the
relations of our theorem with Convergence Theorem.

The presented approach is dictated by a range of nonlinear PDE’s with discontinuous con-
straints. Such equations appear naturally in many physical models such as the Savage-
Hutter model of the granular flow, see e.g. [12, 15, 17, 19], the phase flow in porus medias
with discontinuous flux function, see e.g. [24, 32]), hysteresis problems, see e.g. [14, 26],
traffic flow analysis, see e.g. [23], debonding of adhesive joints, the delimination of mul-
tilayered plates, the ultimate strength of fiber reinforced structures or the nonstationary
heat conduction equation, see e.g. [30, 27], or dislocations of cracks in geophysics, see
e.g. [29]. It seems natural to apply the non-classical Young measures in hyperelastic-
ity theory, where the typical stored energy function W defined on 3× 3 matrices satisfies
W (F ) → +∞ as detF → 0+ (see e.g. Chapter 4, pages 137–138 in [5]), or one could study
non-Newtonian fluids with discontinuous constrains (we refer to [25], [36] for the related
theory with continuous constrains). I think it is possible now to construct measure-valued
solutions of PDE’s with discontinuous constraints by using the non-classical Young mea-
sures (see e.g. [7], [25] for the related theory with the classical Young measures involved).
I refer also to [11], [13] for some other related works.
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Thus, to my opinion, it would be natural to study PDE’s with discontinuous constrains
by using the non-classical Young measures. I hope that this work will contribute to such
an approach.

2. Preliminaries and notation

Let A be a subset of the Euclidean space. We use the standard notation: C(A), C0(A)
to denote continuous and continuous vanishing at infinity (if A is unbounded) functions
on A respectively. The open ball with center a and radius R is denoted by B(a,R).
Similar notation is reserved for the m − 1 dimensional spheres Sm−1(a,R) and rings
P (a, r, R) = {x : r < |x− a| < R}. If a = 0 then we omit a in our notation. The closure
of the set S ⊆ RK is denoted by S. If A ⊆ Rm is an arbitrary subset and the scalar
function f is defined on arbitrary set containing A by fχA we mean the function equal
to f on A and extended by 0 outside A.

Let S ⊆ RK be the Borel subset of the Euclidean space. By M(S) we denote the space
of Radon measures on S, while P(S) is its subset consisting of probability measures. If
µ ∈ M(S) and f is µ-measurable, we denote (f, µ) :=

∫

S
f(λ)µ(dλ).

If µ ∈ M(S) and K ⊆ S is the measurable subset of S, by µ∠K we mean the restriction
of µ to K, i. e. (µ∠K)(A) = µ(A ∩K).

If C ⊆ RM is a Borel subset, φ : S → C is a Borel-measurable mapping and µ ∈ M(S),
by φ∗(µ) we denote the pushforward of the measure µ to M(C), that is (φ∗µ)(K) =
µ(φ−1(K)) if K is the Borel subset of C.

Arrows→,⇀,
∗
⇀ are used to denote the strong, weak, and weak ∗ convergence respectively

in the given topology.

Recall that the compact topological space γA is the compactification of the topological
space A if there is the dense homeomorphical embedding Φ : A → Φ(A) ⊆ γA (see e.g.
[22]). If not causing a misunderstanding we will also write A instead of Φ(A) and γA \A
instead of γA \ Φ(A).
If S is a Borel subset of Rk, by L∞

w∗(Ω,M(S), µ) we denote the set of families {µx}x∈Ω
of Radon measures on S which are weakly ∗ µ-measurable in the sense of Pettis i.e. for
every f ∈ C(S) the mapping x 7→

∫

S
f(λ)µx(dλ) is µ-measurable (see e.g. Definition

1 of Section V.4 in [37]). The symbol P(Ω, S, µ) stands for such families of measures
{µx}x∈Ω ∈ L∞

w∗(Ω,M(S), µ) which satisfy ‖µx‖M(S) = 1 µ-almost everywhere.

At the end of this section we state one version of the classical theorem of Young (see e.g.
[4], [16], [3, Lemma 4.11 and Corollary 5.4] and [1] for its various formulations).

Theorem 2.1. Let Ω be an open bounded subset of Rn and {uν}ν∈N be a sequence of µ-
measurable functions, uν : Ω → Rm . Then there exists a subsequence of {uν}ν∈N still
denoted by the same expression and a family of measures {µx}x∈Ω ∈ L∞

w∗(Ω,M(Rm), µ)
such that ‖µx‖M(Rm) ≤ 1 for µ almost all x and for every function f ∈ C0(Rm) we have

f(uν)
∗
⇀ (x 7→ (f, µx)) in L∞(Ω, µ), as ν → ∞.

If additionally the sequence {uν}ν∈N satisfies the tightness condition:

lim sup
ν∈N

µ({x ∈ Ω : |uν(x)| ≥ r}) r→∞→ 0, (6)
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then ‖µx‖M(Rm) = 1 for µ almost all x.

We say that the sequence {uν} where uν : Ω → Rm generates the Young measure
{µx}x∈Ω ∈ L∞

w∗(Ω,M(Rm), µ) if for every f ∈ C0(Rm) the sequence {f(uν)} converges
weakly ∗ in L∞(Ω, µ) to the function f : x 7→

∫

Rm f(λ)µx(dλ).

3. The main result

We start by introducing general assumption we will use in the sequel.

Condition A.

1. There exist disjoint Borel subsets: A1, . . . , Ak called bricks such that Rm = ∪k
i=1Ai.

2. Each Ai is compactified by some γAi ⊆ RNi where Ni ∈ N, with the help of the dense
homeomorphic embedding Φi : Ai → Φi(Ai) ⊆ γAi.

3. We equip Rm with density function g : Rm → [0,∞) such that gi := g|Ai
∈ C(Ai) and

gi(λ) ≥ α for every λ ∈ Ai ∩ ∂Ai and some α > 0.

We will deal with the following Banach space of admissible functions:

F := {f : Rm → R : f̃i := (f/gi) ◦ Φ−1
i ∈ C(γAi) for i = 1, . . . , k}, (7)

equipped with the supremum norm of the f̃i. The notation f̃i ∈ C(γAi) means that the
function (f/gi) ◦ Φ−1

i is the restriction of some continuous function defined on γAi to
Φi(Ai) (if gi(λ0) = 0 for some λ0 by (f/gi)(λ0) we understand the limit of f/gi at λ0 if it
exists). As this function is uniquely defined we will denote it by the same expression: f̃i.

Let us remark that even if all the Ni’s are equal to the same number N and sets γAi ⊆ RN

are disjoint, the natural “embeddingÔ Φ : Rm → ∪k
i=1γAi defined by Φ(λ) = Φi(λ) for

λ ∈ Ai in most cases will not be continuous. Hence the set ∪k
i=1γAi in general does

not compactify Rm with the conventional Euclidean topology. On the other hand, it
is the compactification of Rm if we equip Rm with some finer topology, which allows
discontinuities between fixed Borel subsets {Ai}.
Our main result reads as follows.

Theorem 3.1 (Representation Theorem). Suppose that Ω ⊆ Rn is the compact set
equipped with the Radon measure µ and Condition A with bricks {Ai} and density function
g on Rm is satisfied. Assume further that there is given the sequence {uν} of µ-measurable
functions, uν : Ω → Rm which satisfies the condition

supν

∫

Rm

g(uν)µ(dx) < ∞, (8)

and additionally the tightness condition (6). Then there exist

i) a subsequence of {uν} denoted by the same expression,

ii) measures mi,mi ∈ M(Ω), such that mi is absolutely continuous with respect to µ
and suppmi ⊆ suppµ for i ∈ {1, . . . , k},

iii) families of probability measures {µx}x∈Ω ∈ P(Ω,Rm, µ), {νi
x}x∈Ω ∈ P(Ω, ∂Ai∩Ai, µ)

and {νi
x}x∈Ω ∈ P(Ω, γAi \ Ai,m

i) where i ∈ {1, . . . , k}



182 A. Kałamajska / On Young Measures Controlling Discontinuous Functions

such that for an arbitrary f ∈ F the subsequence {f(uν(x))µ(dx)} converges weakly ∗ in
the space of measures to the measure represented by

k
∑

i=1

(∫

intAi

f(λ)µx(dλ)µ(dx) +

∫

∂Ai∩Ai

f(λ)νi
x(dλ)m

i(dx) +

∫

γAi\Ai

f̃i(λ)ν
i
x(dλ)m

i(dx)

)

,

(9)
where f̃i is defined by (7). Moreover, measures {µx}x∈Ω are the classical Young measures
generated by the sequence {uν}.

Remark 3.2. As f = (f/g)g and f/g is the bounded function we observe that the
sequence f(uν)µ is bounded in the space of measures.

In the sequel we will use the following lemma. Its proof is presented in the Appendix.

Lemma 3.3. Let Ω ⊆ Rn be the compact set equipped with the Radon measure µ. Assume
that A is the Borel subset of Rn, Φ : A → Φ(A) ⊆ γA is the homeomorphical embedding
of A into its compactification γA, g ∈ C(A) is the nonnegative function.

Let {uν} : Ω → Rm be the given sequence of µ-measurable functions which satisfies the
condition

supν

∫

x:uν(x)∈A
g(uν)µ(dx) < ∞,

and generates the classical Young measure {µx}x∈Ω. Define the sequence of measures
{Lν}ν∈N on Ω× γA by the expression

(F,Lν) :=

∫

{x:uν(x)∈A}
F (x,Φ(uν(x)))g(uν(x))µ(dx), where F ∈ C(Ω× γA). (10)

Then we have:

i) There exists a subsequence of {Lν} still denoted by the same expression, mea-
sures L ∈ M(Ω × γA), m̃ ∈ M(Ω) and a family of probability measures {ν̃x} ∈
P(Ω, γA, m̃) such that

Lν ∗
⇀ L in M(Ω× γA), (11)

(F,L) =

∫

Ω

∫

γA

F (x, λ)ν̃x(dλ))m̃(dx) where F ∈ C(Ω× γA), (12)

supp m̃ ⊆ suppµ. (13)

ii) Let m̃ = p(x)µ + m̃s be the Lebesgue-Nikodym decomposition of m̃ with respect to
µ. Then if γA \ A 6= ∅ we have ν̃x(γA \ A) = 1 for m̃s almost all x ∈ Ω, while if
γA \ A = ∅ we have m̃s = 0.

iii) Assume that the set U = intA is not empty and let U0 = Φ(U). If f ∈ C(γA) is
such that the function F (λ) = f(Φ(λ))g(λ)χλ∈U belongs to C0(Rm), then we have

∫

U

f(Φ(λ))g(λ)µx(dλ) = p(x)

∫

U0

f(λ)ν̃x(dλ), (14)

for µ-almost all x ∈ Ω. In particular if we denote ν̃0
x = ν̃x∠U0 ∈ M(U0), µ0

x =
g(λ)(µx∠U)(dλ) ∈ M(U), then for µ almost all x ∈ Ω, we have

Φ∗(µ0
x) = p(x)ν̃0

x in M(U0). (15)
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Proof of Theorem 3.1. We may assume that f does not vanish on one of the bricks:
A = Ai only (substitute f = fχ{λ∈A}). To abbreviate we will omit the index “iÔ in the
proof.

Let uν(x) ∈ A. We have

f(uν(x)) =
f

g
(uν(x))g(uν(x)) = F (Φ(uν(x))g(uν(x)),

where F = (f/g) ◦ Φ−1. According to Lemma 3.3, we have

f(uν(x))µ(dx)
∗
⇀

∫

γA

F (λ)ν̃x(dλ)m̃(dx) = A, (16)

where m̃ and {ν̃x}x∈Ω are the same as in Lemma 3.3. Using the Lebesgue-Nikodym’s
decomposition of m̃ with respect to µ as in Lemma 3.3 we verify that

A =

∫

γA

F (λ)ν̃x(dλ)p(x)µ(dx) +

∫

γA\A
F (λ)ν̃x(dλ)m̃s(dx).

Since the first integral is the sum of two: the one over U0 = Φ(intA) and the second over
γA \ U0 denoted by γA \ intA, we derive from Lemma 3.3 that

A =

∫

intA

f(λ)µx(dλ)µ(dx) +

∫

γA\intA
F (λ)ν̃x(dλ)p(x)µ(dx)

+

∫

γA\A
F (λ)ν̃x(dλ)m̃s(dx) = A1 +A2 +A3. (17)

Decomposing further: γA \ intA = (γA \A)∪ ((γA \ intA) \ (γA \ A)), noting that (γA \
intA) \ (γA \A) = Φ(A) \ Φ(intA) = Φ(∂A ∩A), and recalling that m̃ = p(x)µ+ m̃s, we
see that

A2 +A3 =

∫

Φ(∂A∩A)

F (λ)ν̃x(dλ)p(x)µ(dx) +

∫

γA\A
F (λ)ν̃x(dλ)m̃(dx) = B1 + B2. (18)

Let h(x) = ν̃x(γA \ A), Ω1 = {x ∈ Ω : h(x) 6= 0}, and choose y ∈ γA \ A. Then the
second term in (18) can be modified to

B2 =

∫

γA\A
F (λ)νx(dλ)m(dx), (19)

where νx is such that for every G ∈ C(γA \ A) we have

(G, νx) =

{ 1
ν̃x(γA\A)

∫

γA\AG(λ)ν̃x(dλ) if x ∈ Ω1

G(y) if x 6∈ Ω1,
(20)

and m(dx) = h(x)m̃(dx). Now we deal with first term in (18). Let

w(x) =

∫

Φ(∂A∩A)

1

g(Φ−1(λ))
ν̃x(dλ).
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Since we assume that g(λ) > α if λ ∈ ∂A ∩ A, it follows that w(x) is well defined for µ-
almost all x ∈ Ω. Choose an arbitrary a ∈ ∂A∩A, set Ω2 = {x ∈ Ω : ν̃x(Φ(∂A∩A)) > 0},
and define the measure νx by

(G, νx) =

{ 1
w(x)

∫

Φ(∂A∩A)
(G/g)(Φ−1(λ))ν̃x(dλ) if x ∈ Ω2

G(a) if x 6∈ Ω2,
(21)

where G ∈ C(∂A ∩ A). Then

B1 =

∫

∂A∩A
f(λ)νx(dλ)q(x)µ(dx), (22)

where q(x) = w(x)p(x). Now the result follows from (17), (18), (19) and (22). £

We end this section with the following remark.

Remark 3.4. 1. If we do not assume that tightness condition (6) is satisfied then rep-
resentation formulae (9) still holds true but Young measures {µx}x∈Ω are not necessar-
ily probability measures. They belong to L∞

w∗(Ω,M(Rm), µ) and satisfy the condition
‖µx‖M(Rm) ≤ 1.
2. If g(λ) → ∞ as λ → ∞ then the condition (8) implies tightness condition (6). Essen-
tially, let C = supν

∫

Rm g(uν)µ(dx), take an arbitrary ε > 0, and choose L > 0 such that
g(λ) > Cε−1 if |λ| > L. Then applying Chebyshev’s inequality we have

µ({x : |uν(x)| > L}) ≤ µ({x : g(uν(x)) > Cε−1}) ≤ ε/C

∫

Rm

g(uν)µ(dx) ≤ ε,

which implies the tightness condition (6).

4. The special cases

In this section we are going to illustrate Theorem 3.1 on three examples: when f is
continuous, when it is allowed to have finitely many discontinuity points and when f can
be discontinuous along a submanifold.

The following result is an abbreviated version of Theorem 2.5 in [1] obtained by Alibert
and Bouchitte. We present its proof as the consequence of of Theorem 3.1, but let us
mention that our proof of Theorem 3.1 was inspired by techniques presented in the proof
of Theorem 2.5 in [1].

Theorem 4.1. Let Ω ⊆ Rn be the compact subset equipped with the Borel measure µ and
{uν}ν∈N be the sequence bounded in L1(Ω,Rm, µ). Define

F := {f ∈ C(Rm) : f∞(λ) := lim
t→∞

f(tλ)

t
∈ C(Sm−1)}.

Then there exists

• a subsequence {uν}ν∈N denoted by the same expression,

• a positive measure m ∈ M(Ω) such that suppm ⊆ suppµ,

• families of probability measures {µx}x∈Ω ∈ P(Ω,Rm, µ) and
{ν∞

x }x∈Ω ∈ P(Ω, Sm−1,m)
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such that for an arbitrary f ∈ F the sequence {f(uν)µ(dx)} converges weakly ∗ in the
space of measures to the measure represented by:

∫

Rm

f(λ)µx(dλ)µ(dx) +

∫

Sm−1

f∞(λ)ν∞
x (dλ)m(dx).

Moreover, {µx}x∈Ω are Young measures generated by {uν}ν∈N.

Proof. We apply Theorem 3.1. In this case Condition A is satisfied with one brick: A =
Rm and dense homeomorphic embedding Φ : Rm → Φ(Rm) = B(1) ⊆ B(1) = γRm ⊆
Rm, given by Φ(λ) = λ

1+|λ| , and Rm is equipped with density function g(λ) = 1 + |λ|.
Then we have γRm\Rm = Sm−1 and Φ−1(λ) = λ

1−|λ| for λ ∈ B(1). It is easy to verify that

for λ ∈ Sm−1 and 0 < s < 1 the function f/g ◦ Φ−1(sλ) tends as s → 1 to f̃(λ) = f∞(λ),
so it suffices to apply formulae (9). £

Now we will study the weak limit of {f(uν)µ}ν∈N in the case when f is allowed to have
a finite number of discontinuity points. In such case we have the following result.

Theorem 4.2. Let Ω ⊆ Rn be the compact subset equipped with the Borel measure µ and
{uν}ν∈N be the sequence bounded in L1(Ω,Rm, µ). Assume that B1, . . . , Bk ∈ Rm, define
radial limits of the given function f at ∞ and at Bi by expressions

f∞(θ) := lim
t→+∞

f(tθ)

t
and fi(θ) := lim

t→0+
f(tθ +Bi), θ ∈ Sm−1

and set

F :={f ∈ C(Rm \ {B1, . . . , Bk}) : f∞ ∈ C(Sm−1)

and fi ∈ C(Sm−1) for i ∈ {1, . . . , k}}.

Then there exist:

• a subsequence {uν}ν∈N denoted by the same expression,

• a positive measure m ∈ M(Ω) such that suppm ⊆ suppµ,

• µ-measurable functions pi, qi : Ω → [0, 1] where i = 1, . . . , k,

• families of probability measures {µx}x∈Ω ∈ P(Ω,Rm, µ) and {ν∞
x }x∈Ω, {νi

x}x∈Ω ∈
P(Ω, Sm−1, µ) where i ∈ {1, . . . , k}

such that for an arbitrary f ∈ F the sequence {f(uν)µ} converges weakly ∗ in the space
of measures to the measure represented by

∫

Rm\{B1,...,Bk}
f(λ)µx(dλ)µ(dx) +

∫

Sm−1

f∞(λ)ν∞
x (dλ)m(dx)

+
k

∑

i=1

∫

Sm−1

fi(λ)ν
i
x(dλ)pi(x)µ(dx) +

k
∑

i=1

f(Bi)qi(x)µ(dx). (23)

Moreover, {µx}x∈Ω is the Young measure generated by the sequence {uν}ν∈N and pi(x) +
qi(x) = µx({Bi}) for µ-almost all x. In particular we have

k
∑

i=1

pi(x) +
k

∑

i=1

qi(x) =
k

∑

i=1

µx(Bi) ≤ 1



186 A. Kałamajska / On Young Measures Controlling Discontinuous Functions

for µ-almost all x.

Proof. Let r, R ∈ R, set θi(λ) :=
λ−Bi

|λ−Bi| for i = 1, . . . , k and define the following sets

Ui = B(Bi, r), where i = 1, . . . , k, Uk+1 = Rm \B(R),

U0 = {λ ∈ Rm : |λ| < 2R, |λ−Bi| > r/2}.

Take r and R such that sets: U1, . . . , Uk+1 are disjoint. Since U0, U1, . . . , Uk+1 is the open
covering of Rm we may find the continuous partition of unity subordinate to this covering
denoted by {φr}r=0,...,k+1.

After decomposing f =
∑

i φif , it suffices to prove that the result is true if either 1):
f ∈ C(Rm) and B1, . . . , Bk 6∈ supp f or 2): f ∈ C(Rm \ {Bi}) and suppf ⊆ B(Bi, r).

In the first case it suffices to apply Theorem 4.1 (then all the fi’s are 0 and f(Bi) = 0 in
(23)).

In the second one we decomposeRm by three bricks: A1 = P = B(Bi, r)\{Bi}, A2 = {Bi},
A3 = Rm \B(Bi, r) and construct dense homeomorphic embeddings Φj : Aj → Φj(Aj) ⊆
γAj (j = 1, 2, 3) where

Φ1(λ) = φ(ri(λ))θi(λ) : P → P (0, r) ⊆ B(r) with φ(s) = −s+ r,

in particular, Φ1(A1) = P (0, r) and γA1 = B(r), γA1 \ A1 = {0} ∪ Sm−1 (we add the
sphere Sm−1 at {Bi} and shrink Sm−1(Bi, r) to the point); an embedding Φ2 is just
the identity function, so that Φ2(A2) = {Bi} = γA2 and γA2 \ A2 = ∅; an embedding
Φ3 : A3 → Φ3(A3) ⊆ γA3 is defined in an arbitrary way.

We equip Rm with density function g(λ) ≡ 1 on A1 ∪A2 and g(λ) = 1+ |λ| on A3. Then
we recognize that the function

(

fχλ∈A1

g

)

◦ Φ−1
1 : P (0, r) → R

extends to the function f̃1 on the ball B(r) such that f̃1(λ)({0}) = 0, f̃1(λ) = fi(λ) for
λ ∈ Sm−1. Moreover, we have f̃3(λ) = 0 as f ≡ 0 on A3. Applying Theorem 3.1 we see
that (after passing to the subsequence) the sequence {f(uν)µ} converges weakly ∗ in the
space of measures to the measure M = M1 +M2 +M3 where

M1 =

∫

P (Bi,r)\{Bi}
f(λ)µx(dλ)µ(dx) +

∫

{Bi}∪Sm−1(Bi,r)

f(λ)ν1
x(dλ)m

1(dx)

+

∫

{0}∪Sm−1

f̃1(λ)ν
1
x(dλ)m

1(dx) =

∫

Rm\{Bi}
f(λ)µx(dλ)µ(dx)

+f(Bi)ν
1
x(Bi)m

1(dx) +

∫

Sm−1

fi(λ)ν
1
x(dλ)m

1(dx).

M2 = f(Bi)m2(dx) and M3 ≡ 0.

Moreover, as the sequence {f(uν)} is bounded, we see that the measure m1(dx) must be
absolutely continuous with respect to the measure µ. This gives:

M =

∫

Rm\{Bi}
f(λ)µx(dλ)µ(dx) +

∫

Sm−1

fi(λ)ν
1
x(dλ)pi(x)µ(dx) + f(Bi)qi(x)µ(dx),
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where pi and qi are such that m1(dx) = pi(x)µ(dx) and qi(x)µ(dx) = ν1
x({Bi})m1(dx) +

m2(dx). This implies (23).

Let me prove the last assertion. Take f ∈ C0(Rm) such that suppf ⊆ B(Bi, r) and f ≡ 1
in some neighborhood of Bi. According to (23) we have:

f(uν)µ(dx)
∗
⇀

(∫

B(Bi,r)\{Bi}
f(λ)µx(dλ) + pi(x) + qi(x)

)

µ(dx).

On the other hand, using the classical Young’s theorem we observe that

f(uν) ⇀

∫

B(Bi,r)

f(λ)µx(dλ) in L1(Ω, µ).

Thus pi(x)+ qi(x) =
∫

{Bi} f(λ)µx(dλ) = µx({Bi}) and the proof of theorem is finished. £

As the special case of the presented above situation let us deal with the sequence of scalar
functions. Then we have the following conclusion.

Corollary 4.3. Let Ω ⊆ Rn be the compact subset equipped with the Borel measure µ
and {uν}ν∈N be the sequence bounded in L1(Ω, µ). Assume that B1, . . . , Bk ∈ R and let
the left and right hand side limits of the given function f at B be denoted by f−(B) and
f+(B). Set

F :={f ∈ C(R \ {B1, . . . , Bk}) : lim
t→∞

|f(t)/t| = 0

and f−(Bi) and f+(Bi) are well defined for i = 1, . . . , k}.

Then there exist:

• a subsequence {uν}ν∈N denoted by the same expression,

• families of probability measures {µx}x∈Ω ∈ P(Ω,R, µ)

• µ-measurable functions p−i , p
+
i , qi : Ω → [0, 1]

such that for an arbitrary f ∈ F the sequence {f(uν)} converges weakly in L1(Ω) to the
function

f(x) =

∫

R\{B1,...,Bk}
f(λ)µx(dλ) +

k
∑

i=1

(

f−(Bi)p
−
i (x) + f+(Bi)p

+
i (x) + f(Bi)qi(x)

)

.

Moreover, {µx}x∈Ω is the Young measure generated by the sequence {uν}ν∈N and p−i (x)+
p+i (x) + qi(x) = µx({Bi}) for µ-almost all x.

Proof. This follows from Theorem 4.2 if we note that under our assumptions we have
f∞ ≡ 0, S0 = {−1, 1} and

∫

S0 f
i(λ)νi

x(dλ) = f−(Bi)ν
i
x({−1}) + f+(Bi)ν

i
x({+1}). Thus

it suffices to apply (23) and put p−i (x) = νi
x({−1})pi(x), p+i (x) = νi

x({+1})pi(x). £

Remark 4.4. If we additionally assume in Corollary 4.3 that uν → u(x) in the measure
we obtain that f(x) belongs to the convex hull of the set of accumulation points of f at
u(x). Essentially, it is known that in such case we have: µx = δu(x) for µ almost all x (see
e.g. [16]). Thus, if u(x) 6= Bi we have p−i (x) = p+i (x) = q(x) = 0, while if u(x) = Bi we
have p−i (x) + p+i (x) + qi(x) = 1. Hence if u(x) 6∈ {B1, . . . , Bk} we have: f(x) = f(u(x)),
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while if u(x) = Bi for some i ∈ {1, . . . , k} then f(x) is the convex combination of f−(Bi),
f+(Bi) and f(Bi). This gives the version of the Convergence Theorem from Set-Valued
Analysis (see e.g. Chapter 7.2 in [2]) restricted to the considered by us class of functions.
Note that quantities: p−i (x), p

+
i (x) and qi(x) depend on the sequence {uν} only and are

the same for all f ∈ F . Thus our statement is a little more precise than that of the
classical Convergence Theorem. Further analysis in this direction will be presented in the
forthcoming paper ([18]).

We end this section with the following theorem. Its simple but rather technical proof is
left to the reader. Obviously, it is possible to construct many examples of similar nature
and generalize the presented ones in various directions.

Theorem 4.5. Suppose that Ω ⊆ Rn is the compact subset equipped with the Borel mea-
sure µ and {uν}ν∈N is the sequence such that supν‖uν‖L∞(Ω,Rm,µ) < ∞. Assume that M ⊆
Rm is a smooth, bounded and closed k-dimensional submanifold. Let (Y1)λ, . . . , (Ym−k)λ
be an orthonormal basis in the normal space to M at λ ∈ M such that the mapping M 3
λ 7→ ((Y1)λ, . . . , (Ym−k)λ) is continuous. Define the following expression for f : Rm → R

Ýf(λ, θ) := lim
t→0+

f(λ+ t
m−k
∑

i=1

θi(Yi)λ) where θ = (θ1, . . . , θm−k) ∈ Sm−k−1.

and let us consider the following class of functions

F := {f : Rm → R : f ∈ C(Rm \M) ∩ C(M) and for every (λ, θ) ∈ M × Sm−k−1

the mapping Ýf(λ, θ) is well defined, Ýf(λ, θ) ∈ C(M × Sm−k−1) and lim
λ→∞

f(λ) = 0}.

Then the following statements hold.

i) There exists a subsequence {uν}ν∈N still denoted by the same expression, the family
of probability measures {µx}x∈Ω ∈ P(Ω,Rm, µ), {νx}x∈Ω ∈ P(Ω,M, µ), {νx}x∈Ω ∈
P(Ω,M × Sm−k−1, µ) and µ-measurable functions: p, q : Ω → [0, 1] such that for an
arbitrary f ∈ F the sequence {f(uν)} converges weakly ∗ in L∞(Ω) to the function

f(x) =

∫

Rm\M
f(λ)µx(dλ) +

∫

M

f(λ)νx(dλ)p(x)

+

∫

M×Sm−k−1

Ýf(λ, θ)νx(dλ, dθ)q(x).

Moreover, {µx}x∈Ω is the Young’s measure generated by the sequence {uν}ν∈N, and
p(x) + q(x) = µx({M}) for µ-almost all x ∈ Rm.

ii) If k = m − 1 there exist families of measures: {µx}x∈Ω ∈ P(Ω,Rm, µ), {ν1
x}x∈Ω,

{ν2
x}x∈Ω, {νx}x∈Ω ∈ P(Ω,M, µ), and µ-measurable functions:

q1, q2, p : Ω → [0, 1] such that for an arbitrary f ∈ F the sequence {f(uν)} converges
weakly ∗ in L∞(Ω) to the function

f(x) =

∫

Rm\M
f(λ)µx(dλ) +

∫

M

f(λ)νx(dλ)p(x)

+

∫

M

f+(λ)ν1
x(dλ)q1(x) +

∫

M

f−(λ)ν2
x(dλ)q2(x),
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where f+(λ) = limt→0+ f(λ + tYλ), f
−(λ) = limt→0+ f(λ − tYλ) and Yλ is the or-

thonormal vector to M at λ.
Moreover, {µx}x∈Ω is the Young’s measure generated by the sequence {uν}ν∈N and
p(x) + q1(x) + q2(x) = µx(M) ≤ 1 for µ almost all x.

5. Appendix

Proof of Lemma 3.3. The proof of parts i) and ii) is a little modification of the proof
of Proposition 4.1 given in [1], but for reader’s convenience we include it.

“i):ÔThe existence of the measure L satisfying (11) follows from Banach-Alaoglu’s theorem
(see e.g. [35], page 131), as the space of measures on Ω×γA is dual to the separable space
C(Ω× γA) and the sequence of measures {Lν} is bounded.

Let m̃ be the projection of L onto M(Ω), that is (h, m̃) =
∫

Ω×γA
h(x)L(dx, dλ) for every

h ∈ C(Ω). By the slicing measure argument ([33]) there exists the family of positive
measures {ν̃x}x∈Ω ∈ L∞

w∗(Ω,M(γA), m̃) such that the representation formula (12) holds.
We will show that ν̃x are probability measures m̃ almost everywhere. Take F (x, λ) = h(x)
where h ∈ C(Ω) and substitute it to (10). We get from (12):

(h, m̃) = (F,L) =

∫

Ω

h(x)(

∫

γA

1ν̃x(dλ))m̃(dx).

Since h was taken arbitrary, we deduce that ν̃x(γA)m̃(dx) = m̃(dx) inM(Ω). This implies
that ν̃x(γA) = 1, for m̃ almost all x ∈ Ω.

“ii):Ô Assume that γA\A 6= ∅ and let F (λ) := dist(λ, γA\A) = dist(λ, γA \ A) ∈ C(γA).

At first we note that the sequence {hν} defined by hν(x) = F (Φ(uν(x)))g(uν(x)) if uν(x) ∈
A and hν(x) = 0 otherwise is uniformly integrable in L1(Ω, µ). Essentially, let A∗

ε = {λ ∈
A : dist(Φ(λ), γA \ A) < ε}. Then for every K ∈ R+ we have

∫

{|hν(x)|>K} |h
ν(x)|µ(dx) =

∫

{|hν(x)|>K}∩{uν(x)∈A∗
ε}
|hν(x)|µ(dx) +

∫

{|hν(x)|>K}∩{uν(x)∈A\A∗
ε}
|hν(x)|µ(dx).

The first term is not larger than εsupν

∫

uν∈A g(uν(x))µ(dx). The second one is zero if we
take K sufficiently large. This is because the set Mε := Φ(A \ A∗

ε) ⊆ RN is compact
and g ◦ Φ−1 is continuous on Mε. This implies that the second term is zero if we take
K > diamγAsupλ∈Mε

|g ◦ Φ−1(λ)|.
Hence there exists h ∈ L1(Ω, µ) such that the subsequence of {hν} denoted by the same
expression satisfies

hν(x)µ(dx)
∗
⇀ hµ(dx) in M(Ω). (24)

On the other hand, by the just proved part i), we have for arbitrary φ ∈ C(Ω),

∫

Ω

φ(x)hν(x)µ(dx) = (φF, Lν) → (φF, L) =

∫

Ω

φ(x)(

∫

γA

F (λ)ν̃x(dλ))m̃(dx)

=

∫

Ω

φ(x)F (x)p(x)µ(dx) +

∫

Ω

φ(x)F (x)m̃s(dx), (25)
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where F (x) =
∫

γA
F (λ)ν̃x(dλ). Combining this with (24) we observe that the second

term above vanishes, so F (x) = 0 for m̃s almost all x. Since F > 0 on φ(A), we get
ν̃x(φ(A)) = 0 for m̃s almost all x, which is what we have claimed.

If γA \ A = ∅ then A is compact and for an arbitrary F ∈ C(γA) the sequence defined
by hν(x) = F (Φ(uν(x)))g(uν(x)) if uν(x) ∈ A and hν(x) = 0 if uν(x) 6∈ A is uniformly
bounded, so it is also uniformly integrable. Repeating the same computations as in (25)
with φ ≡ 1 we observe that

∫

γA
F (λ)ν̃x(dλ) = 0 for an arbitrary F ∈ C(γA) and m̃s

almost all x ∈ Ω. This implies that m̃s = 0.

“iii):Ô Take F (λ) = f(Φ(λ))g(λ)χλ∈U and assume that F ∈ C0(Rm). Applying the
classical theorem of Young we get

F (uν(x)) ⇀ F (x) =

∫

Rm

F (λ)µx(dλ) =

∫

intA

f(Φ(λ))g(λ)µx(dλ) in L1(Ω, µ).

Hence F (uν(x))µ(dx)
∗
⇀ F (x)µ(dx) in M(Ω). According to the just proved parts i) and

ii) we have
F (x)µ = (f, ν̃x)m̃ = (f, ν̃x)p(x)µ+ (f, ν̃x)m̃s.

Since f vanishes on γA \A, which is the support of ν̃x for m̃s almost all x, it follows that
the second term of the above decomposition vanishes. Note also that f ≡ 0 on γA \ U0.
Hence (f, ν̃x) =

∫

U0 f(λ)ν̃x(dλ), which gives (14).

To complete the proof of part iii) it suffices to note that the left hand side of (14) reads
as

∫

U

f ◦ Φ(λ)µ0
x(dλ) = (f ◦ Φ, µ0

x) = (f,Φ∗(µ0
x)),

while the right hand side of (14) reads as (f, p(x)ν̃0
x). Now the assertion follows from an

easy observation that if V ⊆ RN is an open set, ν1, ν2 ∈ M(V ) and (f, ν1) = (f, ν2) for
every f ∈ C(V ) such that f ≡ 0 on ∂V then ν1 ≡ ν2. In our case V = U0. £
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