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1. Introduction

A vector version of Variational Inequalities was introduced by F. Giannessi in [12]. Since
then, several papers have been devoted to different aspects of this topic, mainly to exis-
tence of solutions and to relationships between Vector Variational Inequalities ((V V ) for
short) and Vector Optimization Problems ((V O) for short): [7], [13], [14]... .

Quasi-Variational Inequalities ((QV I), for short) were introduced by A. Bensoussan and
J. L. Lions in [4] and were investigated by U. Mosco [25], C. Baiocchi and A. Capelo [3],
and J.-P. Aubin [1]. Vector versions of such problems or of more general problems, were
considered in [6], [9] and [15], only for existence or stability of solutions.

In this paper we are interested in investigating well-posedness for Vector Quasi-Variational
Inequalities ((V Q), for short), in line with Tikhonov well-posedness for Optimization
Problems and Non Cooperative Games (first investigated in [26], in [5], in [22]) and Vari-
ational Inequalities (see [10] and [18]). The interest in this study is motivated by recent
results on well-posedness for Multicriteria Games and Quasi-Variational Inequalities. In
fact, while in scalar case a Quasi-Variational Inequality can be equivalent to a social Nash
Equilibrium Problem [3], a Vector Quasi-Variational Inequality can be equivalent to a
multicriteria game. Well-posedness for multicriteria games has been recently introduced
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and studied in [24], while various well-posedness concepts for scalar Quasi-Variational
Inequalities have been considered and investigated in [20].

Our aim in this paper is to introduce well-posedness concepts for Vector Quasi-Variational
Inequalities which extend those introduced in [20] for the scalar case. Relationships
between well-posedness for such problems and for multicritieria games will be investigated
in a separate paper, also in the case where the compactness assumptions are avoided using
coercive operators.

Outline of the paper is the following. Section 2 presents the definitions and results which
are used throughout the paper and Section 3 contains a Minty’s type theorem for Vector
Quasi-Variational Inequalities, the links among the various concepts of well-posedness and
conditions implying well-posedness of Vector Quasi-Variational Inequalities.

2. Background and Preliminaries

First, we recall some concepts and notations which will be used later on.

Let E and Z be two Banach spaces, K be a nonempty, closed and convex subset of E.
We consider a set-valued mapping C : u ∈ K −→ C(u) ⊆ Z, where, for every u ∈ K,
C(u) is a convex, closed and pointed cone of Z, with apex at the origin and nonempty
interior, denoted by intC(u); ≤C(u) will denote the partial order induced by C(u), that
is:

w ≤C(u) v iff v − w ∈ C(u).

Let T ∈ L(E,Z) and u ∈ E, it will be convenient to denote T (u) ∈ Z by 〈T, u〉L(E,Z), or
〈T, u〉L for short, because of the similarities of several results below with the corresponding
ones of usual quasi-variational inequalities.

For results concerning cones and efficient sets, see, for example, [21].

We recall that (see [11], [2]) for a sequence of subsets An in Z the definitions of lim supAn

and lim infAn in the sense of Painlevé and Kuratowski are:

lim inf
n

An =
{

y ∈ Z : ∃ yn ∈ An, n ∈ N, with lim
n

yn = y
}

,

lim sup
n

An =
{

y ∈ Z : ∃nk ↑ +∞, nk ∈ N,∃ynk
∈ Ank

, k ∈ N, with lim
k

ynk
= y

}

.

A set-valued function F from a topological space (X, τ) to a topological space (Y, σ) is:

· closed-valued (resp. convex-valued) if F (x) is a nonempty closed (resp. convex) subset of
Y , for every x ∈ X.

· sequentially (τ, σ)-closed on a subset H of X if, for every x ∈ H and every sequence
(xn)n τ -converging to x in H, for every sequence (yn)n σ-converging to y such that
yn ∈ F (xn) for all n ∈ N , one has y ∈ F (x) (that is lim supF (xn) ⊆ F (x) for all (xn)n
τ -converging to x);

· sequentially (τ, σ)-lower semicontinuous onH ⊆ X if, for every x ∈ H and every sequence
(xn)n τ -converging to x in H, for every y ∈ F (x) there exists a sequence (yn)n σ-
converging to y such that yn ∈ F (xn) for all n ∈ N (that is F (x) ⊆ lim infF (xn) for
every x ∈ H and for all (xn)n τ -converging to x);
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· sequentially (τ, σ)-subcontinuous on H ⊆ X if, for every sequence (xn)n τ -converging in
H, every sequence (yn)n such that yn ∈ F (xn), for all n ∈ N , has a σ-convergent
subsequence.

For the sake of brevity we will omit the term sequentially.

Let a be a positive real number and H be a subset of E, B(H, a) will indicate the closed
ball around H of radius a, that is {u ∈ E : d(u,H) ≤ a}. Throughout the paper s and w
will denote, respectively, the strong and the weak topology on the Banach space E.

Let S be a set-valued mapping from K to K and A be an operator from E to the set
of continuous linear mappings from E to Z. For any u ∈ E we will denote Au in place
of A(u) and hence 〈Au, v〉L = A(u)(v) for all v ∈ E according to the notation above.
Throughout the paper the following problems will be considered:

• Weak Vector Quasi-Variational Inequality that consists in finding uo ∈ K such that:

(WVQ) uo ∈ S(uo) and 〈Auo, v − uo〉L 6≤intC(uo) 0 ∀ v ∈ S(uo)

• Weak Vector Linearized Quasi-Variational Inequality that consists in finding uo ∈ K
such that:

(WV L) uo ∈ S(uo) and 〈Av, v − uo〉L 6≤intC(uo) 0 ∀ v ∈ S(uo)

• Vector Quasi-Variational Inequality that consists in finding uo ∈ K such that:

(V Q) uo ∈ S(uo) and 〈Auo, v − uo〉L 6≤C(uo)\{0} 0 ∀ v ∈ S(uo)

• Vector Linearized Quasi-Variational Inequality that consists in finding uo ∈ K such
that:

(V L) uo ∈ S(uo) and 〈Av, v − uo〉L 6≤C(uo)\{0} 0 ∀ v ∈ S(uo)

Observe that if uo solves (V Q) then it solves also (WVQ), as well as if uo solves (V L)
then it solves also (WV L).

In the particular case where Z = R, L(E,Z) = E∗ and C(u) = [0,∞[ for every u,
the first and the third problem are a Quasi-Variational Inequality, the others are their
linearized forms. When S(u) = K for every u ∈ K, the last two problems become a
Vector Variational Inequality and a Linearized Vector Variational Inequality (or Vector
Variational Inequality of Minty’s type), while the first two are their weak formulations.
The choice of the term weak comes from Vector Optimization. Indeed, for a vector
function f : E −→ Z, one considers the Weak Vector Minimization Problem:

(P ) w-minCf(u) u ∈ K

that consists in finding uo ∈ K such that f(uo) 6≥intC f(v) ∀v ∈ K. In a finite dimen-
sional spaces framework, when the function f is convex and differentiable on an open set
containing the set K, if Jf(u) denotes the Jacobian matrix at a point u ∈ K then uo

solves (P ) if and only if it solves [13]:

〈Jf(uo), v − uo〉L 6≤intC 0 ∀ v ∈ K.

We now introduce some concepts of approximate solutions for the listed problems.
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Definition 2.1. Let ε be an element of C(K). An element u ∈ K is an ε-solution for
the Weak Vector Quasi-Variational Inequality (WVQ), if:

i) ε ∈ C(u);

ii) d(u, S(u)) ≤ ‖ε‖ and 〈Au, v − u〉L 6≤intC(u) −ε ∀v ∈ S(u),

that is: u ∈ B(S(u), ‖ε‖) and there does not exist v ∈ S(u) such that:

〈Au, v − u〉L ≤intC(u) −ε.

The set of all ε-solutions to the Weak Vector Quasi-Variational Inequality (WVQ) is
denoted by WQε.

Definition 2.2. Let ε be an element of C(K). An element u ∈ K is an ε-solution for
the Weak Vector Linearized Quasi-Variational Inequality (WV L), if:

i) ε ∈ C(u);

ii) d(u, S(u)) ≤ ‖ε‖ and 〈Av, v − u〉L 6≤intC(u) −ε ∀v ∈ S(u),

that is: u ∈ B(S(u), ‖ε‖) and there does not exist v ∈ S(u) such that:

〈Av, v − u〉L ≤intC(u) −ε.

The set of all ε-solutions to the Weak Vector Linearized Quasi-Variational Inequality
(WV L) is denoted by WLε.

Similarly, considering the relation ≤C(·)\{0} instead of ≤intC(·), one can define sets of ap-
proximate solutions for Vector Quasi-Variational Inequalities and for Vector Linearized
Quasi-Variational Inequalities, denoted respectively by Qε and Lε. Obviously, for every
ε ∈ C(K):

Qε ⊆ WQε and Lε ⊆ WLε. (1)

In line with previous papers [18], [20] concerning well-posedness for Variational and Quasi-
Variational Inequalities in the scalar case, we introduce two types of approximating se-
quences:

Definition 2.3. A sequence (un)n, un ∈ K, is an approximating sequence for the Weak
Vector Quasi-Variational Inequality (WVQ) if there exists a sequence (εn)n, εn ∈ C(K),
converging to 0 and such that un ∈ WQεn for every n ∈ N . This amounts to:

εn ∈ C(un), d(un, S(un)) ≤ ‖εn|| and 〈Aun, v − un〉L ¢intC(un)
−εn ∀ v ∈ S(un).

Definition 2.4. A sequence (un)n, un ∈ K ∀n ∈ N , is an approximating sequence
for the Weak Vector Linearized Quasi-Variational Inequality (WV L) if there exists a
sequence (εn)n, εn ∈ C(K), converging to 0 and such that un ∈ WLεn for every n ∈ N .
This amounts to:

εn ∈ C(un), d(un, S(un)) ≤ ‖εn‖ and 〈Avn, v − un〉L 6≤intC(un)
−εn ∀ v ∈ S(un).

Similarly, one can define approximating sequences for Vector Quasi-Variational Inequali-
ties (V Q) (resp. for Vector Linearized Quasi-Variational Inequalities (V L)) requiring that
un ∈ Qεn (resp. un ∈ Lεn) for every n ∈ N .
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Note that the condition d(un, S(un)) ≤ ‖εn‖ is less restrictive than un ∈ S(un) and
the condition 〈Av, v − un〉L 6≤intC(un)

−εn ∀v ∈ S(un) is less restrictive than 〈Av, v −
un〉L 6≤intC(un)

−εn ∀v ∈ B(S(un), εn). An example of scalar Quasi-Variational Inequal-

ity, for which the condition un ∈ S(un) is satisfied only by the sequence whose elements
are equal to the unique solution, is given in [20]. We recall it for the sake of completeness.

Example 2.5 ([20]). Let E = R, K = [0,+∞[, S : u ∈ E −→ S(u) = [0,
u

2
] and

A : u ∈ R −→ Au = u. In this case u /∈ S(u) ∀u 6= 0, while B(S(u), ε) ∩K = [0,
u

2
+ ε]

for every real positive number ε. Then, it is easy to compute that, if (εn)n is a sequence
of positive real numbers, an approximating sequence in the sense of Definition 2.3, can be
obtained taking the elements in [0, 2εn], if εn < 1

4
, or in [0,

√
εn], if εn ≥ 1

4
.

We conclude the section with some properties of the approximate solution sets, for which
it is useful the following lemma:

Lemma 2.6 ([16]). Let (Hn)n be a sequence of nonempty subsets of a Banach space E
such that:

i) Hn is convex for every n ∈ N ;

ii) H ⊆ lim inf
n

Hn;

iii) there exists m ∈ N such that

int
⋂

n≥m

Hn 6= ∅.

Then, for every uo ∈ intH there exists a positive real number δ such that:

intB(uo, δ) ⊆ Hn ∀n ≥ m.

If E is a finite dimensional space, then assumption iii) can be replaced by

iii′) intH 6= ∅.

Proposition 2.7. Assume that the following assumptions hold:

i) the set-valued mapping S : K −→ K is convex-valued, (s, w)-closed, (s, s)-lower
semicontinuous and (s, w)-subcontinuous on K;

ii) the operator A is continuous from (E, s) to (L(E,Z), w);

iii) the set-valued mapping C is (s, s)-lower semicontinuous and satisfies the following
condition: for every converging sequence (un)n, there exists m ∈ N such that

int
⋂

n≥m

C(un) 6= ∅.

Then, for every ε ∈ C(K), the sets WQε and WLε are closed.

Proof. Let ε ∈ C(K) and let (un)n be a sequence of elements in WQε converging to
uε ∈ K, that is, for all n ∈ N , d(un, S(un)) ≤ ‖ε‖ and 〈Aun, v− un〉L 6≤intC(un)

−ε for all

v ∈ S(un). If uε 6∈ WQε, then d(uε, S(uε)) > a > ‖ε‖ or else there exists vε ∈ S(uε) such
that 〈Auε, vε−uε〉L ≤intC(uε) −ε. In the first case, let zn ∈ S(un) such that ‖un− zn‖ < a
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for every n ∈ N . The set-valued mapping S being closed and subcontinuous, there exists
a subsequence (znk

)k of (zn)n weakly converging to some zε ∈ S(uε). Therefore one gets:
‖uε − zε‖ ≤ lim inf

k
‖unk

− znk
‖ ≤ a < d(uε, S(uε)), which gives a contradiction. In the

other case, first observe that the lower semicontinuity of C and S implies that

C(uε) ⊆ lim inf
n

C(un) and S(uε) ⊆ lim inf
n

S(un). (2)

From the second inclusion in (2), there exists a sequence (vn)n converging to vε such that
vn ∈ S(un) for n sufficiently large. The operator A being continuous, one gets

lim
n
〈Aun, vn − un〉L = 〈Auε, vε − uε〉L ≤intC(uε) −ε.

Since yε = (−ε − 〈Auε, vε − uε〉L) ∈ intC(uε), from (2), assumption iii) and Lemma 2.6
there exist m ∈ N and δ > 0 such that:

intB(yε, δ) ⊆ C(un) ∀ n ≥ m.

Therefore, for n sufficiently large we have:

〈Aun, vn − un〉L ≤intC(un) −ε.

Since vn ∈ S(un) and un ∈ WQε, we get a contradiction.

The following example shows that, under conditions i)-iii), the sets Qε and Lε may fail
to be closed even in finite dimensional spaces.

Example 2.8. Let E = R, K = [−1, 0], Z = R2, Au = (1, u), S(u) = [−1, u] and
C(u) = C = [0,+∞[2. Consider ε = (ε1, 0) ∈ C with ε1 > 0. The inequality 〈Auε, v −
uε〉L ≤C\{0} −ε means that (v− uε, uεv− uε

2) ≤C\{0} (−ε1, 0). Then the set Qε coincides
with [−1, 0[ while WQε = [−1, 0].

Moreover, all the sets of approximate solutions are not always convex, even in the scalar
case.

Example 2.9. Let E = R, K = [−1, 1], Z = R, Au = 0, C(u) = C = [0,+∞[ and

S(u) =

{

[0, u+ 1] if − 1 ≤ u ≤ 0
{1} if 0 < u ≤ 1

Then, for every ε < 1 all the sets of approximate solutions coincide with the set [−ε, 0]∪
[1− ε, 1].

For the sake of simplicity, the results in the next section will be given considering, instead
of a moving cone, a convex, closed and pointed cone C of Z, with apex at the origin and
with nonempty interior.

3. Well-posed Vector Quasi-Variational Inequalities

Using the notations introduced in Section 2, we recall that, for ε ∈ C, Qε, Lε, WQε

and WLε denote, respectively, the set of ε-solutions to the Vector Quasi-Variational In-
equality (V Q), to the Vector Linearized Quasi-Variational Inequality (V L), to the Weak
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Vector Quasi-Variational Inequality (WVQ) and to the Weak Vector Linearized-Quasi
Variational Inequality (WV L). When ε = 0 one obtains the sets of the exact solutions to
the previous problems.

Definition 3.1. Let (P) be any of the listed problems; (P) is said to be well-posed if it
admits at least a solution and every approximating sequence for (P) has a subsequence
which converges to a solution of (P).

In the particular case where Z = R, L(E,Z) = E∗ and C = [0,∞[, the well-posedness
notions for (V Q) and for (V L) coincide respectively with the notions of well-posedness
and L−well-posedness in the generalized sense defined in [20]. Note that, as well as for
Minimization Problems, many definitions of well-posedness for Variational Inequalities or
Quasi-Variational Inequalities require the uniqueness of the solution; for Vector Problems
this would be an utopistic assumption! Moreover, even in the scalar case, remember that
a Quasi-Variational Inequality defined by a strongly monotone operator does not have
necessarily a unique solution (see Example 11.2 in [3]).

F. Giannessi in [13] proved that, if E is a finite dimensional space and the operator
A is monotone and continuous, a Weak Vector Variational Inequality is equivalent to
the corresponding linearized problem, while this equivalence does not hold for Vector
Variational Inequalities. Before proving this result for Weak Vector Quasi-Variational
Inequalities in Banach spaces, we give some useful monotonicity properties for operators:

· an operator A from E to L(E,Z) is W -pseudomonotone on a subset Y of E if, for every
u ∈ Y and v ∈ Y, u 6= v

〈Av, u− v〉L ≥intC 0 =⇒ 〈Au, u− v〉L ≥intC 0;

· an operator A from E to L(E,Z) is pseudomonotone on a subset Y of E if, for every
u ∈ Y and v ∈ Y, u 6= v

〈Av, u− v〉L ≥C\{0} 0 =⇒ 〈Au, u− v〉L ≥C\{0} 0.

Proposition 3.2. Assume that the following assumptions hold:

i) the set-valued mapping S is closed-valued and convex-valued on K;

ii) the operator A is pseudomonotone (resp. W -pseudomonotone) on K.

Then
Qo ⊆ Lo (resp. WQo ⊆ WLo).

If the operator A is hemicontinuous on K (i.e. it is continuous over the segments of E to
(L(E,Z), w)), then

WQo ⊇ WLo.

Proof. We prove that if uo /∈ Lo then uo 6∈ Qo. When uo 6∈ Lo, then uo /∈ S(uo) or else
there exists vo ∈ S(uo) such that 〈Avo, uo − vo〉L ≥C\{0} 0. In both cases uo /∈ Qo, since
the pseudomonotonicity of the operator A on K implies that

〈Auo, uo − vo〉L ≥C\{0} 0,

hence
〈Auo, vo − uo〉L ≤C\{0} 0.
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Assume that uo /∈ WLo. Then, uo /∈ S(uo) or else there exists vo ∈ S(uo) such that
〈Avo, uo − vo〉L ≥intC 0. As before, one concludes that

〈Auo, vo − uo〉L ≤intC 0,

(since the operator A is W -pseudomonotone on K) so uo 6∈ WQo.

In order to prove thatWQo ⊇ WLo when the operator A is hemicontinuous onK, consider
uo ∈ WLo and assume that uo /∈ WQo. Since uo ∈ S(uo), there exists vo ∈ S(uo) such
that 〈Auo, vo − uo〉L ≤intC 0.

For every real number t ∈ [0, 1] consider vt = tuo + (1− t)vo, which belongs to S(uo) for
every t ∈ [0, 1]. Since uo is a solution to the Weak Linearized Quasi-Variational Inequality
(WV L) one has

〈Avt, uo − vt〉L = (1− t)〈Avt, uo − vo〉L 6≥intC 0.

Then

〈Avt, uo − vo〉L 6≥intC 0,

and, in light of the hemicontinuity of the operator A, one has

〈Auo, uo − vo〉L 6≥intC 0,

and one gets a contradiction.

In the next result, which is concerned with relationships among well-posed problems, we
use the following notions of monotonicity for operators:

· an operator A from E to L(E,Z) is W -monotone on a subset Y of E if, for every u ∈ Y
and v ∈ Y, u 6= v

〈Au− Av, u− v〉L ≥intC 0;

· an operator A from E to L(E,Z) is monotone on a subset Y of E if, for every u ∈ Y
and v ∈ Y, u 6= v

〈Au− Av, u− v〉L ≥C\{0} 0.

Proposition 3.3. Assume that the operator A is W -monotone on the set K. Then

(WV L) well-posed =⇒ (WVQ) well-posed,

(V L) well-posed =⇒ (V Q) well-posed.

As a consequence, when the operator A is also hemicontinuous and the Weak Vector Quasi-
Variational Inequality (WVQ) and the Vector Quasi-Variational Inequality (V Q) have
the same solutions, if the Weak Vector Linearized Quasi-Variational Inequality (WV L)
is well-posed, then all the problems are well-posed.

Proof. Let (un)n, un ∈ K, be an approximating sequence for the Weak Vector Quasi-
Variational Inequality (WVQ). Then, there exists a sequence (εn)n, εn ∈ C, converging
to 0 in Z such that:

d(un, S(un)) ≤ ‖εn‖ and 〈Aun, v − un〉L 6≤intC −εn ∀ v ∈ S(un).
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Assume that the sequence (un)n is not approximating for the Weak Vector Linearized
Quasi-Variational Inequality (WV L). Then, there exist m ∈ N and vm ∈ S(um) such
that 〈Avm, vm − um〉L ≤intC −εm. Since the operator A is W -monotone on K one has:

〈Aum, vm − um〉L ≤intC −εm,

which gives a contradiction.

In a similar way, using the monotonicity of the operator A, one can prove that the Vector
Quasi-Variational inequality (V Q) is well-posed whenever the Vector Linearized Quasi-
Variational Inequality (V L) is well-posed.

When the set of solutions to the Weak Vector Quasi-Variational Inequality and the set
of solutions to the Vector Quasi-Variational Inequality coincide, the same occurs for the
linearized problems, since the operator A is monotone and hemicontinous and one has

Qo ⊆ Lo ⊆ WLo ⊆ WQo.

Then, the proof can be completed recalling that Qε ⊆ WQε and Lε ⊆ WLε, for every
ε ∈ C.

Remark 3.4. In [27] an example shows that, even if the operator A is strongly monotone
(see Definition 2 in [27]), the sets of solutions to the Vector Variational Inequality and to
the Weak Vector Variational Inequality defined by A do not always coincide. Nevertheless
the authors gave a class of operators for which these sets coincide (see Theorem 2 in [27]).

When the space E is finite dimensional, the well-posedness is guaranteed under reasonable
assumptions.

Proposition 3.5. Assume that K is a compact and convex subset of E = Rk and assume
that the following assumptions hold:

i) the set-valued mapping S is convex-valued, closed and lower semicontinuous on K;

ii) the operator A is continuous on K.

Then

· the Weak Vector Quasi-Variational Inequality (WVQ) is well-posed if (and only if ) it
admits at least a solution;

· the Weak Vector Linearized Quasi-Variational Inequality (WV L) is well-posed if (and
only if ) it admits at least a solution.

Proof. Let (un)n be an approximating sequence for the Weak Vector Linearized Quasi-
Variational Inequality (WV L) and let (εn)n be a sequence converging to 0 in C such
that

d(un, S(un)) ≤ ‖εn‖ and 〈Av, v − un〉L 6≤intC −εn ∀ v ∈ S(un). (3)

Since the set K is compact, let (unk
)k be a subsequence of (un)n converging to a point

uo ∈ K. We prove that uo solves the Weak Vector Linearized Quasi-Variational Inequality
(WV L).

In fact, first, we observe that d(uo, S(uo)) ≤ lim inf
k

d(unk
, S(unk

)) ≤ limk ‖εnk
‖ = 0.

Indeed, if the left inequality fails to be true, there exists a positive number η such that

lim inf
k

d(unk
, S(unk

)) < η < d(uo, S(uo)).
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Then, there exist a subsequence (unkh
)h of (unk

)k and a sequence (vh)h such that:

vh ∈ S(unkh
) and ‖unkh

− vh‖ < η ∀ h ∈ N.

Since the set K is compact and the set-valued mapping S is closed, the sequence (vh)h
has a subsequence which converges to wo ∈ S(uo) and ‖uo − wo‖ ≤ η, which leads to a
contradiction. Therefore one may conclude that uo ∈ S(uo).

Assume now that there exists vo ∈ S(uo) such that 〈Avo, uo − vo〉L ≥intC 0. The lower
semicontinuity of the set-valued mapping S implies that there exists a sequence (vk)k
converging to vo such that vk ∈ S(unk

). Since the operator A is continuous one gets

〈Avk, vk − unk
〉L ≤intC −εk,

for k sufficiently large, and this contradicts (3).

The proof for a Weak Vector Quasi-Variational Inequality is similar and is omitted.

Corollary 3.6. Assume that the assumptions of Proposition 3.5 are satisfied and the
operator A is W -monotone. If the Vector Quasi-Variational Inequality (V Q) and the
Weak Vector Quasi-Variational Inequality (WVQ) have the same solutions, then

- the Vector Quasi-Variational Inequality (V Q) is well-posed;

- the Vector Linearized Quasi-Variational Inequality (V L) is well-posed.

Proof. From Proposition 3.5 one gets the well-posedness of the Weak Vector Quasi-
Variational Inequality (WVQ). Then, since an approximating sequence (un)n for (V Q)
is also approximating for (WVQ), there exists a subsequence of (un)n converging to a
solution of (WVQ) which is also a solution of (V Q). The second statement can be proved
similarly, observing that Qo ⊆ Lo ⊆ WLo ⊆ WQo.

The compactness assumption on the setK cannot be weakened, as shown by the following
example.

Example 3.7. Let E = Z = R, K = C = [0,+∞[, Au = −e−u and

S(u) =

{

[u, 1] if u ≤ 1
[1, u] if u ≥ 1.

Then the sequence un = n is approximating for the Quasi-Variational Inequality:

uo ∈ S(uo) and 〈Auo, uo − v〉L ≤ 0 ∀ v ∈ S(uo)

and for the Linearized Quasi-Variational Inequality:

uo ∈ S(uo) and 〈Av, uo − v〉L ≤ 0 ∀ v ∈ S(uo),

but it does not have convergent subsequences.
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[3] C. Baiocchi, A. Capelo: Variational and Quasivariational Inequalities. Applications to Free
Boundary Problems, John Wiley and Sons, Chichester (1984).

[4] A. Bensoussan, J.-L. Lions: Contrôle impulsionnel et inéquations quasi-variationnelles
d’évolution, C. R. Acad. Sci., Paris, Sér. A 276 (1973) 1333–1338.

[5] E. Cavazzuti, J. Morgan: Well-posed saddle point problems, in: Optimization, Theory and
Algorithms, W. Oettli, J. Stoer (eds.), Lect. Notes Pure Appl. Math. 86, Marcel Dekker,
New York (1983) 61–76.

[6] Y. Cheng, S. J. Li: Existence of solutions for a generalized vector quasivariational inequality,
J. Optimization Theory Appl. 90 (1996) 321–334.

[7] A. Danilidis, N. Hadjisavvas: Existence theorems for vector variational inequalities, Bull.
Austr. Math. Soc. 54 (1996) 473–481.

[8] I. Del Prete, M. B. Lignola, J. Morgan: New concepts of well-posedness for optimization
problems with variational inequality constraints, J. Inequal. Pure Appl. Math. 4(1) (2003),
Paper no. 5. (electronic).

[9] X. P. Ding: The generalized vector quasi-variational-like inequalities, Comput. Math. Appl.
37(6) (1999) 57–67.

[10] A. L. Dontchev, T. Zolezzi: Well-posed Optimization Problems, Lectures Notes in Mathe-
matics 1543, Springer, Berlin (1993).

[11] K. Kuratowski: Topology, Vol. I and II, Academic Press, New York (1968).

[12] F. Giannessi: Theorems of alternative, quadratic programs and complementarity problems,
in: Variational Inequality and Complementarity Problems, R. W. Cottle et al. (eds.), Wiley,
New York (1980) 151–186.

[13] F. Giannessi: On Minty variational principle, in: New Trends in Mathematical Program-
ming, F. Giannessi et al. (eds.), Kluwer Academic Publishers, Dordrecht (1997) 93–99.

[14] F. Giannessi: Vector Variational Inequalities and Vector Equilibria, Nonconvex Optim.
Appl. 38, Kluwer Academic Publishers, Dordrecht (2000).

[15] S. J. Li, G. Y. Chen, K. L. Teo: On the stability of generalized vector quasivariational
inequality problems, J. Optimization Theory Appl. 113(2) (2002) 283–295.

[16] M. B. Lignola, J. Morgan: Semicontinuity and episemicontinuity: Equivalence and applica-
tions, Boll. Un. Mat. Ital., VII. Ser., B 8(1) (1994) 1–16.

[17] M. B. Lignola, J. Morgan: Approximate solutions to variational inequalities and applica-
tions, Matematiche 49(2) (1994) 281–293.

[18] M. B. Lignola, J. Morgan: Well-posedness for optimization problems with constraints de-
fined by variational inequality having a unique solution, J. Glob. Optim. 16(1) (2000) 57–67.

[19] M. B. Lignola, J. Morgan: Approximate solutions and α-well-posedness for variational in-
equalities and Nash equilibria, in: Decision and Control in Management Science, G. Zaccour
(ed.), Kluwer Academic Publishers, Dordrecht (2002) 367–378.

[20] M. B. Lignola: Well-posedness and L-well-posedness for quasi-variational inequalities, J.
Optimization Theory Appl., to appear.

[21] D. T. Luc: Theory of Vector Optimization, Lecture Notes in Economics and Mathematical
Systems 319, Springer, Berlin (1989).

[22] J. Morgan: Constrained well-posed two-level optimization problems, in: Nonsmooth Opti-
mization and Related Topics, F. Clarke et al. (eds.), Ettore Majorana International Sciences
Series, Plenum Press, New York (1989) 307–326.



384 M. B. Lignola, J. Morgan / Vector Quasi-Variational Inequalities: Approximate ...

[23] J. Morgan, M. Romaniello: Generalized quasi-variational inequalities and duality, J. In-
equal. Pure Appl. Math. 4(2) (2003), Paper no. 28 (electronic).

[24] J. Morgan: Approximations and well-posedness in multicriteria games, Ann. Op. Res. 137(1)
(2005) 257–268.

[25] U. Mosco: Implicit variational problems and quasi variational inequalities, in: Nonlin.
Oper. Calc. Var., Proc. Summer School (Bruxelles, 1975), Lecture Notes in Mathematics
543, Springer, Berlin (1976) 83–156.

[26] A. N. Tykhonov: On the stability of the functional optimization problem, U.S.S.R. Comput.
Math. Math. Phys. 6(4) (1966) 26–33.

[27] N. D. Yen, G. M. Lee: On monotone and strongly monotone vector variational inequalities,
in: Vector Variational Inequalities and Vector Equilibria, F. Giannessi (ed.), Nonconvex
Optim. Appl. 38, Kluwer Academic Publishers, Dordrecht (2000) 467–478.


