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We are interested in the existence of solutions of the differential inclusion

ẋ ∈ F (t, x) (1)

on the given time interval, say [0, 1]. Here F is a set-valued mapping from [0, 1]×Rn into Rn (we shall
write F : [0, 1]×Rn ⇒ Rn in what follows) with closed values which will be assumed nonempty whenever
necessary.

The classical theorems of Filippov and Wazewski use, as the main assumption characterizing the depen-
dence of F on x, the standard Lipschitz condition

h(F (t, x), F (t, x′)) ≤ k(t)‖x− x′‖,

where h(P,Q) stands for the Hausdorff distance from P to Q.

This condition, quite reasonable when F is bounded-valued, becomes unacceptably strong if the values of
F can be unbounded. Meanwhile unboundedness of the values of the right-hand side set-valued mapping
is a fairly natural property of differential inclusions which appear in optimal control problems, e.g. when
we deal with a Mayer problem obtained as a result of reformulation of a problem with integral functional.
The main purpose of this note is to provide an existence theorem with a weaker version of the Lipschitz
condition which is “more acceptable” when the values of F are unbounded. This condition which could be
characterized as a “global” version of Aubin’s pseudo-Lipschitz property is very close to that introduced
by Loewen and Rockafellar in [3].
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1. Introduction

We are interested in the existence of solutions of the differential inclusion

Úx ∈ F (t, x) (1)

on the given time interval, say [0, 1]. Here F is a set-valued mapping from [0, 1]×Rn into
Rn (we shall write F : [0, 1]×Rn ⇒ Rn in what follows) with closed values which will be
assumed nonempty whenever necessary.

The classical theorems of Filippov and Wazewski [2, 4] use, as the main assumption
characterizing the dependence of F on x, the standard Lipschitz condition

h(F (t, x), F (t, x′)) ≤ k(t)‖x− x′‖,

where h(P,Q) stands for the Hausdorff distance from P to Q.
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This condition, quite reasonable when F is bounded-valued, becomes unacceptably strong
if the values of F can be unbounded. Meanwhile unboundedness of the values of the right-
hand side set-valued mapping is a fairly natural property of differential inclusions which
appear in optimal control problems, e.g. when we deal with a Mayer problem obtained as
a result of reformulation of a problem with integral functional. The main purpose of this
note is to provide an existence theorem with a weaker version of the Lipschitz condition
which is “more acceptableÔ when the values of F are unbounded. This condition which
could be characterized as a “globalÔ version of Aubin’s pseudo-Lipschitz property is very
close to that introduced by Loewen and Rockafellar in [3].

To briefly describe this property, we first mention that getting rid of any Lipschitz-type
property is probably impossible in principle. A possible way to ease the limitation imposed
by the Hausdorff-Lipschitz condition (2) is to make the estimate dependent on Úx, e.g. as
follows:

y ∈ F (t, x) ⇒ d(y, F (t, x′)) ≤ ϕ(t, y)‖x− x′‖,
where d(y,Q) is the distance from y to Q. The global version of Aubin’s pseudo-Lipschitz
condition would then correspond to

ϕ(t, y) = k(t) + β‖y‖,

where β ≥ 0, k(·) ∈ L1.

In geometric terms this property can be formulated as follows.

Definition 1.1. Let Q ⊂ [0, 1]×Rn. We say that F satisfies the global pseudo-Lipschitz
condition on Q if F (t, x) 6= ∅ and there are β ≥ 0 and k(·) ∈ L1 such that for all N > 0

F (t, x)
⋂

NB ⊂ F (t, x′) + (k(t) + βN)‖x− x′‖B,

provided (t, x) and (t, x′) belong to Q. Here B stands for the unit ball in Rn.

The plan of the paper is the following. We first prove a “localÔ existence theorem which
guarantees the existence of the solution of the Cauchy problem on a sufficiently small time
interval. The structure of the proof is very similar to that in Filippov’s original paper
[2] and even the construction of iterations is exactly the same. What is different is the
technique of the convergence analysis which is based on a different and no longer linear
(in the absence of the possibility to use Gronwall lemma) estimating process (see Lemma
2.1 in the next section). It is actually the first theorem that should be considered an
extension of Filippov’s existence theorem. The second theorem about the existence of a
solution defined on the entire segment, which is actually the principal result of the paper,
is a much less automatic consequence of the local theorem, than the corresponding result
with (2). The existence of an exact solution on the given interval is proved here under
the assumption that that there is a certain sufficiently good approximate solution. The
second theorem is further applied to study the relaxation problem and to get an extension
of Filippov-Wazewski relaxation theorem to differential inclusions with unbounded values.

2. Existence of solutions on small intervals

Lemma 2.1. Consider the following recursive system of inequalities:

qn+1 − qn ≤ rn+1; rn+1 ≤ ξnrn; ξn = κ+ βqn, qn ≥ 0, rn ≥ 0,
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where κ and β being nonnegative parameters. Suppose the initial values q1, r1 and ξ1 are
given satisfying

ξ1 ≤ λ− βr1
λ

1− λ
(2)

for some λ ∈ (0, 1). Let finally (qn, rn, ξn) be a corresponding solution of the recursive
system. Then

∞
∑

n=1

rn ≤ r1
1− λ

.

Proof. We claim that under the assumptions ξn ≤ λ for all n. Indeed, ξ1 ≤ λ. Assume
that ξi ≤ λ for i = 1, ..., n. We have

ξn+1 = κ+ βqn+1 ≤ κ+ β(qn + rn+1) ≤ ξn + βrn+1

Applying this estimate recursively, we get

ξn+1 ≤ ξ1 + β(r2 + ...+ rn+1) ≤ ξ1 + βr1(λ+ ...+ λn) ≤ ξ1 + βr1
λ

1− λ
≤ λ

which proves the claim.

Consequently, rn ≤ λn−1r1, and the results follows.

Observe that βr1 < 1 by (2) and

max
0<λ<1

[λ− βr1
λ

1− λ
] = (1−

√

βr1)
2 = λ̄− βr1

λ̄

1− λ̄
, where λ̄ = 1−

√

βr1. (3)

Let us turn to the inclusion (1). We shall assume throughout that

(A1) F is L
⊗

B-measurable;

(A2) Graph F (t, ·) is a closed set for almost every t.

These assumptions are satisfied in all situations of practical interest. Let us fix fur-
thermore a certain absolutely continuous x̄(t), and for α > 0 let Q(α) = {(t, x) : t ∈
[0, 1], ‖x− x̄(t)‖ < α}. We shall assume that

(A3) there is an α > 0 such that F is globally pseudo-Lipschitz on Q(2α).

This means in particular that there are β and k(·) such that

y ∈ F (t, x) ⇒ y ∈ F (t, x′) + (k(t) + β‖y‖)‖x− x′‖B, (4)

provided both (t, x) and (t, x′) belong to Q(2α).

As the values of F are closed, it follows from (A1), (A3) through the standard measurable
selection arguments that whenever the graphs of x(t) and x′(t) lie in Q(2α) and y(t) ∈
F (t, x(t)) almost everywhere, there is a measurable y′(t) such that y′(t) ∈ F (t, x′(t))
a.e. and ‖y(t) − y′(t)‖ = d(y(t), F (t, x′(t))) a.e.. Moreover (A3) implies that y′(·) is
summable if so is y(·).
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Theorem 2.2. Let x(t) be an absolutely continuous Rn-valued function on a certain
[a, b] ⊂ [0, 1] with its graph in Q(α). Assume that the function t → d( Úx(t), F (t, x(t)))
is summable and set

r1(t) =

∫ t

a

d( Úx(s), F (s, x(s)))ds, q1(t) =

∫ t

a

‖ Úx(s)‖ds

and

κ(t) =

∫ t

a

k(s)ds, ξ(t) = κ(t) + βq1(t).

Let finally τ ∈ (a, b] be such that r1 = r1(τ), q1 = q1(τ) and κ = κ(τ) satisfy (2) and
r1 < (1− λ)α with some λ ∈ (0, 1). Then there is a solution u(t) of (1) defined on [a, τ ]
and such that u(a) = x(a) and

∫ τ

a

‖ Úx(t)− Úu(t)‖dt ≤ r1
1− λ

.

Remark. The assumptions impose little restriction on F . The only requirement that
d( Úx(t), F (t, x(t))) is summable holds for any x(·) ∈ W 1,1 (with graph in Q) if, say
d(0, F (t, x̄(t))) is summable (and, actually only under this condition - as will follow from
the inequality (12) in the next section).

Proof. We shall construct inductively a sequence (xn(·)) of summable functions converg-
ing in W 1,1 to a desired u(·). Set x0(t) = x(t), v0(t) = Úx(t). If xi ∈ W 1,1 and vi = Úxi have
been already found for i = 0, ..., n, and ‖xi(t)− x(t)‖ < α for all t ∈ [a, τ ] and i, then we
set

rn+1(t) =

∫ t

a

d(vn(s), F (s, xn(s)))ds; qn(t) =

∫ t

a

‖vn(s)‖ds; ξn(t) = κ(t) + βqn(t)

and define xn+1 and vn+1 as follows: vn+1(t) ∈ F (t, xn(t)), ‖vn+1(t) − vn(t)‖ = d(vn(t),
F (t, xn(t)) a.e. and

xn+1(t) = x(a) +

∫ t

a

vn+1(s)ds.

Clearly, this can be done. As xn(t) is within α of x(t) for every t, the (A3) related as-
sumption of the theorem implies that the distance from Úxn(t) to F (t, xn(t)) is a summable
function. The existence of a vn+1(t) with the claimed properties now follows through the
standard measurable selection argument from the fact that F is closed-valued.

By (A3), we have for n ≥ 1

‖ Úxn+1(t)− Úxn(t)‖ = ‖vn+1(t)− vn(t)‖ = d(vn(t), F (t, xn(t))

≤ (k(t) + β‖vn(t)‖)‖xn(t)− xn−1(t)‖

≤ (k(t) + β‖vn‖(t))
∫ t

a

‖vn(s)− vn−1(s)‖ds (5)

= (k(t) + β‖vn(t)‖)
∫ t

a

d(vn−1(s), F (s, xn−1(s))ds

= (k(t) + β‖vn(t)‖)rn(t).
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Integrating the inequality and taking into account that rn(t) are non-decreasing, we get

rn(t) ≤ (κ(t) + βqn(t))rn−1(t). (6)

On the other hand, (6) together with the upper equality in (5) gives

qn+1(t)− qn(t) ≤ rn+1(t). (7)

In particular, setting rn = rn(τ), qn = qn(τ), we get

rn ≤ (k + βqn)rn−1; qn+1 − qn ≤ rn+1.

Applying Lemma 2.1, we get in view of the choice of τ

∞
∑

n=1

rn(τ) ≤
r1

1− λ
< α. (8)

By definition of vn(·)
∫ τ

a

‖ Úxn+1(t)− Úxn(t)‖dt = rn+1(τ) (9)

which implies along with (8) that ‖xn+1(t) − x(t)‖ < α for all t ∈ [a, τ ], so that the
induction can be continued, and consequently, that Úxn(·) converge in L1[0, τ ]. Therefore
(as xn(a) = x(a) for all n), xn(·) converge uniformly on [a, τ ] to some u(·) with Úu(t) =
lim Úxn(t). By definition (and (8))

∫ t

a

d( Úxn(τ), F (τ, xn(τ))dτ = rn+1(t) → 0, ∀t ∈ [a, τ ]

which, according to (A2) means that Úu(t) ∈ F (t, u(t)), that is u(·) is a solution of (1) on
[a, τ ]. It remains to refer to (8) and (9) to get the final estimate.

3. Existence of solutions on the entire segment

In what follows we denote by X the collection of all solutions of (1) defined of [0, 1] and
considered along with the W 1,1-metric. As follows from (A2) this is a complete metric
space.

Theorem 3.1. Assume that there are α > 0, β ≥ 0 and a nonnegative summable k(t)
defined on [0, 1] such that (A3) holds. Then for any γ > 1, and N there is a δ > 0 such
that the inequality

d(x(·),X ) ≤ γe
∫ 1
0 (k(t)+β‖ Úx(t)‖)dt

∫ 1

0

d( Úx(t), F (t, x(t)))dt (10)

holds for any x(·) ∈ W 1,1 such that

‖x(t)− x̄(t)‖ ≤ α

2
, ∀t ∈ [0, 1];

∫ 1

0

d( Úx(t), F (t, x(t)))dt < δ;

∫ 1

0

‖ Úx(t)‖dt ≤ N. (11)

(The d in the left-hand side of (10) is the distance in W 1,1.)
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Remark. The conclusion of Theorem 3.1 is much stronger than that of Theorem 2.2
but so is the assumption (11), basically, its second part which says that there is a good
approximate solution of the differential inclusion. A possible estimate for δ as a function
of α, γ and N will be given in part 3 of the proof.

Proof. 1. To begin with we mention the following simple fact: if η(t) is a nonnegative
summable function on [0, 1] with

∫

η(t)dt ≤ p and ε > 0, then there are k ≤ [p/ε] points
(square brackets mean the integer part of the number) 0 < τ1 < ... < τk < 1 such that
(setting τ0 = 0, τk+1 = 1)

∫ τi+1

τi

η(t)dt < ε, i = 0, ..., k.

(Indeed, define τi consecutively starting with τ0 = 0 by

∫ τi+1

τi

η(t)dt =
p

k + 1
.)

2. We can assume losing no generality that x̄(t) ≡ 0. Observe next that (A3) implies the
following inequality, provided ‖x‖ < α and ‖x+ w‖ < α:

d(y, F (t, x+ w)) ≤ (1 + β‖w‖)d(y, F (t, x)) + (k(t) + β‖y‖)‖w‖. (12)

Indeed, take z ∈ F (t, x) such that ‖y − z‖ = d(y, F (t, x)). Then by (A3)

z ∈ F (t, x+ w) + (k(t) + β‖z‖)‖w‖B

which means that

d(z, F (t, x+ w)) ≤ (k(t) + β‖z‖)‖w‖ ≤ (k(t) + β(‖y‖+ d(y, F (t, x))))‖w‖,

so that

d(y, F (t, x+ w)) ≤ ‖y − z‖+ d(z, F (t, x+ w))

= d(y, F (t, x)) + (k(t) + β(‖y‖+ d(y, F (t, x))))‖w‖

and (12) follows.

3. So suppose that a γ > 1 and an N be given. We shall assume that γ ≤ 2 which of
course is not a restrictive assumption. Take an ε ∈ (0, α/8) to make sure that

1 + βε ≤ γ,

set

M =

∫ 1

0

k(t)dt+ βN ; η =
γ − 1

2γ

and finally choose δ be so small that

γ(1 + 2eγM)δ < ε and βγδ ≤ η

2
. (13)
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4. Now fix an x(·) ∈ W 1,1 satisfying (11) and a sufficiently small λ > 0. The theorem will
be obtained as a result of limit calculation with λ → 0. It will become clear in the course
of the proof how small the starting λ should be but in any case not greater than 1/2.

Set

p = p(x(·)) =
∫ 1

0

(k(t) + β‖ Úx(t)‖)dt; n = n(λ) =
[γp

λ

]

.

By (11), p ≤ M .

According to the first step of the proof, we can find n = [γp/λ] points 0 < τ1 < ... < τn < 1
such that

ξi1 =

∫ τi+1

τi

(k(t) + β‖ Úx(t)‖)dt ≤ λ

γ
, i = 0, ..., k, (14)

where we have set τ0 = 0, τn+1 = 1.

Since λ < 1/2, we have

1− η

1− λ
> 1− 2η = 1− γ − 1

γ
=

1

γ

so that

ξi1 ≤
λ

γ
< λ− η

λ

1− λ
≤ λ− βγδ

λ

1− λ
. (15)

5. At the next step of the proof we apply Theorem 2.2 with a = 0 τ = τ1, x0(t) = x(t),
α/4 instead of α and

ρ1 =

∫ 1

0

d( Úx(t), F (t, x(t))dt < δ.

As ρ1 < δ, it follows from (15) that (2) is satisfied, provided r1 ≤ ρ1. On the other hand,
for the same reason ρ1 ≤ α/8 ≤ (1− λ)(α/4) since λ ≤ 1/2. Thus Theorem 2.2 is indeed
applicable and there is a solution u(t) of (4) defined on [0, τ1] and satisfying

u(0) = x(0);

∫ τ1

0

‖ Úu(t)− Úx(t)‖dt ≤ 1

1− λ

∫ τ1

0

d( Úx(t), F (t, x(t)))dt ≤ δ

1− λ
. (16)

6. Assume now that after i-th step we have a solution u(t) of (4) (an extension of the u(·)
found at the previous step) defined on [0, τi] and satisfying

∫ τi

0

‖ Úu(t)− Úx(t)‖dt ≤ γ

(1− λ)(1− λ
γ
)i−1

∫ τi

0

d( Úx(t), F (t, x(t)))dt. (17)

We obviously get from the definition of n(λ) that for any i

(

1− λ

γ

)i

≥
(

1− λ

γ

)n(λ)

→ e−p as λ → 0

Hence for w(t) = u(t)− x(t) we have if λ is sufficiently small

‖w(t)‖ ≤ γδ

(1− λ)(1− λ
γ
)i−1

≤ γδ

(1− λ)(1− λ
γ
)n(λ)

< ε <
α

4
, t ∈ [0, τi]. (18)
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We claim that (in case i < n) we can apply Theorem 2.2 with a = τi, τ = τi+1, x0(t) =
x(t) + w(τi), α/4 instead of α and

r1 =

∫ τi+1

τi

d( Úx0(t), F (t, x0(t))dt =

∫ τi+1

τi

d( Úx(t), F (t, x0(t))dt.

Indeed, as follows from the definition of ε, (12), (13), (14) and (18)

r1 ≤ γ

∫ τi+1

τi

d( Úx(t), F (t, x(t)))dt+ (

∫ τi+1

τi

(k(t) + β‖ Úx(t)‖)dt)‖w(τi)‖

≤ γδ +
λ

γ

γ

(1− λ
γ
)i−1(1− λ)

δ ≤ γδ +
λ

1− λ
eγpδ < (γ + 2eγp)δ < ε

(19)

Again, for sufficiently small λ the inequality (2) will be satisfied (by (15)) along with
r1 < (1− λ)(α/4) (the latter because r1 < ε < α/8 and λ ≤ 1/2), so Theorem 2.2 can be
applied.

It follows that there exists an extension of u(t) to [τi, τi+1] such that (by (19), (14))

∫ τi+1

τi

‖ Úu(t)− Úx(t)‖dt ≤ r1
1− λ

=
1

1− λ

∫ τi+1

τi

d( Úx(t), F (t, x0(t)))dt

≤ 1

1− λ

(

γ

∫ τi+1

τi

d( Úx(t), F (t, x(t)))dt+ ξ1‖w(τi)‖
)

≤ 1

1− λ

(

γ

∫ τi+1

τi

d( Úx(t), F (t, x(t)))dt+
λ

γ

∫ τi

0

‖ Úu(t)− Úx(t)‖dt
)

.

Together with (17) this implies

∫ τi+1

0

‖ Úu(t)− Úx(t)‖dt

≤ γ

(1− λ)(1− λ
γ
)i−1

∫ τi+1

0

d( Úx(t), F (t, x(t)))dt+
λ

γ

∫ τi+1

0

‖ Úu(t)− Úx(t)‖dt,

or
∫ τi+1

0

‖ Úu(t)− Úx(t)‖dt ≤ γ

(1− λ)(1− λ
γ
)i

∫ τi+1

0

d( Úx(t), F (t, x(t)))dt

which means that (17) holds if we replace i by i + 1. Thus, after at most n(λ) steps we
shall have a solution u(t) of (1) satisfying

u(0) = x(0),

∫ 1

0

‖ Úu(t)− Úx(t)‖dt ≤ γ

(1− λ)(1− λ
γ
)n(λ)

∫ 1

0

d( Úx(t), F (t, x(t))dt.

It follows that

d(x(·),X ) ≤ γ

(1− λ)(1− λ
γ
)n(λ)

∫ 1

0

d( Úx(t), F (t, x(t)))dt.
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The left-hand side of the latter inequality already does not depend on λ and passing to
the limit when λ → 0 we get

d(x(·),X ) ≤ γep
∫ 1

0

d( Úx(t), F (t, x(t)))dt

as claimed. The proof has been completed.

4. Relaxation

We need an additional condition to prove a relaxation theorem for unbounded differential
inclusions.

(A4) there are k1(·) ∈ L1 and β1 > 0 such that

‖x− x̄(t)‖ < α ⇒ (conv F (t, x))
⋂

NB ⊂ (conv F (t, x))
⋂

(k1(t) + β1N)B.

Theorem 4.1. Assume (A1)-(A4). Assume further that x(·) ∈ W 1,1 satisfies ‖x(·) −
x̄(·)‖C < α/4 and Úx(t) ∈ conv F (t, x(t)) a.e. on [0, 1]. Then there is a sequence (xk(·)) of
solutions of (1) weakly (in W 1,1) converging to x(·).

Proof. By (A4) (and standard measurable selection arguments) there are measurable
z1(·), ..., zn+1(·) and λ1(·), ..., λn+1(·) such that λi ≥ 0,

∑

λi = 1

zi(t) ∈ F (t, x(t)); Úx(t) =
∑

λi(t)zi(t), ‖zi(t)‖ ≤ k1(t) + β1‖ Úx(t)‖ = ρ(t) (20)

almost everywhere on [0, 1].

From this (again using standard argument based on the Lyapunov theorem) we deduce
the existence of sequences (λim(·)) (m = 1, 2, ...) of measurable functions assuming only
values 0 and 1 and such that

n+1
∑

i=1

λim(t) = 1 a.e., ∀ m = 1, 2, ... and λim(·) → λi(·) weakly∗ in L∞.

Set

um(t) = x(0) +

∫ t

0

n+1
∑

i=1

λim(s)zi(s)ds.

The derivatives of um(·) are bounded on [0, 1] by the same summable function and weakly
converge in L1 to Úx(·). It follows that um(·) → x(·) uniformly. We observe further that
for each m the derivative of um(·) assumes one of the values z1(t), ..., zk+1(t) for almost
every t. Therefore

‖ Úum(t)‖ ≤ ρ(t), a.e., ∀m & Úum(t) ∈ F (t, x(t)) a.e.. (21)

On the other hand, since ‖ Úum(t)‖ ≤ ρ(t), we have by (A3)

|d( Úum(t), F (t, um(t)))− d( Úum(t), F (t, x(t)))|
≤ (k(t) + β‖ Úum(t)‖)‖um(t)− x(t)‖ ≤ ρ(t)‖um(t)− x(t)‖,
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so that
∫ 1

0

d( Úum(t), F (t, um(t))dt → 0. (22)

Take an

M =

∫ 1

0

(k(t) + βρ(t))dt,

and
δ = min{α

8
, (2e2Mβ)−1}.

Assuming without loss of generality that 2 exp(2M) ≥ 16, we can easily check that δ
satisfies the requirements specified in the third part of the proof of Theorem 3.1.

Therefore, if m is sufficiently big to make sure that

‖um(·)− x̄(·)‖C <
α

2
;

∫ 1

0

d( Úum(t), F (t, um(t)))dt < δ,

then by Theorem 3.1 there is a solution xm(·) of (1) such that

xm(0) = um(0) = x(0);

∫ 1

0

‖ Úxm(t)− Úum(t)‖dt ≤ O(

∫ 1

0

d( Úum(t), F (t, um(t)))dt) → 0

as m → 0. Thus xm(·)−um(·) norm converge to zero in W 1,1 and, consequently, xm(·) →
x(·) weakly in W 1,1.
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