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In this paper we consider issues related to averaging of singularly perturbed control systems (SPCS) in
the viability context. We introduce a notion of near viability of SPCS and relate it to the viability of a
specially constructed averaged differential inclusion.

1. Introduction

In this paper we consider issues related to averaging of singularly perturbed control sys-
tems (SPCS) in the viability context. Despite of the fact that the averaging techniques
for SPCS have been studied very intensively (see [1]-[5], [8], [9], [13], [18], [19], [22], [23],
[25], [29] for most recent developments and also for references to earlier results in the
area), this topic, to the best of the author’s knowledge, has not been considered in the
literature.

The paper is organized as follows. In Section 2 we introduce a notion of near viability of
SPCS and relate it to the viability of a specially constructed averaged differential inclusion
(Theorems 2.1 and 2.2). In Section 3 we establish a result that can be interpreted as a
generalization of Tichonov’s theorem (Proposition 3.1), and we use this result to justify a
relaxation of control systems with mixed control-state constraints proposed by J.-P. Aubin
(Proposition 3.2). In Section 4 we consider some readily verifiable conditions which ensure
the validity of the Assumptions of Theorems 2.1 and 2.2. In Section 5 the proofs of
Theorems 2.1 and 2.2 are given.

2. Averaging over viable fast motions and controls

Let us consider a singularly perturbed control system defined by the equations

ε Úy(t) = f(u(t), y(t), z(t)), (1)

Úz(t) = g(u(t), y(t), z(t)), (2)
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where ε > 0 is a small parameter; f : U × Rm × Rn → Rm, g : U × Rm × Rn → Rn

are continuous vector functions satisfying Lipschitz conditions in z and y; U is a compact
metric space and the controls are measurable functions satisfying the inclusion u(t) ∈ U .

Let Z ⊂ Rn be a compact set and let Y (z) : N(Z) → 2R
m

be a point-to-set compact
valued map defined in some (sufficiently large) neighborhood N(Z) of Z. Assume that
Y (z) is uniformly continuous, that is, there exists a monotone decreasing function κ(·) :
[0,∞) → [0,∞), limθ→∞ κ(θ) = 0, such that

dH(Y (z′), Y (z′′)) ≤ κ(||z′ − z′′||) ∀z′, z′′ ∈ N(Z), (3)

where, here and in what follows, dH(·, ·) is the Hausdorff metric defined on the bounded
subsets of a finite dimensional space by the Euclidean norm.

Define the set D ⊂ Rm ×Rn by the equation

D
def
= {(y, z) : y ∈ Y (z), z ∈ Z}. (4)

Definition. A solution (yspε (t), zspε (t)) of the SPCS (1)-(2) is called near viable in D on
the interval [0, T ] if

max
t∈[0,T ]

dist((yspε (t), zspε (t)), D) ≤ νT (ε) (5)

for some νT (ε) tending to zero as ε tends to 0; it is called near viable in D if

sup
t∈[0,∞)

dist((yspε (t), zspε (t)), D) ≤ ν(ε), (6)

for some ν(ε) tending to zero as ε tends to zero, where dist(·, ·) stands for the distance
between a point and a set.

For the sake of brevity (and at the expense of some abuse of terminology) we refer to
(yspε (t), zspε (t)) as to a solution of the SPCS (1)-(2) instead of referring to it as to a
parameterized by ε family of solutions.

Along with (1)-(2), let us consider the associated system

Úy(τ) = f(u(τ), y(τ), z), z = const. (7)

in which the controls are measurable functions satisfying the inclusion u(τ) ∈ U . Note
that (7) can be formally obtained from the "fast subsystem" of the SPCS (1) by changing
the time scale: τ = t

ε
and replacing z(·) by a vector of constant parameters z.

Assumption I.

(i) For any z ∈ N(Z) and any y ∈ Y (z) there exists a control such that the solution
y(τ) of the associated system (7), obtained with this control and the initial conditions
y(0) = y, does not leave Y (z); that is, the viability kernel of Y (z) is equal to Y (z)
(sufficient and necessary conditions for this to be satisfied can be found in [6], [7]).

(ii) For any δ > 0 small enough, any z ∈ N(Z) and any y ∈ Y (z) + δB (B is a closed
unit ball in Rm ), there exists a control such that the solution y(τ) of the associated
system (7) obtained with this control and the initial conditions y(0) = y reaches Y (z)
at some moment τ̄ ∈ [0, a] (a > 0 is a given constant), that is y(τ̄) ∈ Y (z), and

dist(y(τ), Y (z)) ≤ φ(δ) ∀τ ∈ [0, τ̄ ], (8)

with limδ→0 φ(δ) = 0.
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Definition. A pair (u(τ), y(τ)) will be referred to as admissible or δ-admissible for the
associated system (7) on the interval [0, S] if u(τ) is a control, y(τ) is the corresponding
solution of the equation (7) and y(τ) ∈ Y (z) or, respectively, y(τ) ∈ Y (z) + δB, ∀τ ∈
[0, S].

Define V (z, S, y), V (z, S) as the sets of the time averages

V (z, S, y)
def
=

⋃

(

u(·), y(·)
)

{

1

S

∫ S

0

g
(

u(τ), y(τ), z
)

dτ

}

,

V (z, S)
def
=

⋃

y∈Y (z)

{

V (z, S, y)

}

,

(9)

where the first union is over all admissible pairs of the associated system (7) which satisfy
the initial conditions

y(0) = y, (10)

and the second union is over the initial conditions from Y (z). Define also V δ(z, S, y),
V δ(z, S) as

V δ(z, S, y)
def
=

⋃

(

uδ(·), yδ(·)
)

{

1

S

∫ S

0

g
(

uδ(τ), yδ(τ), z
)

dτ

}

,

V δ(z, S)
def
=

⋃

y∈Y (z)+δB

{

V δ(z, S, y)

}

,

(11)

where, in contrast to (9), the first union is over all δ-admissible pairs satisfying the initial
conditions (10) and the second is over the initial conditions from Y (z) + δB. Note that,
in accordance with these definitions,

V (z, S, y) ⊂ V δ(z, S, y), V (z, S) ⊂ V δ(z, S). (12)

Assumption II.

(i) The following estimate is valid

dH(V
δ(z, S), V (z, S)) ≤ ν1(S, δ) ∀z ∈ N(Z) (13)

for some ν1(S, δ) such that limS→∞,δ→0 ν1(S, δ) = 0.

(ii) For any z ∈ N(Z), there exists a convex and compact set V (z) such that

dH(V (z, S, y), V (z)) ≤ ν2(S) ∀y ∈ Y (z),∀z ∈ N(Z) (14)

for some ν2(S), limS→∞ ν2(S) = 0.

Note that (14) implies that dH(V (z, S), V (z)) ≤ ν2(S) and, hence, from (13) it follows
that

dH(V
δ(z, S), V (z)) ≤ ν1(S, δ) + ν2(S) ∀z ∈ N(Z). (15)

In Section 4 below we discuss some readily verifiable assumptions that lead to the fulfill-
ment of the Assumptions I and II.
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Define the averaged differential inclusion (ADI) by the equation

Úz(t) ∈ V (z(t)). (16)

Remark. For any z ∈ N(Z), let P (U × Y (z)) be the space of probability measures
defined on the Borel subsets of U × Y (z) and let W (z) be the subset of P (U × Y (z))
defined by the equation

W (z) = {γ : γ ∈ P (U×Y (z));

∫

U×Y (z)

(φ′
i(y))

Tf(u, y, z)γ(du, dy) = 0, i = 1, 2, ...}, (17)

where φ′
i(·) stands for the gradient of φi(·), with {φi(·), i = 1, 2, ...} being a sequence

of continuously differentiable functions such that an arbitrary continuously differentiable
function φ(·) and its gradient φ′(·) are simultaneously approximated on compact sets
by linear combinations of functions from {φi(·), i = 1, 2, ...} and their corresponding
gradients (an example of such approximating sequence of functions is the sequence of
monomials yi11 ...y

im
m , i1, ..., im = 0, 1, ..., where yj stands for the jth component of y; see

[21]). From results in [13] it follows that the limit set V (z), the existence of which is
postulated in Assumption II(ii), can be parameterized in the form

V (z) = {ζ : ζ = g̃(γ, z), γ ∈ W (z)}, (18)

where

g̃(γ, z)
def
=

∫

U×Y

g(u, y, z)γ(du, dy) ∀γ ∈ P (U × Y ).

Hence, the ADI (16) is equivalent to the system

Úz(t) = g̃(γ(t), z(t)), (19)

in which the controls are Lebesgue measurable functions γ(·) : [0, T ] → P (U×Y ) satisfying
the inclusion

γ(t) ∈ W (z(t)). (20)

In this paper, we will be using the averaged system in the form of the differential inclusion
(16) and not in the parameterized form (19)- (20).

Following [6] and [7], let us define the viability of the ADI (16) in Z.

Definition. A solution z(t) of the ADI (16) is called viable in Z on [0, T ] if z(t) ∈ Z ∀t ∈
[0, T ]; it is called viable in Z if z(t) ∈ Z ∀t ∈ [0,∞).

Theorem 2.1. Let Assumptions I and II be valid and let the map V (z) : N(Z) → 2R
n

satisfy Lipschitz conditions on N(Z), that is,

dH(V (z′), V (z′′)) ≤ L||z′ − z′′|| ∀z′, z′′ ∈ N(Z), (21)

where L is a constant. Let, also, the set of viable in Z on [0, T ] solutions of the ADI (16)
be not empty. Then:
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(i) For any solution (yspε (t), zspε (t)) of the SPCS (1)-(2) which is near viable in D on
the interval [0, T ], there exists a solution zaε (t) of the ADI (16) which is viable in Z
on [0, T ] and satisfies the inequality

max
t∈[0,T ]

||zaε (t)− zspε (t)|| ≤ µT (ε), (22)

where limε→0 µT (ε) = 0 (µT (ε) is the same for all solutions of the SPCS (1)-(2)
which satisfy (5) with the same function νT (ε)).

(ii) For any solution za(t) of the ADI (16) which is viable in Z on [0, T ] and has the
initial conditions

za(0)
def
= ζ0 (23)

and for any
y0 ∈ Y (ζ0), (24)

there exists a solution (yspε (t), zspε (t)) of the SPCS (1)-(2) which is near viable in D,
has the initial conditions

(yspε (0), zspε (0)) = (y0, ζ0), (25)

and satisfies the inequality

max
t∈[0,T ]

||zspε (t)− za(t)|| ≤ µT (ε), (26)

with µT (ε) tending to zero as ε tends to zero (same for all za(t) as above).

Proof of Theorem 2.1 is in Section 5.

To extend the statements of Theorem 2.1 to the infinite time horizon let us introduce the
following assumption.

Assumption III.
Corresponding to any solution za1(t) of the ADI (16) such that za1(t) ∈ N(Z) and corre-
sponding to any z ∈ N(Z), there exists a solution za2(t) ∈ N(Z) of the ADI (16) such
that za2(0) = z and

||za2(t)− za1(t)|| ≤ ae−bt||za2(0)− za1(0)|| ∀t > 0, (27)

where a and b are some positive constants.

Similarly to Lemma A.2 in [15], it can be shown that Assumption III is satisfied if there
exist positive definite matrices C and D such that, for any v′ ∈ V (z′), z′ ∈ N(Z) and
any z′′ ∈ N(Z), there exists v′′ ∈ V (z′′) such that

(v′ − v′′)C(z′ − z′′) ≤ −(z′ − z′′)TD(z′ − z′′). (28)

For any two continuous functions z′(·), z′(·) : [0,∞) → N(Z), let

ρ(z′(·), z′′(·)) def
=

∞
∑

l=0

2−l max
t∈[0,l]

||z′(t)− z′(t)||. (29)

Note that ρ(·, ·) is a metric on the space of continuous bounded functions defined on the
interval [0,∞) the convergence in which is equivalent to the uniform convergence on any
finite time interval.
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Theorem 2.2. Let the conditions of Theorem 2.1 and Assumption III be satisfied. Let,
also, the set of viable in Z solutions of the ADI (16) be not empty. Then:

(i) For any solution (yspε (t), zspε (t)) of the SPCS (1)-(2) which is near viable in D,
there exists a solution zaε (t) of the ADI (16) which is viable in Z and satisfies the
inequality

ρ(zaε (·), zspε (·)) ≤ µ(ε), (30)

where limε→0 µ(ε) = 0 (µ(ε) is the same for all solutions of the SPCS (1)-(2) which
satisfy (6) with the same function ν(ε)).

(ii) For any solution za(t) of the ADI (16) which is viable in Z and has the initial
conditions (23) and for any y0 satisfying (24), there exists a solution (yspε (t), zspε (t))
of the SPCS (1)-(2), having the initial conditions (25), which is near viable in D
and satisfies the inequality

ρ(zspε (·), za(·)) ≤ µ(ε), (31)

with µ(ε) tending to zero as ε tends to zero (same for all ζ(t)).

Proof of Theorem 2.2 is in Section 5.

3. A generalization of Tichonov’s theorem and Aubin’s relaxation

By formally taking ε = 0 in (1)-(2), one obtains the system

0 = f(u(t), y(t), z(t)), (32)

Úz(t) = g(u(t), y(t), z(t)). (33)

Under the additional assumption that, for any z ∈ N(z), the equation f(u, y, z) = 0 has
a unique root y = ψ(u, z) on U × Y (z), that is,

(u, y) ∈ U × Y (z), f(u, y, z) = 0 ⇔ y = ψ(u, z), (34)

the system (32)-(33) becomes equivalent to the system

Úz(t) = g(u(t), ψ(u(t), z(t)), z(t)), (35)

in which the controls are measurable functions u(t) ∈ U . This is a so called reduced
system. Results establishing a possibility to approximate the z-components of solutions
of the SPCS by the solutions of the reduced system (35) are commonly referred to as gen-
eralizations of Tichonov’s theorem (see, e.g., [10], [20], [26], [28]; the original Tichonov’s
theorem was established for the uncontrolled dynamics in [27]).

Below we introduce conditions, under which the ADI (16) becomes equivalent to the sys-
tem (32)-(33) and, thus, the solutions of the latter approximate (in the sense of Theorems
2.1-2.2) the near viable solutions of the SPCS (1)-(2). Note that the assumption that the
equation f(u, y, z) = 0 has a unique root on U × Y (z) is not needed for the validity of
this result.

Let z ∈ N(Z) and (ū, ȳ) ∈ U × Y (z) be such that f(ū, ȳ, z) = 0. Then

η
def
= g(ū, ȳ, z) ∈ V (z, S, ȳ) ∀S > 0 ⇒ η ∈ V (z),
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where V (z) is introduced in Assumption II(ii). Following the terminology of [12], let us
call the defined above η as a stationary regime point of V (z). Denote by V st(z) the set
of all stationary regime points of V (z):

V st(z)
def
= {η | η = g(u, y, z), 0 = f(u, y, z), (u, y) ∈ U × Y (z)} ⊂ V (z). (36)

Proposition 3.1. Let Assumptions I and II be satisfied. Let also the set

q(U, Y (z), z)
def
= {η | η = q(u, y, z), (u, y) ∈ U × Y (z)} (37)

be convex for any z ∈ N(Z), where q(u, y, z)
def
= (f(u, y, z), g(u, y, z)). Then

V (z) = V st(z) ∀z ∈ N(Z). (38)

Proof of the proposition is given in the end of this section.

From Proposition 3.1 it follows that the viable in D solutions of the ADI (16) coincide
with the viable solutions of the differential inclusion

Úz(t) ∈ V st(z(t)), (39)

which is equivalent to the system (32)-(33).

Let us demonstrate one application of this result. Consider the system

Úz(t) = g(y(t), z(t)), (40)

in which y(·) are controls (and not state variables as above). That is, y(·) in (40) are
Lebesgue measurable functions that are assumed to satisfy the state constraint

y(t) ∈ Y (z(t)). (41)

J.-P. Aubin conjectured that this constraint can be relaxed in the sense that the viable
solutions of (40)-(41) (that is, the solutions such that z(t) ∈ Z) can be approximated by
the z-components of the near viable solutions of the SPCS

ε Úy(t) = u(t), (42)

Úz(t) = g(y(t), z(t)). (43)

In this system, y(·) are state variables and controls are functions u(·) which are measur-
able and satisfy the inclusion u(t) ∈ U

def
=B (the closed unit ball in Rm). The following

propositions can serve as a justification of such a relaxation.

Proposition 3.2. Let g(·, ·) : Rm × Rn → Rm satisfy Lipschitz conditions and let the
map Y (·) : N(Z) → 2R

m
be convex and compact valued, and satisfy Lipschitz conditions

(that is, (3) is valid with κ(θ) = Lθ, L = const). Assume that there exists r > 0 such that

rB ⊂ Y (z) ∀z ∈ N(Z), (44)

where, as above, B is the closed unit ball in Rm and assume that the set

g(Y (z), z)
def
= {v | v = g(y, z), y ∈ Y (z)} (45)

is convex for any z ∈ N(Z). Then, corresponding to any near viable in D on [0, T ]
solution (yspε (t), zspε (t)) of the SPCS (42)-(43), there exists a pair (yaε (t), z

a
ε (t)) satisfying

(40)-(41) such that zaε (t) is viable in Z on [0, T ] and such that (22) is valid. Conversely,
corresponding to any pair (ya(t), za(t)) satisfying (40)-(41), with za(t) being viable in Z
on [0, T ], there exists a near viable solution of the SPCS (42)-(43) such that (26) is valid.
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Proof of Proposition 3.2. First note that (44) and the convexity of Y (z) imply the
validity of Assumptions I and II (see Corollary 4.4 below). Also, from the convexity of
the set (45) it follows that the set (37), which, for the system (42)-(43), has the form

q(U, Y (z), z) = U × g(Y (z), z),

is convex. Hence, the conditions of Proposition 3.1 are satisfied and

V (z) = V st(z) = g(Y (z), z). (46)

That is, the ADI (16) is equivalent to the system (40)-(41). The validity of the proposition
follows now from Theorem 2.1.

In conclusion of this section, let us prove Proposition 3.1.

Proof of Proposition 3.1. By (36), it is enough to prove that V (z) ⊂ V st(z). Denote:

Vq(z, S, y)
def
=

⋃

(

u(·), y(·)
)

{

1

S

∫ S

0

q
(

u(τ), y(τ), z
)

dτ

}

,

where, as in (9), the union is over all admissible pairs of the associated system (7), which
satisfy the initial conditions (10). Due to the convexity of q(U, Y (z), z)

Vq(z, S, y) ⊂ q(U, Y (z), z) ∀S > 0.

Also, by (7),

|| 1
S

∫ S

0

f(u(τ, y(τ), z)dτ || = || 1
S

∫ S

0

Úy(τ)dτ || = 1

S
||y(S)− y(0)|| ≤ c(z)

S
,

where c(z)
def
= max{||y′ − y′′|| | y′, y′′ ∈ Y (z)}. Hence,

Vq(z, S, y) ⊂ {(η1, η2) ∈ Rm ×Rn | ||η1|| ≤
c(z)

S
, (η1, η2) ∈ q(U, Y (z), z)}

⇒ lim sup
S→∞

Vq(z, S, y) ⊂ {(η1, η2) ∈ Rm ×Rn | η1 = 0, (η1, η2) ∈ q(U, Y (z), z)}

It follows that

V (z) ⊂ {η2 | (η1, η2) ∈ lim sup
S→∞

Vq(z, S, y)}

⊂ {η2 | η1 = 0, (η1, η2) ∈ q(U, Y (z), z)} def
= V st(z).

This completes the proof.

Note that the proof above is similar to that of Proposition 3.2 in [12] that was proved
under more restrictive conditions.
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4. Verification of the assumptions.

In this section we consider some conditions, the fulfillment of which allows one to verify
the validity of Assumptions I and II.

Exponential stability (ES) condition.
Any two solutions, y1(τ) and y2(τ), of the associated system (7) obtained with the same
control, possess the following convergence property:

||y1(τ)− y2(τ)|| ≤ αe−βτ ||y1(0)− y2(0)|| ∀τ ≥ 0, (47)

where α and β are positive constants (same for all z ∈ N(Z)).

If the ES condition is satisfied, then the system (7) has a forward invariant set which, also,
is a global attractor for all of its solutions (Theorem 3.1(ii) in [12]). More specifically,
there exists a compact set Y ∗(z) such that

Y (z, τ, y) ⊂ Y ∗(z) ∀y ∈ Y ∗(z), τ ≥ 0 (48)

dH(Y (z, τ, y), Y ∗(z)) ≤ α1e
−βτdist(y, Y ∗(z)) ∀y ∈ Rm, τ ≥ 0, (49)

where α1 = const and Y (z, τ, y) ⊂ Rm is the reachability set of (7), that is, the set of
points which can be reached at the moment τ by the trajectories of (7) obtained with all
controls and the initial conditions y(0) = y.

Proposition 4.1. Let the ES condition be satisfied and there exists r > 0 such that

y + rB ⊂ Y ∗(z) ∀z ∈ N(Z) (50)

for some y ∈ Y ∗(z), with B being the closed unit ball in Rm. Then Assumptions I and II
will be satisfied if Y (z) is such that: (i) it contains Y ∗(z) for any z ∈ N(Z) and (ii) for
every y ∈ Y (z), there exists an admissible pair (ū(τ), ȳ(τ)) satisfying the relationships:

ȳ(0) = y, ȳ(¯̄τ) ∈ Y ∗(z) (51)

for some ¯̄τ ∈ [0, b] (b > 0 is a given constant).

Proof of this proposition is given in the end of this section.

Remarks. (i) Note that the set V (z) will be the same for all Y (z) containing Y ∗(z), and,
thus, the same will be the ADI (16) the solutions of which approximate the z-components
of the near viable solutions of the SPCS (1)-(2). Note also that the assumption about the
validity of (50) is not required if Y (z) = Y ∗(z).

(ii) It is easy to verify (see e.g. [14]) that the ES condition will be satisfied if there exist
positive definitematrices C andD such that, for any y1, y2 ∈ Rm and any u ∈ U, z ∈ N(z),

(f(u, y1, z)− f(u, y2, z))TC(y1 − y2) ≤ −(y1 − y2)TD(y1 − y2).

The fulfillment of the latter condition can be guaranteed if, e.g., f(u, y, z) is linear in
(u, y):

f(u, y, z) = F (z)y +G(z)u, (52)
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Y (z)-strong controllability condition (Y (z)-SC).
For any y′, y′′ ∈ Y (z), there exists an admissible pair (u(τ), y(τ)) of the system (7) such
that y(0) = y′ and y(τ̄) = y′′ for some τ̄ ∈ [0, b] (b > 0 is a given constant). That is, any
two points of Y (z) can be connected by an admissible solution of (7) within a uniformly
bounded interval of time.

It is obvious that the Y (z)-SC condition implies the validity of Assumption I(i). The
following statement establishes that it also implies the validity of Assumption II(ii).

Proposition 4.2. If the Y (z)-SC condition is satisfied, then Assumption II(ii) is valid.

Proof. Using the Y (z)-SC condition, one can verify that, for some constant c > 0,

dH(V (z, S, y′), V (z, S, y′′)) ≤ c

S
∀y′, y′′ ∈ Y (z), S > b. (53)

The validity of Assumption II(ii) can be proved on the basis of (53) by following exactly
the same steps as those in the proof of the corresponding result in [11] or as those in the
proof of Proposition 3.2 in [17], where a similar statement was established for the case
when Y (z) is forward invariant for the system (7).

Let us now consider two sets of conditions leading to the fulfillment of Assumption II(i).

Set A.

(i) Y (z) is convex and compact valued and there exists r > 0 such that

rB ⊂ Y (z) ∀z ∈ N(Z);

(ii) U is a compact subset of a Banach space and there exists α0, 1 > α0 ≥ 0, such that
αU ⊂ U, ∀α ∈ [α0, 1];

(iii) The function f(u, y, z) satisfies the following “homogeneouity" condition in y and u:

βf(u, y, z) = f(βκu, βy, z) ∀β > 0,

where κ is a positive constant.

Set B.

(i) Y (z) is convex and compact valued;

(ii) U is a convex and compact subset of a Banach space;

(iii) The function f(u, y, z) has the form (52) (that is, it is linear in u and y) and there
exists r > 0 such that, for any z ∈ N(Z),

ȳ + rB ∈ Y (z) (54)

for some ȳ ∈ Y (z) which, along with some ū ∈ U , satisfy the equation

F (z)ȳ +G(z)ū = 0. (55)

Proposition 4.3. Assumption II(i) is valid if the conditions from the set A or conditions
from the set B are satisfied.
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Proof. Assume, first, that the conditions from the set A are satisfied. From A(i) it
follows that

(1− δ

r
)(Y (z) + δB) = (1− δ

r
)Y (z) + (1− δ

r
)δB

= (1− δ

r
)Y (z) + (1− δ

r
)(
δ

r
)(rB) ⊂ (1− δ

r
)Y (z) + (

δ

r
)(rB)

⊂ (1− δ

r
)Y (z) + (

δ

r
)Y (z) ⊂ Y (z),

(56)

where it is assumed that δ is such that δ
r
∈ (0, 1).

Let (uδ(τ), yδ(τ)) be an arbitrary δ-admissible pair for (7) on the interval [0, S] and let
u(τ)

def
= (1 − δ

r
)κuδ(τ) and y(τ)

def
= (1 − δ

r
)yδ(τ). From the inclusions above and A(ii) it

follows that (u(τ), y(τ)) ∈ U × Y (z) for δ small enough. Also, by A(iii),

Úy(τ) = (1− δ

r
) Úyδ(τ) = (1− δ

r
)f(uδ(τ), yδ(τ)) = f(u(τ), y(τ)), τ ∈ [0, S].

Hence, the pair (u(τ), y(τ)) is admissible for the system (7).

Define the function ψ(θ) by the equation

ψ(θ)
def
= sup

||u′−u′′||+||u′−u′′||≤θ

{||g(u′, y′, z)− g(u′′, y′′, z)||

| u′, u′′ ∈ U, y′, y′′ ∈ Y (z) + δ0B, z ∈ N(Z)},

where δ0 is a fixed positive number. In accordance with this definition, for δ ∈ [0, δ0],

||g(uδ(τ), yδ(τ), z)− g((u(τ), y(τ), z)||

≤ ψ( ||uδ(τ)− u(τ)||+ ||yδ(τ)− y(τ)|| )

≤ ψ((1− (1− δ

r
)κ) max

u∈U
||u||+ (

δ

r
) max
y∈Y (z)+δB,z∈N(Z)

||y||) def
= Ýψ(δ).

(57)

Note that, due to the continuity of g(u, y, z), the function ψ(θ) tends to zero as θ tends
to zero and, hence, the function Ýψ(δ) (introduced above) tends to zero as δ tends to
zero. Since (uδ(τ), yδ(τ)) is an arbitrary δ-admissible pair, the inequality obtained above
implies that

V δ(z, S) ⊂ V (z, S) + Ýψ(δ)B′,

where B′ is the closed unit ball in Rn. This and (12) imply the validity of Assumption
II(i) with ν1(S, δ) = Ýψ(δ) in (13).

Assume now that the conditions from the set B are satisfied. By (54), rB ⊂ Y (z) − ȳ.
Hence, similarly to (56), one can obtain

(1− δ

r
)(Y (z)− ȳ + δB) ⊂ Y (z)− ȳ ⇒ (1− δ

r
)(Y (z) + δB) +

δ

r
ȳ ⊂ Y (z) (58)

Let (uδ(τ), yδ(τ)) be an arbitrary δ-admissible pair for (7) on the interval [0, S] and let

u(τ)
def
= (1− δ

r
)uδ(τ) +

δ

r
ū, y(τ)

def
= (1− δ

r
)yδ(τ) +

δ

r
ȳ.
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By the condition B(ii) and (58), (u(τ), y(τ)) ∈ U × Y (z) for δ such that δ
r
∈ (0, 1). Also,

by (52) and (55),

Úy(τ) = (1− δ

r
) Úyδ(τ) = (1− δ

r
)(F (z)yδ(τ) +G(z)uδ(τ)) +

δ

r
(F (z)ȳ +G(z)ū)

= F (z)y(τ) +G(z)u(τ).

That is, the pair (u(τ), y(τ)) is admissible for the system (7). Similarly to (57),

||g(uδ(τ), yδ(τ), z) − g((u(τ), y(τ), z)|| ≤ ψ( ||uδ(τ)− u(τ)|| + ||yδ(τ)− y(τ)|| )

≤ ψ(2
δ

r
(max
u∈U

||u||+ max
y∈Y (z)+δB,z∈N(Z)

||y||)) def
= φ(δ) ⇒ V δ(z, S) ⊂ V (z, S) + φ(δ)B′.

This and (12) imply the validity of Assumption II(i) with ν1(S, δ) = φ(δ) in (13).

Corollary 4.4. Assume that the map Y (z) is convex and compact valued and that (44)
is satisfied. Assume also that f(u, y) = u, g(u, y, z) = g(u, y), and that U = B (as in the
SPCS (42)-(43)). Then Assumptions I and II are valid.

Proof. Under the assumptions made, (52) is true with F (z) = 0, G(z) = I (identity
matrix) and the conditions from the set B are satisfied with ū = 0 and ȳ = 0. Also the
Y (z)-SC condition is satisfied. Hence, by Propositions 4.2 and 4.3, Assumption II is valid.
The verification of Assumption I is obvious.

Proof of Proposition 4.1. The existence of the admissible pair satisfying (51) and the
fact that Y ∗(z) is forward invariant imply that Assumption I(i) is satisfied. The validity
of Assumptions I(ii) readily follows from (49), (50).

To establish the validity of Assumption II, let us introduce the following set of time
averages

ÝV (z, S, y)
def
=

⋃

(

u(·), y(·)
)

{

1

S

∫ S

0

g
(

u(τ), y(τ), z
)

dτ

}

(59)

where, in contrast to (9) or (11), the union is over all (not only over admissible or δ-
admissible) controls and corresponding solutions of (7) which satisfy (10). Note that

V (z, S, y) ⊂ V δ(z, S, y) ⊂ ÝV (z, S, y) ∀y ∈ Y (z) (60)

and that
V (z, S, y) = V δ(z, S, y) = ÝV (z, S, y) ∀y ∈ Y ∗(z), (61)

the latter being valid since Y ∗(z) is forward invariant. It is easy to verify that from
the validity of (47) and the Lipschitz continuity of g(u, y, z) in y it follows that, for any
compact set Q, there exists a constant c such that

dH( ÝV (z, S, y′), ÝV (z, S, y′′)) ≤ c

S
∀y′, y′′ ∈ Q, S > 0. (62)

This, in turns, implies (see Theorem 3.1(i) in [12], Proposition 3.2 in [17] and earlier
results in [11]) that there exists a convex and compact set V (z) and a constant Ýc such
that

dH( ÝV (z, S, y), V (z)) ≤ Ýc

S
1
2

∀y ∈ Q, S ≥ 1. (63)
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Hence, by (60),

V (z, S, y) ⊂ V (z) +
ÝÝc

S
1
2

B′ ∀y ∈ Y (z), S ≥ 1, (64)

where B′ is the closed unit ball in Rn and ÝÝc = const. Note that, due to the uniformity of
the estimate (62) with respect to z ∈ N(Z), the constant ÝÝc can be chosen to be the same
for all z ∈ N(Z).

Let now y ∈ Y (z) and let (ū(τ), ȳ(τ)) be an admissible pair which has the initial conditions
ȳ(0) = y and which satisfies the inclusion ȳ(¯̄τ) ∈ Y ∗(z). Using the definition of the set
V (z, S, y), one can establish that the following inclusion is valid

1

S

∫ ¯̄τ

0

g(ū(τ), ȳ(τ), z) +
S − ¯̄τ

S
V (z, S − ¯̄τ, ȳ(¯̄τ)) ⊂ V (z, S, y). (65)

Using (63), one can obtain that

dH(
1

S

∫ ¯̄τ

0

g(ū(τ), ȳ(τ), z) +
S − ¯̄τ

S
ÝV (z, S − ¯̄τ, ȳ(¯̄τ)), V (z)) ≤ c̄

(S − ¯̄τ)
1
2

= O(
1

S
1
2

)

for some c̄ = const and S ≥ ¯̄τ + 1. Consequently,

V (z) ⊂ 1

S

∫ ¯̄τ

0

g(ū(τ), ȳ(τ), z) +
S − ¯̄τ

S
ÝV (z, S − ¯̄τ, ȳ(¯̄τ)) +O(

1

S
1
2

)B′.

Since, by (61), ÝV (z, S − ¯̄τ, ȳ(¯̄τ)) = V (z, S − ¯̄τ, ȳ(¯̄τ)), from (65) it follows that

V (z) ⊂ V (z, S, y) +O(
1

S
1
2

)B′ ∀y ∈ Y (z). (66)

This, along with (64), lead to the validity of Assumption II(ii), with ν2(S) = O( 1

S
1
2
) in

(14). Note that the latter implies, in particular, that

dH(V (z, S), V (z)) = O(
1

S
1
2

)

⇒ V (z) ⊂ V (z, S) +O(
1

S
1
2

)B′ ⊂ V δ(z, S) +O(
1

S
1
2

)B′.

(67)

From (60) and (63) it follows, on the other hand, that

V δ(z, S) ⊂
⋃

y∈Y δ(z)

{

ÝV (z, S, y)

}

⊂ V (z) +O(
1

S
1
2

)B′.

Hence, dH(V
δ(z, S), V (z)) = O( 1

S
1
2
). This and (67) establish the validity of Assumption

II(i), with ν1(S, δ) = O( 1

S
1
2
) in (13). The proof is completed.
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5. Proofs of Theorems 2.1, 2.2

Proof of Theorem 2.1(i). Let us rewrite the system (1)-(2) in the “stretched" time
scale τ = t

ε

Úy(τ) = f(u(τ), y(τ), z(τ)), (68)

Úz(τ) = εg(u(τ), y(τ), z(τ)), (69)

where the controls are measurable functions satisfying the inclusion u(τ) ∈ U .

In this time scale, the inequality (5) defining the near viability of the SPCS on the interval
[0, T ] is replaced by

max
τ∈[0,T

ε
]
dist((ysp(τ), zsp(τ)), D) ≤ νT (ε). (70)

Note that here (and everywhere else in the proof of Theorem 2.1) we write (ysp(τ), zsp(τ))
instead of (yspε (τ), zspε (τ)) and, similarly, we will write za(t) instead of zaε (t) (thus omitting
the subscript ε from our notations).

Let (ysp(τ), zsp(τ)) be a solution of (68)-(69) which satisfies (70). To prove Theorem
2.1(i), one needs to establish that there exists a solution za(t) of the ADI (16) which is
viable in Z on [0, T ] and satisfies the inequality

max
τ∈[0,T

ε
]
||zsp(τ)− za(ετ)|| ≤ µT (ε). (71)

We will do it in two stages. First, we will construct a solution z̃a(t) of the ADI (16) (not
necessarily viable in Z) such that

max
τ∈[0,T

ε
]
||zsp(τ)− z̃a(ετ)|| ≤ µ′

T (ε), (72)

where limε→0 µ
′
T (ε) = 0. Secondly, we will show that there exists a solution za(t) of the

ADI (16) which is viable in Z on [0, T ] and satisfies the inequality

max
t∈[0,T ]

||za(t)− z̃a(t)|| ≤ µ′′
T (ε), (73)

where limε→0 µ
′′
T (ε) = 0. This will establish (71) with µT (ε)

def
= µ′

T (ε) + µ′′
T (ε).

Let us partition the interval [0, T
ε
] by the points

τl
def
= lSε, l = 0, 1, ..., Kε, τKε+1

def
=

T

ε
, (74)

where Sε is a function of ε such that

lim
ε→0

Sε = ∞, lim
ε→0

εSε = 0

and Kε is the integer part of T
ε
(τKε = τKε+1 if T

ε
is integer).

Denote by (ȳsp(τ), z̄sp(τ)) ∈ D the projection of (ysp(τ), zsp(τ)) onto D. By (70),

max
τ∈[0,T

ε
]
||(ysp(τ), zsp(τ))− (ȳsp(τ), z̄sp(τ))|| ≤ νT (ε)
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Hence,

||zsp(τ)− z̄sp(τ)|| ≤ νT (ε) ∀τ ∈ [0,
T

ε
] (75)

and

dist(ysp(τ), Y (z̄sp(τ)) ≤ ||ysp(τ)− ȳsp(τ)|| ≤ νT (ε) ∀τ ∈ [0,
T

ε
]. (76)

Note that from (75) it follows that, ∀τ ∈ [τl, τl+1],

||zsp(τ)− z̄sp(τl)|| ≤ ||zsp(τ)− zsp(τl)||+ ||zsp(τl)− z̄sp(τl)|| ≤ MεSε + νT (ε) (77)

for sufficiently small ε, with

M
def
= max{||g(u, y, z)|| | u ∈ U, (y, z) ∈ ÝD}, (78)

and ÝD being a sufficiently large compact subset of Rm×Rn which, in particular, contains
D in its interior. Note also that (75)-(77) together with (3) imply that, ∀τ ∈ [τl, τl+1],

dist(ysp(τ), Y (z̄sp(τl)))

≤ dist(ysp(τ), Y (z̄sp(τ))) + dH(Y (z̄sp(τ)), Y (zsp(τ)))) + dH(Y (zsp(τ)), Y (z̄sp(τl)))

≤ νT (ε) + κ(νT (ε)) + κ(MεSε + νT (ε))
def
= ω(ε).

(79)

Denote by yl(τ) the solution of the associated system (7) considered on the interval [τl, τl+1]
with the control u(τ) (the same as the one used to obtain (ysp(τ), zsp(τ))), with the initial
conditions yl(τl)

def
= ysp(τl), and with z = z̄sp(τl). One has

||ysp(τ)− yl(τ)|| ≤
∫ τ

τl

||f(u(s), ysp(s), zsp(s))− f(u(s), yl(s), z̄
sp(τl))||ds

≤ L

∫ τ

τl

(||ysp(s)− yl(s)||+ ||zsp(s)− z̄sp(τl)||)ds
(80)

where L is a Lipschitz constant. Using (77), one can obtain from here that

||ysp(τ)− yl(τ)|| ≤ LSε[MεSε + νT (ε)] + L

∫ τ

τl

||ysp(s)− yl(s)||ds,

whereas, by Gronwall-Bellman lemma, it follows that

||ysp(τ)− yl(τ)|| ≤ LSε[MεSε + νT (ε)]e
LSε ∀τ ∈ [τl, τl+1].

Assuming (without loss of generality) that νT (ε) ≥ ε and taking Sε = 1
2L
ln 1

νT (ε)
, one

obtains now that, for sufficiently small ε,

||ysp(τ)− yl(τ)|| ≤ [LMS2
ε + 1]νT (ε)

1

ν
1
2
T (ε)

≤ ν
1
4
T (ε) ∀τ ∈ [τl, τl+1]. (81)

The latter inequality and (79) imply that

yl(τ) ∈ Y (z̄sp(τl)) + δ(ε)B ∀τ ∈ [τl, τl+1], (82)
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with δ(ε)
def
= ω(ε) + ν

1
4
T (ε).

By definition (see(11)),

1

Sε

∫ τl+1

τl

g(u(τ), yl(τ), z̄
sp(τl))dτ ∈ V δ(ε)(z̄sp(τl), Sε). (83)

Hence, by (15), there exists vl ∈ V (z̄sp(τl)) such that

|| 1
Sε

∫ τl+1

τl

g(u(τ), yl(τ), z̄
sp(τl))dτ − vl|| ≤ ν1(Sε, δ(ε)) + ν2(Sε)

def
= ω1(ε). (84)

Let ζ0
def
= zsp(τ0) and

ζl+1 = ζl + εSεṽl, l = 0, 1, ..., Kε − 1, (85)

where ṽl is the projection of vl onto V (ζl). Note that from (21) and (75) it follows that

||vl − ṽl|| = dist(vl, V (ζl)) ≤ dH(V (z̄sp(τl)), V (ζl)) ≤ L||z̄sp(τl)− ζl||
≤ L||zsp(τl)− ζl||+ LνT (ε).

(86)

Subtracting (85) from the equation

zsp(τl+1) = zsp(τl) + ε

∫ τl+1

τl

g(u(τ), ysp(τ), zsp(τ))dτ (87)

and taking into account (77), (84), (86), one obtains

||zsp(τl+1)− ζl+1||

≤ ||zsp(τl)− ζl||+ ε

∫ τl+1

τl

||g(u(τ), ysp(τ), zsp(τ))− g(u(τ), ysp(τ), z̄sp(τl))||dτ

+εSε||
1

Sε

∫ τl+1

τl

g(u(τ), ysp(τ), z̄sp(τl))dτ − vl||+ εSε||vl − ṽl||

≤ ||zsp(τl)− ζl||+ εSεL(MεSε + νT (ε)) + εSεω1(ε) + εSεL(||zsp(τl)− ζl||
+νT (ε)), l = 0, 1, ...Kε,

where L is a Lipschitz constant. Using the last inequality and applying Proposition 5.1
from [12], one can obtain that

||zsp(τl)− ζl|| ≤ ω2(ε) ∀l = 0, 1, ...Kε (88)

for some ω2(ε) tending to zero as ε tends to zero.

Similarly to the proof of Lemma 2.1 in [12], define the piece-wise linear function ζ(t) :
[0, T ] → Rn by the equations:

ζ(t)
def
= ζl + (t− tl)ṽl ∀t ∈ [tl, tl+1), l = 0, 1, ...Kε − 2, (89)

and ζ(t)
def
= ζKε−1 + (t − tKε−1)ṽKε−1 ∀t ∈ [tKε−1, T ], where tl

def
= ετl. By (21), for any t ∈

(tl, tl+1),

dist( Úζ(t), V (ζ(t))) = dist(ṽl, V (ζ(t))) ≤ dist(ṽl, V (ζl)) + dH(V (ζl), V (ζ(t)))

≤ L||ζl − ζ(t)|| ≤ LMεSε,
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where M is as in (78) and it is taken into account that

sup{||η|| | η ∈ V (z), z ∈ N(z)} ≤ M. (90)

Using Filippov’s theorem (see e.g. [7], p. 401), one can conclude now that there exists a
solution z̃a(t) of the ADI (16) such that

max
t∈[0,T ]

||z̃a(t)− ζ(t)|| ≤ cεSε, c = const, (91)

which leads to (see (88))

||zsp(τl)− z̃a(ετl)|| ≤ ||zsp(τl)− ζl||+ ||ζl − z̃a(tl)|| ≤ ω2(ε) + cεSε ∀l = 0, 1, ...Kε.

The latter implies (72) with µ′
T (ε) = ω2(ε) +O(εSε) since

||zsp(τ)− zsp(τl)|| ≤ MεSε, ∀τ ∈ [τl, τl+1], (92)

||z̃a(ετ)− z̃a(ετl)|| ≤ MεSε ∀τ ∈ [τl, τl+1]. (93)

Let us now establish that there exists a solution za(t) of the ADI (16) which is viable in Z
on [0, T ] and satisfies (73). Let MT stand for the set of all solutions of the ADI (16) which
are viable in Z on [0, T ]. Note that from the fact V (z) is convex and compact valued (see
Assumption II(ii)), it follows that MT is compact in the metric of uniform convergence
ρT (z

′(·), z′′(·)) def
= maxt∈[0,T ] ||z′(t) − z′′(t)||. Let µ′′

T (ε)
def
= minz′(·)∈MT

ρT (z
′(·), z̃a(·)). The

required statement will be established if one shows that limε→0 µ
′′
T (ε) = 0. Assume it is

not true, then there exist a positive number β > 0 and a sequence εi → 0 such that

min
z′(·)∈MT

ρT (z
′(·), z̃ai (·)) ≥ β ∀i = 1, 2, ... ,

where z̃ai (·) stands for z̃a(·) with ε = εi. Again using the fact that V (z) is convex and
compact valued, one may assume (without loss of generality) that z̃ai (·) converges to a
solution z̃a∗(·) of the ADI (16) (limi→∞ ρT (z̃

a
i (·), z̃a∗(·)) = 0). This "limit" solution will

satisfy the inequality
min

z′(·)∈MT

ρT (z
′(·), z̃a∗(·)) ≥ β. (94)

On the other hand, by (70) and (72), one can write down

max
t∈[0,T ]

dist(z̃ai (t), Z) ≤ νT (εi) + µ′
T (εi) ⇒ max

t∈[0,T ]
dist(z̃a∗(t), Z) = 0 ⇒ z̃a∗(·) ∈ MZ .

The latter inclusion contradicts (94) and, hence, proves (73).

Proof of Theorem 2.1(ii). Let za(t) be a solution of the ADI (16) which is viable in Z
on [0, T ] and has the initial conditions (23). The required statement will be proved if one
shows that there exists a solution (ysp(τ), zsp(τ)) of (68)-(69) having the initial conditions
(25) and satisfying (70) such that the inequality (71) is valid.

Let us again partition the interval [0, T
ε
] by the points (74), this time with

Sε =
1

2L
ln(

1

ε
), (95)
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where L is a Lipschitz constant of the function f(u, y, z) (with respect to y and z). On
the interval [τ0, τ1), define a control u(τ) in such a way that the corresponding to this
control solution y0(τ) of the associated system (7), obtained with z = ζ0 and the initial
conditions y(0) = y0, satisfies the relationships:

y0(τ) ∈ Y (ζ0) ∀τ ∈ [τ0, τ1], (96)

|| 1
Sε

∫ τ1

τ0

g(u(τ), y0(τ), ζ0)dτ − v0|| ≤ ν2(Sε), (97)

where v0 is the projection of 1
εSε

∫ t1
t0

Úza(t)dt onto V (ζ0). As in the proof of Theorem 2.1(i),

here and in what follows, tl
def
= ετl ∀l = 0, 1, ..., Kε + 1. The fact that the control u(τ)

ensuring the validity of (96)-(97) exists, follows from Assumption II(ii) (see (14)). Let
(ysp(τ), zsp(τ)) be the solution of (68)-(69) having the initial conditions (23), which is
obtained with the given control u(τ) on the interval [τ0, τ1]. Note that, similarly to (80),
one obtains that

||ysp(τ)− y0(τ)|| ≤ L

∫ τ

τ0

(||ysp(s)− y0(s)||+ ||zsp(s)− z0||)ds. (98)

Since ||zsp(s)− z0|| ≤ MεSε ∀s ∈ [τ0, τ1], one can now apply Gronwall-Bellman lemma to
obtain

||ysp(τ)− y0(τ)|| ≤ LSε(MεSε)e
LSε ≤ ε

1
4 ∀τ ∈ [τ0, τ1], (99)

where the validity of the last inequality (for ε small enough) follows from (95).

Assume that the control u(τ) has been defined on the intervals [τ0, τ1), ..., [τl−1, τl) (l =
0, 1, ..., Kε−1) and that the solution (ysp(τ), zsp(τ)) of (68)-(69) obtained with this control
satisfies the inequalities

dist(ysp(τi), Y (zsp(τi))) ≤ ε
1
4 + κ(MεSε), i = 0, 1, ..., l (100)

and

max
τ∈[τi−1,τi]

dist(ysp(τ), Y (zsp(τ))) ≤ ε
1
4 + κ(MεSε) + φ(ε

1
4 + κ(MεSε)), i = 1, ..., l (101)

where κ(·), φ(·) andM are as in (3), (8) and (78) respectively. Let us extend the definition
of the control to the interval [τl, τl+1).

Let ṽl be the projection of 1
εSε

∫ tl+1

tl
Úza(t)dt onto V (za(tl)) and vl be the projection of ṽl

onto V (zsp(τl)). Denote by yl(τ) the solution of the associated system (7) considered
on the interval [τl, τl+1] with z = zsp(τl) and with the initial conditions yl(τl) = ysp(τl).
Define the control u(τ) on the interval [τl, τl+1) in such a way that yl(τ) has the following
properties:

yl(τl + al) ∈ Y (zsp(τl)), (102)

dist(yl(τ), Y (zsp(τl))) ≤ φ(ε
1
4 + κ(MεSε)) ∀τ ∈ [τl, τl + al] (103)

for some al ∈ [0, a] and

yl(τ) ∈ Y (zsp(τl)) ∀τ ∈ [τl + al, τl+1], (104)
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|| 1

Sε − al

∫ τl+1

τl+al

g(u(τ), yl(τ), z
sp(τl))dτ − vl|| ≤ ν2(Sε − al). (105)

The fact that a control u(τ) which ensures the validity of (102)-(103) and (104)-(105)
exists follows from Assumption I(ii) and Assumption II(ii) respectively.

The extension of the solution (ysp(τ), zsp(τ)) of (68)-(69) to the interval [τl, τl+1] obtained
with this control satisfies the inequalities (92) and

||ysp(τ)− yl(τ)|| ≤ ε
1
4 ∀τ ∈ [τl, τl+1], (106)

the validity of the latter being established similarly to (99). Using (106), (104), (92), as
well as (3), one obtains

dist(ysp(τl+1), Y (zsp(τl+1)))

≤ ||ysp(τl+1)− yl(τl+1)||+ dist(yl(τl+1), Y (zsp(τl))) + dH(Y (zsp(τl)), Y (zsp(τl+1)))

≤ ε
1
4 + κ(MεSε),

(107)

which extends the validity of (100) to i = l + 1. Similarly, using (103),

dist(ysp(τ), Y (zsp(τ)))

≤ ||ysp(τ)− yl(τ)||+ dist(yl(τ), Y (zsp(τl))) + dH(Y (zsp(τl)), Y (zsp(τ)))

≤ ε
1
4 + κ(MεSε) + φ(ε

1
4 + κ(MεSε)) ∀τ ∈ [τl, τl+1].

(108)

This implies the validity of (101) for i = l + 1.

Proceeding as above, one defines the control u(τ) and the corresponding solution (ysp(τ),
zsp(τ)) of (68)-(69) so that (105), (108) are satisfied on each interval [τl, τl+1), l =
0, 1, ...Kε − 1 (with (97) being interpreted as (105) with l = 0 and a0

def
=0). On the

"last" interval [τKε , τKε+1] the controls is chosen so that just (108) with l = Kε is satisfied.

Subtract now the equation

za(ετl+1) = za(ετl) +

∫ ετl+1

ετl

Úza(t)dt (109)

from the equation (87) and obtain the inequality

||zsp(τl+1)− za(ετl+1)||
≤ ||zsp(τl)− za(ετl)||

+ ε

∫ τl+1

τl

||g(u(τ), ysp(τ), zsp(τ))− g(u(τ), yl(τ), z
sp(τl))||dτ

+ εSε||
1

Sε

∫ τl+1

τl

g(u(τ), yl(τ), z
sp(τl))dτ − vl||+ εSε||vl − ṽl||+ εSε||ṽl

− 1

εSε

∫ ετl+1

ετl

Úza(t)dt||.

(110)

By (92) and (106),

ε

∫ τl+1

τl

||g(u(τ), ysp(τ), zsp(τ))− g(u(τ), yl(τ), z
sp(τl))||dτ ≤ εSεL(MεSε + ε

1
4 ). (111)
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By (105),

|| 1
Sε

∫ τl+1

τl

g(u(τ), yl(τ), z
sp(τl))dτ − vl||

≤ || 1
Sε

∫ τl+1

τl

g(u(τ), yl(τ), z
sp(τl))dτ − 1

Sε − al

∫ τl+1

τl+al

g(u(τ), yl(τ), z
sp(τl))dτ ||

+ || 1

Sε − al

∫ τl+1

τl+al

g(u(τ), yl(τ), z
sp(τl))dτ − vl|| ≤

2Ma

Sε − a
+ ν2(Sε − a),

(112)

where it is taken into account that al ≤ a and it is assumed (without loss of generality)
that ν2(Sε − al) ≤ ν2(Sε − a). Taking into account (21) and the fact that, by definition,
vl is the projection of ṽl ∈ V (za(ετl)) onto V (zsp(τl)), one can obtain that

||vl − ṽl|| = dist(ṽl, V (zsp(τl)) ≤ dH(V (za(ετl), V (zsp(τl)) ≤ L||zsp(τl)− za(ετl)||. (113)

To evaluate the last term in the right hand side of (110), let us note that, by (21) and
(93), for almost all τ ∈ [τl, τl+1],

Úza(t) ∈ V (za(t)) ⊂ V (za(ετl)) + (LMεSε)B
′

⇒ 1

εSε

∫ ετl+1

ετl

Úza(t)dt ∈ V (za(ετl)) + (LMεSε)B
′,

where B′ is the closed unit ball in Rn. Since ṽl is the projection of 1
εSε

∫ ετl+1

ετl
Úza(t)dt onto

V (za(ετl)), it follows that

||ṽl −
1

εSε

∫ ετl+1

ετl

Úza(t)dt|| = dist(
1

εSε

∫ ετl+1

ετl

Úza(t)dt, V (za(ετl))) ≤ LMεSε. (114)

Substituting (111)-(114) into (110), one can obtain that, for l = 0, 1, ...Kε − 1,

||zsp(τl+1)− za(ετl+1)|| ≤ ||zsp(τl)− za(ετl)||+ LεSε||zsp(τl)− za(ετl)||+ εSεγ(ε), (115)

where γ(ε)
def
=L(MεSε + ε

1
4 ) + 2Ma

Sε−a
+ ν2(Sε − a) +LMεSε tends to zero as ε tends to zero.

By virtue of Proposition 5.1 from [12], the validity of (115) implies that

||zsp(τl)− za(ετl)|| ≤ c1γ(ε) l = 0, 1, ..., Kε, c1 = const, (116)

which, in turn, by (92)-(93), implies the validity of (71) with µT (ε) = c1γ(ε)+O(εSε). To
complete the proof, one needs to verify that (ysp(τ), zsp(τ)) satisfies (70). Note that from
the fact that (108) is valid for l = 0, 1, ..., Kε, it follows that

dist(ysp(τ), Y (zsp(τ))) ≤ ε
1
4 + κ(MεSε) + φ(ε

1
4 + κ(MεSε))

def
= ω3(ε) ∀τ ∈ [0,

T

ε
]. (117)

Using this and (71), one obtains

dist((ysp(τ), zsp(τ)), D)

≤ min{||ysp(τ)− y||+ ||zsp(τ)− z|| | y ∈ Y (z), z ∈ Z}
≤ min{||ysp(τ)− y||+ ||zsp(τ)− za(ετ)|| | y ∈ Y (za(ετ))}

= dist(ysp(τ), Y (za(ετ))) + ||zsp(τ)− za(ετ)|| ≤ ω3(ε) + µT (ε) ∀ ∈ [0,
T

ε
],

which establishes (70) with νT (ε)
def
= ω3(ε) + µT (ε)
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Proof of Theorem 2.2(i). Let us choose T0 in such a way that

ae−bT0
def
= δ0 < 1 (118)

a and let (yspε (t), zspε (t)) be a solution of (1)-(2) such that the estimate (6) is valid. By
Theorem 2.1, there exists a viable in Z on [0, T ] solution z̄aε (t) of the ADI (16) such that

||z̄aε (t)− zspε (t)|| ≤ µT0(ε) ∀t ∈ [0, T0]. (119)

Using Theorem 2.1 again, one can establish that there exists a solution z̃aε (t) of the ADI
(16) viable in Z on the interval [T0, 2T0] such that

||z̃aε (t)− zspε (t)|| ≤ µT0(ε) ∀t ∈ [T0, 2T0]. (120)

By Assumption III, the solution z̄aε (t) of the ADI (16) used in (119) can be extended to
the interval [T0, 2T0] in such a way that, for any t ∈ [T0, 2T0],

||z̄aε (t)− z̃aε (t)|| ≤ ae−b(t−T0)||z̄aε (T0)− z̃aε (T0)|| (121)

This along with (119)-(120) allow us to establish that, for any t ∈ [T0, 2T0],

||z̄aε (t)− zspε (t)|| ≤ ||z̄aε (t)− z̃aε (t)||+ ||z̃aε (t)− zspε (t)||
≤ ae−b(t−T0)[ ||z̄aε (T0)− zspε (T0)||+ ||zspε (T0)− z̃aε (T0)|| ] + µT0(ε)

≤ ae−b(t−T0)[ ||z̄aε (T0)− zspε (T0)||+ µT0(ε)] + µT0(ε).

Continuing in a similar fashion, one can define a solution z̄aε (t) of the ADI (16) on the
interval [0,∞) (not necessarily viable in Z) such that the inequalities

||z̄aε (t)− zspε (t)|| ≤ ae−b(t−lT0)[ ||z̄aε (lT0)− zspε (lT0))||+ µT0(ε)] + µT0(ε) (122)

are satisfied for all t ∈ [lT0, (l + 1)T0], l = 0, 1, ... . It follows (see (118)) that

||z̄aε ((l + 1)T0)− zspε ((l + 1)T0)|| ≤ δ0[ ||z̄aε (lT0)− zspε (lT0)||+ µT0(ε)] + µT0(ε)

⇒ ||z̄aε ((l + 1)T0)− zspε ((l + 1)T0)|| ≤
1 + δ0
1− δ0

µT0(ε).

These and (122) imply that

sup
t∈[0,∞)

||z̄aε (t)− zspε (t)|| ≤ µT0(ε)[ a
1 + δ0
1− δ0

+a ]+µT0(ε) = µT0(ε)(
2a

1− δ0
+1)

def
= µ̄(ε). (123)

Denote by M the set of all solutions of the ADI (16) which are viable in Z. According
to the conditions of the theorem, M is not empty and it can be also shown that it is
compact in the metric ρ(·, ·) defined in (29). Let ¯̄µ(ε)

def
= minz(·)∈M ρ(z̄aε (·), z(·)). Theorem

2.2(i) will be established if one shows that limε→0 ¯̄µ(ε) = 0. Assume it is not true. Then
there exist a positive number β and a sequence εi → 0 such that

inf
za(·)∈M

ρ(z̄aεi(·), z
a(·)) ≥ β, i = 1, 2, ... .
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Using the fact that the map V (z) is convex and compact valued, one can show that there
exist subsequences {εil} ⊂ {εil−1

}, l = 1, 2, ..., with {εi0}
def
= {εi}, such that, for each l,

z̄aεil
(·) converges (in the uniform metric on [0, l]) to a solution the ADI (16). That is,

lim
εil→0

max
t∈[0,l]

||z̄aε (·)− ¯̄za(·))|| = 0.

Applying now the diagonalization argument, one can come to the conclusion that there
exists a subsequence {εi′} ⊂ {εi} and a solution ¯̄za(·) of the ADI (16) defined on [0,∞)
such that

lim
εi′→0

ρ(z̄εi′ (·), ¯̄za(·)) = 0 ⇒ inf
za(·)∈M

ρ(¯̄za(·), za(·)) ≥ β. (124)

From (6) and (123) it follows, however, that

sup
t∈[0,∞)

dist(z̄aεi′ (t), Z) ≤ ν(εi′) + µ̄(εi′) ⇒ ¯̄za(t) ∈ Z ∀t ∈ [0,∞) ⇒ ¯̄za(·) ∈ M

The latter contradicts (124) and thus proves the required statement.

Proof of Theorem 2.2(ii). Let za(t) be a viable in D solution of the ADI (16). Choose
T0 to satisfy (118). By Theorem 2.1(ii), there exists a solution (yspε (t), zspε (t)) of the SPCS
(1)-(2) which is near viable in D on [0, T0], has the initial conditions zspε (0) = za(0) and
yspε (0) ∈ Y (za(0)), and which satisfies the inequality

||zspε (t)− za(t)|| ≤ µT0(ε) ∀t ∈ [0, T0] . (125)

Construct a solution z̃aε (t) of the ADI (16) such that

||z̃aε (t)− za(t)|| ≤ ae−b(t−T0)||z̃aε (T0)− za(T0)|| ∀t ∈ [T0, 2T0], z̃aε (T0) = zspε (T0). (126)

The existence of such a solution is implied by Assumption III. Note that z̃aε (t) is not
necessarily viable in D, but, still, using reasoning similar to that in the proof of Theorem
2.1(ii), one can extend the solution (yspε (t), zspε (t)) of the SPCS (1)-(2) to the interval
[T0, 2T0] in such a way that

||zspε (t)− z̃aε (t)|| ≤ µT0(ε) ∀t ∈ [T0, 2T0] (127)

and
dist(yspε (t), Y (zspε (t))) ≤ µT0(ε) ∀t ∈ [T0, 2T0] (128)

By (126) and (127),

||zspε (t)− za(t)|| ≤ ||zspε (t)− z̃aε (t)||+ ||z̃aε (t)− za(t)||
≤ µT0(ε) + ae−b(t−T0)||zspε (T0)− za(T0)|| ∀t ∈ [T0, 2T0].

Continuing in a similar way, one constructs a solution (yspε (t), zspε (t)) of the SPCS (1)-(2)
on the interval [0,∞) in such a way that the relationships

||zspε (t)− za(t)|| ≤ µT0(ε) + ae−b(t−lT0)||zspε (lT0)− za(lT0)|| (129)

and
dist(yspε (t), Y (zspε (t))) ≤ µT0(ε) (130)
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are satisfied for t ∈ [lT0, (l + 1)T0], l = 0, 1, ... . From (118) and (129) it follows that

||zspε ((l + 1)T0)− za((l + 1)T0)|| ≤ µT0(ε) + δ0||zspε (lT0)− za(lT0)||

⇒ ||zspε (lT0)− za(lT0)|| ≤
µT0(ε)

1− δ0
, l = 0, 1, ... .

The latter and (129) implies that

sup
t∈[0,∞)

||zspε (t)− za(t)|| ≤ (1 +
a

1− δ0
)µT0(ε)

def
= µ(ε)

which, in turn, implies the validity of (31). Taking into account (3) and (130), one obtains
now that

dist((yspε (t), zspε (t)), D) ≤ min{||yspε (t)− y||+ ||zspε (t)− za(t)|| | y ∈ Y (za(t))}
≤ dist(yspε (t), Y (za(t)) + µ(ε)

≤ dist(yspε (t), Y (zspε (t)) + κ(µ(ε)) + µ(ε)

≤ µT0(ε) + κ(µ(ε)) + µ(ε) ∀t ∈ [0,∞).

Hence, (yspε (t), zspε (t)) satisfies (6) with ν(ε) = µT0(ε) + κ(µ(ε)) + µ(ε), that is, it is near
viable in D. This completes the proof.
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