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Using ideas from Compensated Compactness, we derive a necessary condition for any fourth degree
polynomial on IRp to be sequentially lower semicontinuous with respect to weakly convergent fields
defined on IRN . We use that result to derive a necessary condition for the quasiconvexity of fourth degree
polynomials of m×N gradient matrices of vector fields defined on IRN . This condition is violated by the
example given by Šverák for m ≥ 3 and N ≥ 2, of a fourth degree polynomial which is rank-one convex,
but it is not quasiconvex. These classes of functions are used in the approach to Nonlinear Elasticity
based on the Calculus of Variations.
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1. Introduction

The method of Compensated Compactness was developed by Murat and Tartar in the
seventies, see [12], as a way to generalize the Div-Curl Lemma which was one of the
keystones of the general Theory of Homogenization based on H-convergence that they
developed, see for example [9], or the other papers due to them on the same volume.
The purpose of Compensated Compactness is to characterize the nonlinear functions that
are sequentially weakly continuous, or even just lower semicontinuous, when attention is
restricted to sequences that take their values on some fixed set and satisfy some linear
partial differential equations with constant coefficients.

Particularly important is the case when the sequences are formed by gradients of vector
fields. Throughout the paper N , m and p are positive integers greater than or equal to two
and Mm×N denotes the space of the m×N real matrices. If we have a sequence of vector
fields with m components, which are defined on a subset of IRN , it is customary to speak
of their gradients as a sequence ofm×N -matrix valued fields. A function F : Mm×N → IR
is said rank-one convex if for any matrix U in Mm×N and any pair η ∈ IRm, ξ ∈ IRN , the
function

φ(t) = F (U + t η ⊗ ξ)

is convex when t ∈ (0, 1). A function F that is sequentially weakly lower semicontinuous
(for short s.w.l.s.c.) with respect to weakly convergent sequences of gradient matrices
is necessarily rank-one convex. This has been known at least since Morrey [6] and can
be proved very easily using Compensated Compactness. However the reciprocal question:
whether all rank-one convex functions will necessarily be s.w.l.s.c. for sequences of gradient
matrices, has not been answered for m = 2. For N = m = 2 some of the previous works
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are [1], [7] and [10]. For m ≥ 3 it was answered negatively by Šverák in [11] in the early
nineties through a counterexample of a fourth degree polynomial.

The same problem, the comparison between rank-one convexity and s.w.l.s.c, also arises
when the existence of solutions to the Nonlinear Elasticity system is studied in the context
of the Calculus of Variations, approach followed by J. M. Ball in [2]. Let Ω ⊂ IRN be a
bounded, regular open set. The system of Nonlinear Elasticity reads as:

−div σ(x,∇u) = f x ∈ Ω,

where: u : Ω → IRN represents the displacement fields, which should also satisfy some
boundary conditions, f : Ω → IRN are the external forces and σ : Ω ×MN×N → MN×N

gives the internal stresses. Then assuming that

σij(x,∇u) =
∂ W

∂ (∇u)ij
(x,∇u),

where W is termed the strain-energy density of the body, one can use the framework
of the Direct Method of the Calculus of Variations and try to minimize the total strain
energy

J(u) =

∫

Ω

W (x,∇u(x)) dx.

In this approach one needs two ingredients: first, one has to generate a minimizing se-
quence that belongs to a sequentially compact set for weak convergence and secondly, J
should be s.w.l.s.c. In that form the weak limit of the sequence will be a minimizer of the
problem and then, under smoothness assumptions, a solution to the nonlinear elasticity
system. The assumptions needed over W to make J s.w.l.s.c., led to the notion of quasi-
convexity, namely W is quasiconvex if for any matrix U in MN×N and x0 ∈ Ω, any ω ⊂ Ω
and any ϕ ∈ C∞

c (ω, IRN),

∫

ω

W (x0, U +Dϕ(x)) dx ≥ |ω|W (x0, U),

where Dϕ is the gradient of ϕ. Quasiconvexity is equivalent to s.w.l.s.c. for the W 1,∞

weak ? topology, see [6]. The problem however, is that to check either of those conditions
is extremely difficult, therefore the search for necessary and/or sufficient conditions for
quasiconvexity becomes very interesting. There is an important negative result, namely
that in the class of infinitely differentiable functions there is no local characterization of
quasiconvexity if m ≥ 3 and N ≥ 2. This result is due to Kristensen, see [5].

Our purpose here is to explore further necessary conditions for quasiconvexity. First in
Section 2 we get a simple characterization of rank-one convexity which will be used in the
following sections, this because, as we said already, it is known that rank-one convexity is
a necessary condition for quasiconvexity. In Section 3 we recall a result from [13] giving a
first additional necessary condition for s.w.l.s.c., namely Proposition 3.1 below, and which
is valid not only for sequences of gradients. Then we prove that if N = m = 2 and we
restrict the result to sequences of gradients, this condition is also necessary for rank-one
convexity, see Proposition 3.2, making it then not fine enough to distinguish between the
two classes if N = m = 2. Still in Section 3 we prove Proposition 3.3 saying that for
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N,m ≥ 2 any rank-one convex fourth degree polynomial also has to satisfy the same
necessary condition, meaning now that Proposition 3.1 does not explain why Šverák’s
counterexample works. In the case max{N,m} ≥ 3 it might still be possible to use
Proposition 3.1 to find a rank-one convex function that is not quasiconvex, which then
cannot be a fourth degree polynomial.

We try then to go further and get in Section 4 another necessary condition for s.w.l.s.c., but
only for fourth degree polynomials, this will be Proposition 4.1, which when specialized
to sequences of gradients will finally give a necessary condition for the quasiconvexity
of a fourth degree polynomial, this will be in Corollary 4.2. If N = 2 and m = 3 the
example created by Šverák violates this condition, which is checked in Section 5. We also
explain there why his construction can not be replicated if N = m = 2. For this case we
tried, and failed, to create a rank-one convex fourth degree polynomial that violates the
necessary condition from Corollary 4.2, giving us then the impression that the condition
we found might also be necessary for rank-one convexity. Finally in Section 6 we present
some closing remarks.

2. A Characterization of Rank-one Convexity

If F ∈ C2(Mm×N , IR) then a condition equivalent to rank-one convexity is the Legendre-
Hadamard condition, namely that for any U ∈ Mm×N

m
∑

i,k=1

N
∑

j,l=1

∂2 F (U)

∂ Uij ∂ Ukl

ηi ξj ηk ξl ≥ 0 ∀ η ∈ IRm, ξ ∈ IRN .

From now on we identify Mm×N with IRNm by putting the first row of the matrix as the
first N entries of the vector, the second row as the following N entries and so on. We can
then write the Hessian matrix of F as

F ′′(d) =





A11(d) ... A1m(d)
: : :

AT
1m(d) ... Amm(d)



 , (1)

where each matrix Aij(d) is an N × N block comprised of the second derivatives of F
with respect to λk and λl for k = N(i − 1) + 1, ..., N i and l = N(j − 1) + 1, ..., N j and
i, j = 1, ...,m.

Then the Legendre-Hadamard condition for F becomes that for any d ∈ IRNm F ′′(d) must
be a positive semidefinite matrix over the following cone in IRNm

Λ =







λ ∈ IRNm : there exist η ∈ IRm, ξ ∈ IRN such that λ =





η1 ξ
:

ηm ξ











,

namely we need to have that for any η ∈ IRm, ξ ∈ IRN and d ∈ IRNm

F ′′(d)(λ, λ) = η21 ξ
TA11(d) ξ + ...+ 2 η1 ηm ξTA1m(d) ξ + ...+ η2m ξTAmm(d) ξ ≥ 0.

Which is simply that for any ξ ∈ IRN , the following matrix be positive semidefinite on
IRm





ξTA11(d)ξ ... ξTA1m(d)ξ
: : :

ξTAT
1m(d)ξ ... ξTAmm(d)ξ



 , (2)
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In particular if m = 2 this is equivalent to ask for the following two conditions to hold:

a) A11(d) and A22(d) are positive semidefinite ∀ d ∈ IR2N

b) ξTA11(d) ξ ξTA22(d) ξ ≥ (ξTA12(d) ξ)
2 ∀ ξ ∈ IRN , d ∈ IR2N .

If we restrict F to be a fourth-degree polynomial, then the Hessian matrix of F at any
point t d, with t ∈ IR and d ∈ IRNm, is given by

F ′′(t d)(· , ·) = F ′′(0)(· , ·) + t F (3)(0)(d, ·, ·) + 1

2
t2 F (4)(0)(d, d, ·, ·),

then F is rank-one convex if and only if for all λ ∈ Λ, d ∈ IRNm, t ∈ IR one has that

F ′′(0)(λ, λ) + t F (3)(0)(d, λ, λ) +
1

2
t2 F (4)(0)(d, d, λ, λ) ≥ 0,

which in turn is equivalent to ask for the following three conditions to hold

c) F ′′(0)(· , ·) is positive semidefinite over Λ,

d) F (4)(0)(d, d, λ, λ) ≥ 0 ∀ d ∈ IRNm, λ ∈ Λ,

e) F (3)(0)(d, λ, λ)2 − 2F ′′(0)(λ, λ)F (4)(0)(d, d, λ, λ) ≤ 0 ∀ d ∈ IRNm, λ ∈ Λ.

3. A first additional necessary condition for quasiconvexity

We work in the framework of Compensated Compactness, which in its classical formu-
lation, see [12], gives that for a function to be quasiconvex, it has to be convex in all
directions belonging to the cone Λ just defined, giving then the necessity for a quasicon-
vex function to be rank-one convex. Going further the following result due to Luc Tartar,
proposition VII.21 in [13], gives a first additional necessary condition for s.w.l.s.c. under
more general differential constraints.

Proposition 3.1. Let Ω ⊂ IRN be a regular open set and F be a C3 function F : IRp →
IR, such that for any sequence Un ∈ L∞(Ω, IRp) for which the following hold:

i) Un ⇀ U∞ in L∞ weak ?

ii) F (Un) ⇀ V ∞ in L∞ weak ?

iii)
∑

j,k Aijk
∂ Un

j

∂ xk
= 0 for i = 1, .., q,

one necessarily has that V ∞ ≥ F (U∞) almost everywhere in Ω. Then calling

V =

{

(λ, ξ) ∈ IRp × (IRN \ {0}) :
∑

j,k

Aijkλj ξk = 0 for i = 1, .., q

}

,

we have that if (λi, ξi) ∈ V for i = 1, 2, 3 with rank{ξ1, ξ2, ξ3} < 3 and a0 ∈ IRp are such
that F ′′(a0)(λ

i, λi) = 0 for i = 1, 2, 3, then one must have

F (3)(a0)(λ
1, λ2, λ3) = 0.

In particular if the Uns are gradients of IRm-valued fields, then p = Nm and the set V
becomes

V0 =







(λ, ξ) ∈ IRNm × (IRN \ {0}) : λ =





η1ξ
:

ηmξ



 ηi ∈ IR for i = 1, ...,m







.
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So when we project V0 onto IRNm we get the set Λ mentioned in Section 2.

One way to prove that rank-one convexity does not imply quasiconvexity would then be
to construct a rank-one convex function F for which one can choose a0 ∈ IRNm and pairs
(λ1, ξ1), (λ2, ξ2), (λ3, ξ3) ∈ V0 with rank{ξ1, ξ2, ξ3} < 3, such that F ′′(a0)(λ

i, λi) = 0 for
i = 1, 2, 3, but F (3)(a0)(λ

1, λ2, λ3) 6= 0, so that it can not be quasiconvex. However in
the particular case when N = m = 2, this idea does not help since the following holds.

Proposition 3.2. Let F : IRNm → IR be a rank-one convex function of class C3. Let also
(λi, ξi) ∈ V0 for i = 1, 2, 3 be such that F ′′(0)(λi, λi) = 0 for i = 1, 2, 3. Then if either
two of the ξi are parallel or N = m = 2, we necessarily have that F (3)(0)(λ1, λ2, λ3) = 0.

Proof. Let us say that ξ1 and ξ2 are parallel, then we get that λ1±λ2 ∈ Λ, but this implies
that F ′′(0)(λ1 ± λ2, λ1 ± λ2) ≥ 0 and, since F ′′(0)(λ1, λ1) = F ′′(0)(λ2, λ2) = 0, we get
that F ′′(0)(λ1, λ2) = 0. Now, since F ′′(sv)(λ1, λ1) is non negative for all s ∈ IR and any
v ∈ IRNm, and takes the value 0 at s = 0, we need to have that F (3)(0)(λ1, λ1, v) = 0 and
analogously F (3)(λ2, λ2, v) = 0. Now similarly F ′′(sλ3)(λ1 + λ2, λ1 + λ2) ≥ 0, which gives
that F (3)(0)(λ1+λ2, λ1+λ2, λ3) = 0, from where we conclude that F (3)(0)(λ1, λ2, λ3) = 0.

Now we assume N = m = 2 and that no two of the ξi are parallel, from F ′′(0)(λi, λi) = 0,
we get from Section 2 that if we call A = A11, B = A12 and C = A22, then

P (ξ) =
(

ξTAξ
) (

ξTC ξ
)

−
(

ξTB ξ
)2

(3)

should have at least three different nonzero roots, the ξi’s, and from condition b) for
rank-one convexity in the previous section, P is non-negative, hence those three roots
have to be double roots. If there is no root with ξ2 = 0, we divide through by (ξ2)

4 and
call x = ξ1/ξ2, to write P as a polynomial of degree four in x, which will then need to
have three different double roots, which is impossible.

Now if we have that (ξ11 , 0) is a zero of P , with ξ11 6= 0, then

P (ξ) = (a11c11 − b211)(ξ
1
1)

4,

and then a11c11 − b211 = 0. For the other roots we have that ξ2 6= 0, then we divide
through by (ξ2)

4 in the definition of P , to write now P as a polynomial of degree three in
x, but the positivity of P, will force the coefficient of x3 to be zero, so P will be quadratic
and positive, and then it will have at most one more double root, giving then also a
contradiction.

The following result shows for m,N ≥ 2 that the necessary condition of Proposition 3.1
is also satisfied by all rank-one convex fourth degree polynomials, showing then that one
needs a finer condition to explain why it is enough to look into the class of the fourth
degree polynomials to encounter Šverák’s famous counterexample.

Proposition 3.3. Let m,N ≥ 2 and F : IRNm → IR be a rank-one convex fourth degree
polynomial. Let also (λi, ξi) ∈ V0 for i = 1, 2, 3 be such that F ′′(0)(λi, λi) = 0 for
i = 1, 2, 3. Then we also have that F (3)(0)(λ1, λ2, λ3) = 0.

Proof. From condition e) in Section 2 and because

F ′′(0)(λ1, λ1) = F ′′(0)(λ2, λ2) = 0,
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we get that

F (3)(0)(λ1, λ1, λ2) = F (3)(0)(λ1, λ1, λ3) = F (3)(0)(λ1, λ2, λ2) = 0.

Then we write the Taylor expansions:

F (3)(0)(λ1, λ1, λ2) = F (3)(0)(λ1, λ2, λ3) + F (4)(0)(λ1, λ2, λ3, λ1 − λ3),

F (3)(0)(λ1, λ2, λ2) = F (3)(0)(λ1, λ2, λ3) + F (4)(0)(λ1, λ2, λ3, λ2 − λ3),

which when subtracted give that

F (4)(0)(λ1, λ2, λ3, λ1 − λ2) = 0.

Finally we write the expansion

F (3)(0)(λ1, λ1, λ3) = F (3)(0)(λ1, λ2, λ3) + F (4)(0)(λ1, λ2, λ3, λ1 − λ2),

which now gives that F (3)(0)(λ1, λ2, λ3) = 0.

4. Another necessary condition for quasiconvexity

One can then turn to derive a different necessary condition for quasiconvexity, valid for
a more restrictive class of functions. We obtain first the following result, dealing with
sequences which are not necessarily gradients.

Proposition 4.1. Let Ω ⊂ IRN be a bounded regular open set and F be a fourth degree
polynomial in IRp, satisfying F (0) = 0 and such that for any sequence Un ∈ L∞(Ω, IRp)
for which Un ⇀ 0 and F (Un) ⇀ V ∞ both in L∞ weak ?, one has that V ∞ ≥ 0. Then
F ′′(0) must be positive semidefinite and for any d1, d2, d3 ∈ IRp it should be true that

4F (3)(0)(d1, d2, d3)2

≤
3

∑

i=1

F ′′(0)(di, di)

(

3
∑

i=1

F (4)(0)(di, di, di, di) + 4
3

∑

i,j=1,i<j

F (4)(0)(di, di, dj, dj)

)

.
(4)

Proof. Let ξ1 and ξ2 be two linearly independent vectors in IRN , set ξ3 = ξ1 + ξ2, t ∈ IR
and take the following sequence defined over Ω

Un(x) = t
3

∑

i=1

di cos(n ξi · x),

then Un ⇀ 0 in L∞ weak ? and since F (0) = 0, if we make a Taylor expansion of F at
zero, we have that F (Un) is equal to

t
3

∑

i=1

F ′(0)(di) cos(n ξi · x) + 1

2
t2

3
∑

i,j=1

F ′′(0)(di, dj) cos(n ξi · x) cos (n ξj · x)

+
1

6
t3

3
∑

i,j,k=1

F (3)(0)(di, dj, dk) cos (n ξi · x) cos (n ξj · x) cos (n ξk · x)

+
1

24
t4

3
∑

i,j,k,l=1

F (4)(0)(di, dj, dk, dl) cos (n ξi · x) cos (n ξj · x) cos (n ξk · x) cos (n ξl · x).
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Now when we take the weak ? limit in L∞ as n goes to infinity, the linear term vanishes
because

cos (n ξi · x) ⇀ 0.

For the quadratic part, and due to the linear independence of ξ1 and ξ2, will only survive
the terms with i = j and

cos2 (n ξi · x) ⇀ 1

2
.

For the cubic part

cos2 (n ξi · x) cos (n ξj · x) ⇀ 0 for all i and j

and

cos (n ξ1 · x) cos (n ξ2 · x) cos (n ξ3 · x) ⇀ 1

4
.

For the fourth order term
cos4 (n ξi · x) ⇀ 3/8,

cos3 (n ξi · x) cos (n ξj · x) ⇀ 0 if i 6= j,

cos2 (n ξi · x) cos2 (n ξj · x) ⇀ 1

4
if i 6= j

and
cos2 (n ξi · x) cos (n ξj · x) cos (n ξk · x) ⇀ 0 if i 6= j, i 6= k and j 6= k.

Therefore

V ∞ = lim
n→∞

F (Un)

=
1

4
t2

3
∑

i=1

F ′′(0)(di, di) +
1

4
t3 F (3)(0)(d1, d2, d3)

+
1

24
t4

(

3

8

3
∑

i=1

F (4)(0)(di, di, di, di) +
3

2

3
∑

i<j

F (4)(0)(di, di, dj, dj)

)

=
1

64
t2

(

16
3

∑

i=1

F ′′(0)(di, di) + 16 t F (3)(0)(d1, d2, d3)

+t2
3

∑

i=1

F (4)(0)(di, di, di, di) + 4 t2
3

∑

i<j

F (4)(0)(di, di, dj, dj)

)

.

In this expression the coefficients of t2 and t4 must be non negative and we also need that
(4) holds.

This proof is inspired on the one of Proposition 3.1 given in [13].

The following corollary, which provides with a necessary condition for a fourth degree
polynomial to be quasiconvex, is now immediate.

Corollary 4.2. Let Ω ⊂ IRN be a bounded regular open set and F be a fourth degree poly-
nomial in IRNm, satisfying F (0) = 0 and such that for any sequence Un ∈ L∞(Ω, IRNm)
for which the following hold:
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i) Un ⇀ 0 in L∞ weak ?

ii) F (Un) ⇀ V ∞ in L∞ weak ?

iii) there exist functions gni ∈ W 1,∞(Ω) with i = 1, ...,m, such that Un
k (x) =

∂ gni (x)

∂ xj
in

Ω, with k = N(i− 1) + j, for i = 1, ...,m and j = 1, ..., N ,

one has that V ∞ ≥ 0. Then if ξ1 and ξ2 are linearly independent vectors in IRN and
λ1, λ2 ∈ IRNm are such that (λ1, ξ1), (λ2, ξ2) ∈ V0, we have that for any λ3 ∈ IRNm such
that (λ3, ξ1 + ξ2) ∈ V0, condition (4) necessarily holds with di = λi for i = 1, 2, 3.

Proof. We just take the sequence

Un(x) = t
3

∑

i=1

λi cos(n ξi · x),

then Un ⇀ 0 in L∞ weak ? and it satisfies condition iii) because (λi, ξi) ∈ V0 for i = 1, 2, 3.
We then just apply Proposition 4.1.

5. Šverák’s Example

One can now check that the example given by Šverák in [11] violates condition (4). Let
us recall his example, one defines L as the linear subspace of IR6 spanned by

λ1 =

















1
0
0
0
0
0

















, λ2 =

















0
0
0
1
0
0

















and λ3 =

















0
0
0
0
1
1

















,

with the directions of oscillation being the following

ξ1 =

(

1
0

)

, ξ2 =

(

0
1

)

and ξ3 =

(

1
1

)

,

so that (λi, ξi) ∈ V for i = 1, 2, 3. Additionally one has the plus that in L the only
rank-one directions are those along the lines spanned by the λi’s themselves, fact used by
Šverák to create first a convex function on L and then extend it to the whole IR6 as a
rank-one convex function. Let f : L → IR be defined as

f

















r
0
0
s
t
t

















= −r s t

and call P the orthogonal projection from IR6 over L. Define for any pair ε, k of positive
real constants, the following fourth degree polynomial on IR6

F (X) = f(P X) + ε‖X‖2 + ε‖X‖4 + k‖X − P X‖2.
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Now for any ε > 0 it is proved in [11] that one can choose a positive value for k, so that
this function becomes rank-one convex.

Then
F ′′(0)(λ1, λ1) = F ′′(0)(λ2, λ2) = 2 ε, F ′′(0)(λ3, λ3) = 4 ε,

F (3)(0)(λ1, λ2, λ3) = −1,

F (4)(0)(λ1, λ1, λ1, λ1) = F (4)(0)(λ2, λ2, λ2, λ2) = 24 ε,

F (4)(0)(λ1, λ1, λ2, λ2) = 8 ε,

F (4)(0)(λ1, λ1, λ3, λ3) = F (4)(0)(λ2, λ2, λ3, λ3) = 16 ε

and
F (4)(0)(λ3, λ3, λ3, λ3) = 96 ε.

Condition (4) becomes 1 ≤ 608 ε2, which is then easily violated.

It is not difficult to show that if m = 2, for any pair of linearly independent directions
ξ1, ξ2 ∈ IR2, taking again ξ3 = ξ1+ ξ2, and for any three vectors λ1, λ2, λ3 ∈ IR4 such that
(λi, ξi) ∈ V0 for i = 1, 2, 3, there always exists a nonzero vector λ ∈ span{λ1, λ2, λ3}, with
λ 6= λi for i = 1, 2, 3, and ξ ∈ IR2 \ {0, ξ1, ξ2, ξ3} with (λ, ξ) ∈ V0.

6. Some Remarks

Condition (4) alone is not sufficient for quasiconvexity because it is not even sufficient for
rank-one convexity, since for example for N = m = 2, F (d) = −d41 satisfies (4), but it is
not rank-one convex.

Proposition 3.1, which gave us the idea for Proposition 4.1, and its proof are closely
inspired on Theorem 18 in [12], which gives a necessary condition for sequential weak
continuity. This condition was later on proved in [8], to be also sufficient under the extra
hypothesis of constant rank, namely that for any ξ ∈ IRN \ {0} if we call

Λξ = {λ ∈ IRp such that (λ, ξ) ∈ V },

the dimension of Λξ is independent of ξ. This condition is certainly satisfied by the
problem studied here, since the dimension of Λξ is always equal to m. Then one could try
to use the idea from the proof in [8] to prove that condition (4) together with conditions
c), d) and e) from Section 2, are also sufficient for quasiconvexity.

Corollary 4.2 gives an additional necessary condition for quasiconvexity, besides rank-one
convexity, only for those fourth degree polynomials with nonzero cubic part. Therefore
it does not help when applied to the example of [1], which has only fourth order terms.
The same remark applies for the example of a fourth degree polynomial which is rank-one
convex, but not polyconvex, presented in [4] which is also homogeneous.

We posses very strong numerical evidence that there is no rank-one convex fourth degree
polynomial that violates condition (4). Since it does not seem to be easy to get a better
necessary condition in the whole class of fourth degree polynomials, one possible future
step could be to go to polynomials of degree six. Alternatively, thinking in terms of
the examples mentioned in the previous paragraph, it would be useful to have extra
necessary conditions for quasiconvexity specialized to the case of homogeneous fourth
degree polynomials.
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