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In this paper, we prove the existence of solutions to unilateral problems involving nonlinear operators of
the form
Au+ H(z,u,Vu) = f

where A is a Leray Lions operator from W, *(2) into its dual W~"#'(Q) and H (z,u, Vu) is a nonlinearity
which satisfies the following growth condition |H (z, s, €)| < vy(x)+g(s)|£|P with v € L1(Q2) and g € L(IR),
and without assuming any sign condition on H(z, s, ). The right hand side f belongs to L!().
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1. Introduction

The objective of this paper is to study the obstacle problem with L! data associated to
the nonlinear operator of the form

Au+ H(z,u,Vu) = f (1)

in a bounded subset  of IR, N > 2. The principal part A is a differential elliptic operator
of the second order in divergence form, acting from Wy”(Q) into its dual W57 (Q)

Au = —diva(z, u, Vu),

and H is a nonlinear lower order term having a growth condition of the form |H(z, s,&)| <
v(x) + g(s)|£|P with v € L'(Q2),g € L*(IR) and g > 0. More precisely, this paper deals
with the existence of solutions to the following problem

((w > ae in Q.
Ti(u) € Wy (),

P) /Qa(x, u, Vu)VTi(u —v) do + /Q H(z,u, Vu)T(u —v) dz

< [ Titu-v) o
Q
ve Ky NLe(Q), Yk > 0.

\
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where f € L'(Q) and Ky, = {u € W,"(Q), u > ¢ a.e. in Q)}.

Our principal goal in this paper is to prove the existence result for the unilateral problem
(P) without assuming any sign condition on H. For that, we prove the strong convergence
of truncations Ty (u,) in Wy (Q), where u, is a solution of the approximate problem.
Recently Porreta has proved in [16] the existence result for the problem (1) in the case of

an equation with a measure right hand side. Another result in this direction can be found
in [9] where the problem (1) is studied with f € L™(£2). In this last work, the authors

proved that there exists a bounded weak solution for m > %, and unbounded entropy
solution for £ > m > ]3—% A different approach (without sign condition) was used in [7],

under the assumption b(z, s, &) = As — [£]* with A > 0. We recall also that the authors
used in [8] the methods of lower and upper-solutions. In this direction, we can refer to
[11, 12, 13, 14, 18].

For the case of sign condition, many important works have appeared during these last
decades. Namely, [3, 5, 6, 17] for equations and [2, 3] for inequality.

This paper is organized as follows: Section 2 contains the basic assumptions and the
statement of result, in Section 3 we prove our main result.

2. Preliminaries and statements of the result

Through this paper Q will be a bounded subset of RN, N > 2 and p € IR such that
1 <p<oo.
For k > 0 and for s € IR, we denote by Ty(s) usual truncation defined by

ko ifs>k
Te(s) =< s if |s| <k
—k ifs<—k

and by 7, ?(Q) the space of the measurable function u is defined on Q almost everywhere,
and satisfies Tj,(u) € Wy ?(Q) for every k > 0. We recall also that for 0 < ¢ < oo the
Marcinkiewicz space M?(2) can be defined as the set of measurable function f : Q@ — IR
such that the corresponding distribution functions ®;(k) = meas{z € Q, |f(x)| > k}
satisfy an estimate of the form ®;(k) < ck™?, where c is a positive constant. (For more
details we refer to [1]).

Let us consider the nonlinear operator A from W, () into its dual of the form

Au = —diva(z,u, Vu) (2)

where a(z, s, &) is a Carathéodory vector valued function on Q x IR x IRY satisfying the
following assumptions, for a.e. z € Q and for all £, n € IRYN, (£ # 1) and for all s € IR:

a(z, s,§)€ = afg’,
la(@, 5,6)] < Bk(x) +|sI"~" + [€]771),
(a(z,s,8) — a(x,5,1),§ —n) >0, (5)
with «, 3 are some positive constants and k(z) is a positive function in LP'(Q) (p’ is the
conjugate exponent of p).

Furthermore, we will consider a Carathéodory function H :  x IR x RN — IR such that,
for all s € IR, ¢ € RY and a.e. x €

[H(z,s,6)] < () +g(s)[€]", (6)
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where g : IR — IR, is continuous, positive and belongs to L'(IR), while v(x) € L'(Q).
Moreover, assume that

ferL(Q). (7)
Finally let ¢ be a measurable function with values in IR such that
v e W) NLX(Q), (8)
and let us define
Ky ={ucW,?(Q), u>v¢ ae in Q)}. 9)

The aim of this paper is to prove the following

Theorem 2.1. Assume that the assumptions (3) —(8) hold. Then, the following problem:
(weT'P(Q) u>vae in Q
/ a(z,u, Vu)VT(u — v) da:—l—/H z,u, Vu)Ti(u —v) dx

< [ 1oy .

| Vv e KyNL®(Q), and VE >0,

has at least one solution.

Remark 2.2. Let us remark that in the case of 1y = —oo Theorem 2.1 states the existence
of solution in the case of equation i.e. the following problem

((ue TP (Q).
/ a(z,u, Vu)VTi(u —v) dx + / H(z,u, Vu)T}(u —v) dz
0 0

< / FT(u—v) da,
Q
| Yo € Wy P(Q) N L®(Q), and Vk > 0,

has at least one solution.

3. Proof of Theorem 2.1
3.1. Approximate problem

In order to prove the Theorem 2.1, let us consider the sequence of approximate problem

;

Un€K¢
/ a(x, Up, V)V (u, — v dx—l—/H Ty Upy V) (u, —v) da
(Pn)
/fn Up — U €T,
L You EK’Z”

where f, are regular functions such that f, € L>(2) and strongly converge to f in L'(Q)
and || fullz1) < || flL1(@) and where

H(z,s,£)
L+ o H(x,5,€)]

H,(x,s,&) =
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Note that |H,(z,s,£)| < |H(z,s,£)| and |H,(x,s,&)| < n, then for fixed n € IN the
approximate problem (P,) has at least one solution ([15]).

3.2. A priori estimate

Let v = u, — nexp(G(uy))Tk(u, — ™), where G(s) = / % dt (the function g appears
0

in (6)) and n > 0. Since v € Wy(Q) and for 1 small enough, we have v > 1, thus v is
admissible test function in (P,), then

| e, 90 Vexp G ) i = 67)) d
+/Q H,(x,u,, Vu,)(nexp(G(u,)) T (u) —¢T)) dz

< [ hlexp(Glun) Tu(u — 01 da
0
which implies that
/ a(z, U, Vg, )V (exp(G(u,)) T (ut — ™)) dx
Q
+/ H, (2, up, Vg, )exp(G(u,)) Ti(u) — ") de
0

< / Fuexp(Gun)) Tl — ) de,

Then

/Qa(x,un, Vun)Vung(Zn)eXp(G(un))Tk(urf —h)) dx

+/ a(z, Un, Vu,) VT (uf — o )exp(G(uy,)) dr
Q

IN

—/Q H, (2,1, Vuy,)exp(G(u,)) Ty (u) — ™) do —|—/anexp(G(un))Tk(ujL — ot dx
< /7($)6XP(G(%))T1§(UI — ") dr + / 9(un) [V [Pexp(G (un)) Ty (uyy — ") da
Q Q

+/ Jnexp(G(u,)) Ty (u)f — ™) du,
Q
in view of (3), we obtain

a(z, U, Vu,) VT (ut — v )exp(G(uy,)) dr

<

S— S—

A(@)exp(Glun)) Ty (i — ¥+) da + / Juexp(Gun)) T — o) da < 1k
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where ¢; is a positive constant not depending on n.
Consequently, we have.

/ a(z, up, Vu,)Vu exp(G(uy,)) dr
{luf =yt |<k}
< / a(x, up, Vu,)\ VT exp(G(uy,)) do + cik.

{Juit —vF|<k}

Thanks to (3) and Young’s inequality, we deduce
/ |Vul P de < csk. (10)
{lum —v+|<k}

Since {x € Q, |ut| <k} C{zx € Q, |uf — 7| <k+ ||¢"|«}, hence

/|VTk(u:§)|p dm:/ VP dxg/ IVl P da.
Q {Juit | <k} {luk = | <k+|9t oo }

Moreover, (10) implies that,
/ VT (u)|P do < esk Yk >0 (11)
Q
where c3 is a positive constant.

On the other hand, taking v = u, + exp(—G(u,))Tk(u,, ) as test function in (P,), we
obtain

_/Q a(z, up, Vu,)V(nexp(—G(u,))Tiu, ) dx
_/Q Hy (2, tn, Vg ) (nexp(—=G (u,)) Ti(u,, ) dz
< —/Q Jn(nexp(—=G(un))Tk(u,)) dx.

Using (6), we have

/Q a(z, up, Vun)Vun“(](Z") exp(—G(uy))Tx(u, ) dx

—/a(x,un,Vun)VTk(u;)exp(—G(un)) dx
" (12)

< / o (&)exp(—G(un)) T (ug) di + / (1) |Vt Pexp(— G () ) Ti (i) de
Q Q
_ / Frexp(—G (un)) To(us) da.
Q
In virtue of (3) and since v,k € L*(Q), and || |l ) < [|f]£1 (), we have:

—/Q a(x, up, Vu,)VTi(u, Jexp(—G(u,)) dx

= / a(x, Uy, Vg )VTi(u,)exp(—G(uy,)) de < csk
{unSO}



140 L. Aharouch, Y. Akdim / Strongly Nonlinear Elliptic Unilateral Problems ...

by using again (3), we deduce that

/ |VTi(u,)|? de < csk
{unSO}

ie.,
/ VT (u,)]P de < csk (13)
Q

where ¢, is a positive constant.
Combining (11) and (13), we conclude

/ VT (un,)|P de < ck (14)
Q
with a positive constant c.

3.3. Strong convergence of truncation

In view of (14), we can apply Lemmas 4.1 and 4.2, in [1], which imply that (u,) is bounded

N(p=1) . . c e
in the Marcinkiewicz space M N+ and (IVun|)y is bounded in the Marcinkiewicz space
N(p-1) . : :
NoT Moreover, reasoning as in the proof of Theorem 6.1 in [1], we conclude that,

there exists a function u and a subsequence, still denoted by (uy,),, such that:

U, — u a.e. in )

Tio(tn) — Ti(u) weakly in Wy?(Q) and a.e.in Q for every k > 0. (15)
We will use the following function of one real variable, which is defined as follow:
hy(s) = 1 i |s] < j
hi(s)=j7+1—s ifj<s<j+1
hj(s)=s+j+1 if —j—1<s<—j

where j is a nonnegative real parameter.
In order to prove the strong convergence of truncation T (u, ), we first proove the following
assertions:

Assertion (i)

lim lim a(x, uy, Vu,)Vu, de = 0. (17)

J700 =00 J < un| <j+1}
Assertion (ii)

lim lim [ a(z, Tx(un), VIk(un))VT(u,)(1 — hj(uy,)) de = 0. (18)

J—00 Nn—00 Q

Assertion (iii)

lim 1 s T (uy,), VI (uy,
Jim fim, | (o(@ Tilun), Vi () (19)

—a(x, Tj,(uy), VT (w))) (VTk(u,) — VT (u))hj(u,) de = 0.
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Assertion (iv)
Ti(un) — Ti(u) strongly in W, P(Q) as n — +oc. (20)
Proof of assertion (i). Consider the following function v = w,, — nexp(G(u,))11(u, —
T (un)) ™

For j large enough and 7 small enough, we can deduce that v > 1, and since v € I/VO1 P(Q),
v is a test function in (P,). Then, we obtain,

/Q 0z, tn, Vi)V (exp(G () Ty (wn — Ty(un))") da
+/ H,(z, un, Vu, )exp(G(u,)Th (uy, — Tj(uy))t do
Q

< [ Faexp(Glun T, = )" de

From the growth condition (6), we have,

g(un)

/Qa(:c,un, Vu,)Vu, exp(G (un)) T (un — Tj(un)) " da

—|—/Q a(x, tp, Vun) VT (uy, — Tj(un)) "exp(G(uy,)) dx
< [ Aw)explGlun) Ta(w, = Tiw,))* do
[ gt FaPexp(G ) Ti (0, = Ty 10,)) " da
+ [ fuesp (Gl T, = Ty(w)” da
which, thanks to (3), gives:

/ a(@, U, Vu,) VT (uy, — Tj(un)) "exp(G(uy,)) dx
p (21)
< [ Adesp( ) Tilu = ) di+ [ uexpl )T = T3 (0))*

by Lebesgue’s theorem the right hand side goes to zero as n and j tend to infinity.
Therefore, passing to the limit first in n, then in j, we obtain from (21)

lim lim a(x, up, Vu,)Vu, dr = 0. (22)

J=00m=00 Jljcu, <j+1}

On the other hand, consider the test function v = u,, + exp(—G(u,))T1(u,, — Tj(u,))~ in
(Py) is clearly admissible, then

/Q 0, tn, Vit )V (—exp (=G (un)) T (tn — Ty(un)) ") da
—I—/Q Hy (2, U, V) (—exp(—G (un)) 11 (un, — Tj(uy)) ™) do

< [l mesp(=Glun) T, = i) ) do
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which implies that

/Qa(a:,un, Vun)Vung(zn)exp(—G(un))Tl(un —Tj(uy))” dx
—/Q a(z, uy, Vu,) VT (u, — Tj(u,))” exp(—G(uy)) dx
+/ H,(z,up,, Vuy,)exp(—G(u,))T1 (u, — Tj(uy,))” da

/fnexp (tn)) T (wy, — Tj(un)) ™ de.

From (3) and (6), it is possible to conclude that

—/Qa(x,un,Vun)VTl(un—Tj(un))exp(—G(un)) dx
< / (@)exp(— G un)) Tt — T (1)) da (23)

/ frexp(—G(un)) T (uy, — Tj(uy))” dz

the second term in the right hand side can be neglected since it is nonnegative, and by
Lebesgue’s theorem the first term goes to zero as n and j tend to infinity. Then (23)
becomes

lim lim a(z, up, Vu,)Vu, de = 0. (24)

Jeom=00 JU_ i 1<un<—j}

Finally, (17) follows from (22) and (24).

Proof of assertion (ii). Let v = u, + exp(—G(uy))Tk(u,)~ (1 — hj(uy)) (h; is defined
n (16)), v is a test function in (P). Then we have,

/Qa(a:,un, Vu,)V(—exp(—G(uy))Ti(un) ™ (1 — hj(uy,))) de
/H T, Uy, Vg ) (—exp(—G(un)) T (u,) (1 — hj(uy,))) d

/ fu—exp(—G(un)) Ti(un) ™ (1 — hy(u,))) d
by using (6), we have

/Q a(, tp, Vi) Vi, 2 (Zn)exp(—G(un))Tk(un)_(l — h;(up)) dz
- /Q 0, t, Vi)V T (1) exp(=G ) (1 = (1)) d
—l—/ a(x, up, Vu,)Vhj(u,)exp(—G(uy,)) Tk (u,)” do

Q
— [ A@)exp(=G () Tu(w)(1 = hy(u) da
/ exp(—G (un))g(un) [ Vun [PTy (un) (1 — hj(uy)) dx

/ Fuexp(=G (1)) Ti(tn) = (1 — hy(uy)) do
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Thanks to (3), we can deduce that

_ /{ o a(z, wn, V) VI (uy)exp(—G(un)) (1 — hj(uy,)) do
_/ | ’ a(x, uy, Vu,)Vu,exp(—G(up) ) Tk (u,) ™~ dx
{—j—1<un<—j} o)
+ / Yy(x)exp(—G (un)) Tk (un) (1 — hj(uy)) do
Q

> [ fuexpl =Gl i) "(1 = hiw,) de

In view of (13), the second integral tends to zero as n and j go to infinity. And by
Lebesgue’s theorem, it is possible to conclude that the third and the fourth integral
converge to zero as n and j go to infinity. Then (15) implies that

lim lim a(z, Ty (up), VIg(uy,)) VT (1) (1 — hj(uy,)) do = 0. (26)

On the other hand, take v = u,, — nexp(G(u,)) T (u,} — ¢*)(1 — hj(uy,)). This is a test
function admissible in (P,). Then, we have

| e, D) V(G Tl = 7)1 = b))
ot V) rexpl G ) Tt = 01 = ) d

< / Fu(exp(Gun))Te(ts — ) (1 — by () da

using (6) this implies

g(zn)exp(G(“”))Tk(UZ =) (A = hy(un)) do

/Q A,y Vi) Vit
+ / a2, U, V)V T — 67 )exp(Gun)) (1 — hy(u,)) d
- /{ oy 0 V) Vinep Gl Tl = 47)
< /ﬂ (1) [Vt Pexp(G ) T (1 — ) (1 = hy () da
T / Faexp(G () Tt — ) (1~ hy(un)) do

; / A (2)exp(G ) T — 9 )(1 = by (un)) de,
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and by using (3), we get

a(x, U, Vun ) VT () — M )exp(Glu,)) (1 = hj(uy,)) dz

o)

< / | a(z, Uy, Vg ) Vunexp(G(u,)) Ti(uf — ™) dx
{i<un<j+1}
+ [ @exp(Gu) Tl = v7)(1 = hy(u) do

[ fuexp(G ) Bala = 04)(1 hyun) d
Q
= 61(j, n)
In virtue of (17) and Lebesgue’s theorem, we can conclude that €,(j,n) converges to zero

as n and j go to infinity.
From (27), we have

/ a(x, tn, Vu,)Vulexp(G(un)) (1 — hj(uy,)) dx
{lust =yt | <k}
< / a(x, tn, Vu,) Vo Texp(G(u,)) (1 — hj(u,)) dz +e1(j4,n).  (28)
{luf —+|<k}
Thanks to the growth condition (4) and Young’s inequality, it is possible to conclude that
/ a(x, Uy, Vu,) V! exp(G(un)) (1 — hj(uy,)) de < e3(j,n)
{Jut =+ |<k}

where 5(7,n) tends to 0 as n and j go to infinity.
Since exp(G(uy,)) is bounded, we obtain

/ a(x, U, Vun)Vu exp(Gu,)) (1 — hj(uy,)) de < e3(j,n). (29)
{lu —pF|<k}
Since {x € Q, |ut| <h} C{z € Q, |uf —T| < h+|YT ]}, hence,

/{| e a(x, up, Vun)Vu, (1 — hj(uy,)) de

< a(z, Uy, Vg,)Vu, (1 — hj(uy,)) de < es(j,n)

/{IUﬁw+|<k+ll¢+oo}

which yields for all £ > 0

lim lim a(z, T (un), VI (un)) VT (uy,)(1 — hj(uy,)) de = 0. (30)

J—00 Nn—00 {un>0}

Using (26) and (30), we conclude (18).

Proof of assertion (iii). On one hand, let v = u,, —nexp(G(un)) (T (un) — T (w)) Th;(u,)
with h; is defined in (16) and 7 small enough such that v € K, then, we take v as test
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function in (P,), we obtain

/Qa(%um Vun)V(nexp(G(un) ) (Ti(un) — Tio(w) " hy(un)) do
+/Q Hy (2, tn, V) (nexp(G (un) ) (Th(un) — Tk(u))+hj(un)) dr

< / Fu(1exp(G (11)) (T (ttn) — T (1)) 1y (1)) diz,

similarly, using (3) and (6), we obtain
/Qa(x, Uy, Vun )V (T (un) — Ti(u)) Texp(G (un))hj(uy,) dz
—l—/A - a(@,un, V) Vunexp(G(un) ) (Ti(un) — Ty (u))" dx
{i<lun|<j+1}
<[ A)exp(Glun)) (Tulun) = Tw)) i) d

4 / Fuexp(G (1)) (T (1) — Ti(10))* by (1)) diz
Q

/{T o 20] a(z, up, Vu,)V (T (u,) — T (uw))exp(G(un) ) hj(uy,) de < eq(j,n)  (31)

applying again (17) and Lebesgue’s theorem, we deduce that €4(j,n) goes to zero as n
and j tend to infinity. Moreover, (31) becomes

/{T< )T ()0} a(@, Tie(tn), VT (n) )V (T (un) — Tic(u) )exp(G )y (utn) dx

+f (@, Uy Vit ) VT (0)exp (G ) o () dt
{T (un) =T (u) 20,lun|>k}

< 54(j7 n)
Since hj(u,) = 0 if |u,| > j + 1, we obtain

/ (' n, Vi) VT (w)exp(Gun) )y (un) da
{Tx(un)—Tk(u)>0,|un| >k}

/ (. Ty 1 (), VT 1 (1)) VT ()G 1)y (1)
{Tk (un) =Ty (u) >0, |un|>k}

< €5 (.]7 n)
Which gives,

/{T oty 7 LEn) VI )V (Ti(un) = Ti())exp(Glun) oy (un) d < 65 m)

where

g6(J,n) = C(/{ - |a(@, Tja(un), VT (un)) [V T (u) [exp(Gun)) by (un) d + €57, n))
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which goes to zero as n and j tend to infinity.
Consequently

lim lim (a(@, Ti(un), VTi(un))
§=001=00 J i (4, )~ T} (w) 20} (32)

—a(z, T (uy), VIi(0))) (VTi(un) — VT (w))h;(uy,) de = 0.

On the other hand, taking v = u,, +exp(—G(u,))(Tx(wn) — T (u))~h;(u,) as test function
in (P,) and reasoning as in (32) it is possible to conclude that

lim lim (a(z, Ti(un), VTi(un))

—a(x, Ti(uy), VI (w)) (VT (u,) — VI (w))h;(u,) dz = 0.
Combining (32) and (33), we deduce (19).

Proof of assertion (iv). First we have
/Q(a(x,Tk(un), VTi(un)) — alz, Tp(uy), V() (VTe(uy) — VTg(u)) dx
= /Q(a(x, Ty (un), VTi(uy)) — alx, T (uy), VIe(w)) (VTk(u,) — VI (w))hi(uy,) dx

—i—/ﬂ(a(:v,Tk(un),VTk(un))
—a(x, Ty (un), VIL(u))(VTk(uy) — VTi(uw)(1 — hj(uy,)) d.

Thanks to (19) the first integral of the right hand side converges to zero as n and j tend
to infinity. For the second term, we have

/Q(a(xaTkwn)aVTk(un))
—a(@, Ty (un), VT () (VT (un) — VTi(w)(1 = hj(un)) da

= /QCL((E, Tk(un), ka(un))ka(un)(l - hj (un)) dzx
_ /Q a(, Ty(un), V(1)) VTi(w) (1 — hy(uy,)) dz

—/Q a(x, Ti(up), VI (w) (VT (un) — VIg(uw))(1 — hj(uy)) de.

By (18) the first integral of the right hand side goes to zero as n,j — 400, and since
(a(x, Ti(uy), VTk(uy))) is bounded in [, L” () uniformly on n while VT (w)(1—h; (u,,))
converges to zero. Hence, the second integral converges to zero. For the third integral, it
converges to zero because VT(u,) — VTi(u) weakly in [, LP(Q).
Finally, we conclude that

lim [ (a(z, Tk(un), VIr(u,)) — a(z, Tr(un), VIE(0)) (VT (u,) — VT(u)) dz = 0.

n—-+o00 Q

Then Lemma 3.1, of [8], implies that
Ti(up) — Ti(u) strongly in W, P(Q). (34)
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3.4. Passing to the limit

Thanks to (34), we obtain for a subsequence
Vu, — Vu a.e.in (.

Now, we show that:

H, (%, upn, Vu,) — H(x,u, Vu) strongly in L'(€2). (35)

0
On the one hand, let v = u, + exp(—G(un))/ 9(8)X(s<—n} ds. Since v € WyP(Q) and

v > 1), v is an admissible test function in (P,). Then,
[ a0, Ve expl-Ga) [ (610 ) da
—i—/Q H,(x, up, Vun)(—exp(—G(un))/uOg(s)X{Kh} ds) dx
< [ feept-Gu) [ o6 ) do

Which implies that

Q(Zn)exp(_G(un))/ 9(8)X(s<—ny ds dzx

/a(:v,un,Vun)Vun
Q
+/ a(x, un, Vup) Vigexp(—G(un)) g(tn) X fun<—ny dx
Q
0
< [ A@exp(~Glun) [ g(s)xtecn ds da
Q Un

+/Q g(un)|Vun|pexp(—G(un))/ 9(8)Xqs<—ny ds dz

n

0
— [ fuesp(=Gun) [ g(6)xtecny ds da
Q Un
0 —h
using (3) and since / 9(8)X{s<—ny ds < / g(s) ds, we get

/ (2, s, Vi) Vttnexp(— G 1)) (1) X<y
Q

lgllzr(m) h
< exp(E) [ (s) ds(lssca + 1fullre)

ol [~
< exp(E) [ g) as(l ey + 17 m)

using again (3), we obtain

—h

/ g(un)|Vu,|P de < c/ g(s) ds
{’un<*h} —00
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and since g € L'(IR), we deduce that

lim sup/ g(un)|Vuy,|P de = 0. (36)
{un<—h}

h—+o0 pe N

+o0
On the other hand, let M = exp(—G(un)/ g(s) ds and h > M + ||| (). Consider
0

V= Uy — exp(G(un))/ 9(8)X(s>ny ds. Since v € Wy?(Q2) and v > 1, v is an admissible
0
test function in (P,). Then, similarly to (36), we deduce that

lim sup/ g(un)|Vuy,|P de = 0. (37)
{un>h}

h—+00 ne NV

Combining (34), (36), (35) and Vitali’s Theorem, we conclude (28).
On the other hand, let p € K, N L>*(Q2) and take v = u,, — Ti(u, — ¢) as a test function
in (P,). We get,

€ Ky V> 0.
/ 0, Vi) VT (1, — ) da + / Ho (s, Vi) Tt — 0)
Q Q

S / fnTk(un - 90) d:c,
Q
| Vo € K, NL=(9).

(38)

Finally, from (34) and (35), we can pass to the limit in (38). This completes the proof of
Theorem 2.1.
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