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This paper investigates the problem of control with target condition for systems governed by semilinear
PDEs. It presents a unified approach based on the concept of spreading control under speed constraints.
It is shown that a convenient choice of the lower bound of the speed yields a control generating a spread
which reaches the state constraints at terminal time. Numerical examples are studied.

1. Introduction and statement of the problem

Spreading controls [5, 6] stand for controls which generate spreads in systems governed
by partial differential equations. The main motivation for stating them, stems from spa-
tially distributed processes where actually expansion phenomena in space usually arize.
Illustrative examples are proliferation of cancer cells in biomedicine and desertification in
a vegetation dynamics.

Recent studies [9] clearly demonstrate that the problem of existence of feedback spread-
ing control (FSC) laws may be investigated by a set-valued approach in the context of
monotonicity with respect to a preorder. They show that FSC laws are selections of maps
defined by tangential conditions.

More recent results [2, 8] take under consideration the notion of the speed of a spread
that they firstly define, and show how FSC laws which generate spreads either slower or
quicker than a desired given speed can be examined in the same setting.

This paper continues the search, started in [9], for FSC laws and their applications. Its
main objective is to use the established results in order to study the problem of con-
trol with state constraints at terminal time for systems governed by semilinear parabolic
equations.

Let Ω ⊂ Rn (n = 1; 2 or 3) be an open and bounded domain with sufficiently smooth
boundary ∂Ω. Assume −A to be an unbounded densely defined linear operator which
generates a C0 analytic [3, 10] semigroup (S(t))t≥0 on Z = L2(Ω,Rk) (for an integer k)
and consider the following semilinear control system,

∂z

∂t
+ Az = ϕ(z, v) in Ω× (0,∞[ , (1)

with initial data

z(x, 0) = z0(x) in Ω. (2)
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where z0 ∈ dom(A) and ϕ denotes a nonlinear operator which maps D×V into Z, with V
another Hilbert space and D a closed subset of Z. For tf > 0 and a measurable function
v̄ : [0, tf [ → V , we denote by z(·, v̄) a solution, when it exists, of system (1)-(2) on the
interval [0, tf [.

Now, let ξ : Rk × Rk → R. The control problem we have to deal with in this paper is
stated as follows,

Find a control v : [0, tf ] → V such that:
system (1)− (2) has a solution z(·, v) and
ξ(z(x, tf , v), z

′(x, tf , v)) ≤ 0 for a.e. x ∈ Ω,
(3)

where z(x, tf , v) denotes the value of z(tf , v) at x and z′(x, tf , v) its partial derivative with
respect to x.

A set-valued map Q on D is said to be lower semicontinuous whenever for each z0 ∈ D
and any sequence of elements zn ∈ D converging to z0, for every y0 ∈ Q(z0), there exists
a sequence of elements yn ∈ Q(zn) which converges to y0. See for instance [1, 4].

The directional derivative [7] of a mapping α : D → R is defined by,

dα(z)y
.
= lim inf

h↓0

α(z + hy)− α(z)

h
for each y ∈ Z.

The organization of this paper is as follows. In Section 2 we provide brief backgrounds on
feedback spreading control, including the notion of the speed of a spread. The purpose of
Section 3 is to solve the control problem (3). Section 4 is devoted to a numerical example.

2. On feedback spreading control

Next we present definitions and recent results on feedback spreading control. Let ω :
D ⊂ Z → 2Ω be the map by which spreads will be designed in system (1)-(2). Then a
measurable function v̄ : [0, tf ) → V is called a spreading control with respect to ω if:

z(t, v̄) ∈ D for all t ∈ [0, tf ) and
(ω(z(t, v̄)))0≤t<tf is non-decreasing.

(4)

Thereby a feedback spreading control law can be defined as follows.

Definition 2.1. The mapping ς : D → V is said to be a feedback spreading control (for
short FSC) law with respect to ω if, for all z0 in D, v = ς(z) defines a spreading control
for system (1)-(2), i.e. satisfying conditions (4).

As established in [9], FSC laws may be investigated in the framework of set-valued analy-
sis. In fact, there is shown that these laws have to produce monotone solutions of system
(1)-(2) with respect to a preorder which involves the map ω. Then FSC laws are de-
rived by making selections of tangential maps as in the following way: For each couple
(y, z) ∈ Z ×D consider the tangential condition,

∀ δ > 0,∃ 0 < h < δ and ‖p‖ ≤ δ such that
S(h)z + h(y + p) ∈ D and
ω(S(h)z + h(y + p)) ⊃ ω(z).

(5)
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Then define the set-valued maps Tω and Fω for each z ∈ D as follows,

Tω(z)
.
= {y ∈ Z | Eq. (5) holds with (y, z)}

and
Fω(z)

.
= {v ∈ V | ϕ(z, v) ∈ Tω(z)}. (6)

Hence we may present the following basic result which characterizes FSC laws.

Theorem 2.2. Let ς : D → V be a measurable function and assume that,

(i) The semigroup S(·) is compact.

(ii) The set Σω
.
= {(y, z) ∈ D2 | ω(y) ⊃ ω(z)} is closed.

(iii) ϕ(·, ς(·)) sends convergent sequences of D into weakly convergent ones in Z.

Then ς is a FSC law with respect to ω iff ς is a selection of the map Fω given by (6), i.e.
ς(z) ∈ Fω(z) for each z ∈ D.

Proof. See [9, Theorem 3.1].

Remark 2.3. We stress that an FSC law ζ derives a spreading control v̄ = ζ(z̄(·)) for all
initial states z0 ∈ D. Note the dependence of v̄ upon z0 because z̄ depends of z0, contrary
to the law ζ.

Remark 2.4. In general, parabolicity of the linear part of the system implies the com-
pactness of the semigroup S(·) which is required in condition (i).

In a natural way, the speed of the spread (ω(z(t, v̄)))t which is generated by a spreading
control v̄ may be set for each t ∈ [0, tf ) as follows,

speed(t, v̄)
.
= lim inf

h↓O

µ(ω(z(t+ h, v̄)))− µ(ω(z(t, v̄)))

h
≥ 0,

where µ satisfies,
µ : MΩ → R+ and
σ1 ⊂ σ2 ⇒ µ(σ1) ≤ µ(σ2)

(7)

where MΩ denotes the set of measurable subsets of Ω. For an FSC law ζ, the speed of the
spread generated by the control v̄ = ζ(z̄) will be computed by using the formula shown
in [8],

speed(t, v̄) = θ(ϕ(z̄(t), v̄(t)), z̄(t)), (8)

where z̄ = z(·, v̄) and θ is given by,

θ(y, z)
.
= lim inf

h↓0,‖p‖→0

µ(ω(S(h)z + h(y + p))− µ(ω(z))

h
, (9)

for each z ∈ D and y ∈ Tω(z). In addition, when D and µω
.
= µ ◦ ω are convex we have,

θ(y, z) = dµω(z)(y − Az),

for each y ∈ Tω(z) and z ∈ D ∩ dom(A). For sake of notation we define the spread speed
functional as follows,

ρ(z, v)
.
= θ(ϕ(z, v), z) for each z ∈ D, v ∈ Fω(z). (10)
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Thus, the speed of the spread generated by a spreading control law v̄ can be measured,
at each time t, by the number ρ(z(t, v̄), v̄(t)). Note that it is dependent on the functional
µ.

Let ν be a non-negative measurable function on D and define for each z ∈ D the following
maps by,

T ν
ω (z)

.
= {y ∈ Tω(z) | θ(y, z) ≥ ν(z)}, (11)

and
Fν

ω(z)
.
= {v ∈ V | ϕ(z, v) ∈ T ν

ω (z)}. (12)

It follows that any selection of the map Fν
ω which satisfies assumptions of Theorem 2.2

provides an FSC law which produces a spread having a speed greater than ν. Conditions
of existence of such a law can be listed in the following result.

Theorem 2.5. Further assumptions (i) and (ii) of Theorem 2.2, assume that,

(iv) ω−1 has convex values, i.e. {z ∈ D | x ∈ ω(z)} is convex for all x ∈ Ω.

(v) Tω is a lower semicontinuous map.

(vi) For each sequences (zn)n ⊂ D and (yn)n ⊂ Z such that yn ∈ Tω(zn) for every n, we
have,

zn → z (strong)
yn → y (weak)

=⇒ y ∈ Tω(z) and θ(yn, zn) → θ(y, z).

(vii) For each z ∈ D and y ∈ Tω(z), there exists v ∈ V such that ϕ(z, v) = y.

(viii) ϕ is continuous.

(ix) µω has a directional derivative.

(x) For all z ∈ D, there exists y ∈ Tω(z) such that θ(y, z) > ν(z).

(xi) ν is upper semicontinuous.

Then there is an FSC law ζ (with respect to ω) which satisfies

ρ(z, ζ(z)) ≥ ν(z) for each z ∈ D.

Proof. See [8, Section 5] for a detailed proof which can be outlined as follows,

(a) Because of (x), the map T ν
ω of (11) has non empty values.

(b) We show that the map T ν
ω is lower semicontinuous by proving [1, 4] that the func-

tional,
κ : z ∈ S → d(y0, T ν

ω (z))
2 = min

y∈Tω(z)

ν(z)−θ(y,z)≤0

‖y0 − y‖2

is upper semicontinuous for each y0 ∈ Y . For that end the following expression is
used,

κ(z) = sup
λ≥0

inf
y∈Tω(z)

{‖y0 − y‖2 + λ(ν(z)− θ(y, z))}

(c) T ν
ω is lower semicontinuous and has closed convex values due to (i) and (ii). Then,

thanks to Michael’s selection Theorem [4] (any lsc closed convex valued map has
a continuous selection), the map T ν

ω admits a continuous selection y(·). Now, we
can use condition (vii) to build an FSC law ςν : D → V in such a manner that
ϕ(z, ςν(z)) = y(z) for each z ∈ S.
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Following the works [1, 11] on viability algorithms, a convenient use of the expressions
(5) and (6) has led the authors [2] to state the following algorithm.

Algorithm 2.6. Let h > 0 and N ∈ N such that h = tf/N .

I. Initialize r = z0 and σ = ω(z0).

II. Iterate for k = 1 to N .
II.a Find v such that:

ω(S(h)r + hϕ(r, v)) ⊃ σ and ρ(r, v) ≥ ν(r). (13)

II.b Let vk = v and zk = S(h)r + hϕ(r, v).
II.c Put r = zk, σ = ω(zk) and go to II.a.

III. At each time tk = kh,
the approximated state is zk,
the spreading control is vk,
the generated spread is (ω(zk))k.

Convergence of Algorithm 2.6 means that:

(a) vh → vs in L2(0, tf , V ) when h → 0,
(b) vs is a spreading control,
(c) zh → z(·, vs) when h → 0,

where vh and zh are given as follows,

(vh(t), zh(t))
.
=

(v1, z1) on [0, h) ,
...
(vN , zN) on [(N − 1)h, tf ] .

Although Algorithm 2.6 has been computationally tested successfully [2], its convergence
according to the above sense, is not yet proved rigorously. Note the key sequence (13) by
which an approximate value of the spreading control is derived by selection.

3. Control with terminal target

We turn next to study the reachability problem (3) by restating it as spreading control
problem with speed constraints. Let the map ω of the previous section be given as follows,

ω(z)
.
= {x ∈ Ω | ξ(z(x), z′(x)) ≤ 0} for each z ∈ D (14)

where D denotes, for instance, a closed convex subset of H1
0 (Ω). It follows that Problem

(3) may reduce to seek a control v in such a manner that,

λ(Ω \ ω(z(tf , v))) = 0.

This gives rise to the following result.

Theorem 3.1. Consider system (1)-(2) and let ω(z0) = ω0 6= ∅. Assume that conditions
of Theorem 2.5 are satisfied except for (x) and (xi). Furthermore suppose the following
be held,
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(xii) For all z ∈ D, there exists y ∈ Tω(z) such that

θ(y, z) >
µ(Ω)− µ(ω0)

tf
.

where µ and θ are given respectively as in (7) and (9).

(xiii) µ is such that

σ ⊂ Ω and
µ(σ) = µ(Ω)

⇒ λ(Ω \ σ) = 0

where λ denotes the Lebesgue measure on Ω.

Then there is an FSC law ζµ which solves Problem (3).

Proof. Let ν be defined as follows,

ν(z) =
µ(Ω)− µ(ω0)

tf
for each z ∈ D,

then it follows that conditions (x) and (xi) in Theorem 2.5 are well verified. Therefore
all of the assumptions in that theorem are satisfied and thereby there is an FSC law, say
ζµ, which satisfies,

ρ(z, ζµ(z)) ≥ ν(z) for each z ∈ D
Now, denote by z̄ a solution of system (1)-(2) with v = ζµ(z) and v̄ = ζµ(z̄). Then we get,

µω(z̄(tf )) ≥ µω(z̄(0)) +

∫ tf

0

dµω(z̄(t)) Ú̄z(t)dt

and by considering (1)-(2) and (10) we get,

µ(ω(z̄(tf ))) ≥ µ(ω0) +

∫ tf

0

ρ(z̄(t), v̄(t))dt

It follows that,

µ(ω(z̄(tf ))) ≥ µ(ω0) + tf
µ(Ω)− µ(ω0)

tf
,

and hence µ(ω(z̄(tf ))) ≥ µ(Ω). Now, by using (xiii) we get,

λ(Ω \ ω(z̄(tf ))) = 0,

and thus we have,
ξ(z(x, tf , v̄), z

′(x, tf , v̄)) ≤ 0 for a.e. x ∈ Ω

ending the proof.

Remark 3.2. Note that an instance of a function µ can be provided by any measure on
Ω which obeys to µ(A) = 0 ⇒ λ(A) = 0 so as condition (xiii) holds. Nevertheless, as
required by (ix), it is needed that the function µω = µ ◦ ω has a directional derivative.

Remark 3.3. It is of interest to notice that the FSC law ζµ the existence of which is
proven in Theorem 3.1 depends upon the number (µ(Ω)−µ(ω0))/tf and therefore we can
conclude what follows: (a) it depends only upon µ(Ω) − µ(ω0) and tf , and will work for
any initial state which corresponds to ω0 by the map ω. (b) For an initial state which is
different from z0, the law ζµ derives a spreading control, though it does not solve necessarly
Problem (3). (c) The functional µ only has a technical role. Note the fact that it does
not appear in the formulation of the problem.
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4. A numerical example

Let Ω = (−1; 1)× (−1; 1) and consider the following semilinear parabolic equation,

∂z

∂t
− div(D∇z) = z2 + v(t)g(x) on Ω× [0, tf ) , (15)

with Dirichlet boundary conditions,

z(t) |∂Ω= 0 on [0, tf ) , (16)

and initial data,
z(0) = z0 on Ω. (17)

where D, g, z0 map Ω into R. D and g stand, respectively, for the diffusion coefficient and
the actuator. We know [3] that the linear operator −A : z → div(D∇z) with domain
dom(A) = H1

0 (Ω) ∩ H2(Ω) generates a compact analytic C0 semigroup on Z = L2(Ω) in
accord with condition (i).

Let the function ξ which expresses the constraints in (3), be as follows,

ξ(s, t) = m− s for each s, t ∈ R.

for m > 0, so as the map ω of (14) is given by

ω(z) = {x ∈ Ω | z(x) ≥ m} (18)

for each z ∈ D. In Table 4.1 we list all the data regards the two numerical examples we are

Example 1 Example 2
D(x1, x2) 2 0.7
g(x1, x2) 4 + x1x2 exp(x1 + x2)
z0(x1, x2) (1− x2

1)(1− x2
2) 1{(x1−0.6)2+(0.4+x2)4≤0.3}

(tf , h,m) (0.1, 0.0025, 0.9) (0.1, 0.1/30, 0.5)

Table 4.1: The data

going to treat. The results of Example 1 are presented in Figure 4.1 and Figure 4.2 which
contain respectively the computed spread (ω(z(t))0≤t≤tf at four times and the spreading
control on the interval [0, tf ]. While Example 2 is illustrated in the same manner in Figure
4.3 and Figure 4.4. We emphasize that the values of h above are the smaller amongst a
set of values taken under consideration in order to get convergence of Algorithm 2.6.

Next, we proceed to examine sequence II.a of Algorithm 2.6. According to expression
(18), the inclusion (13) can be rewritten for each r ∈ Z, σ ⊂ Ω and v ∈ R, as follows,

S(h)r + hϕ(r, v) ≥ m on σ,

Then, by (15) we get,
S(h)r + h(r2 + vg) ≥ m on σ,

or equivalently,

vg ≥ m− S(h)r − hr2

h
on σ
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Figure 4.1: The spread provided by Example 1 (see Table 4.1) in up to down order at times
0, 0.015, 0.7 and terminal time 0.1.
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Figure 4.2: The spreading control in Example 1
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Figure 4.3: The spread provided by Example 2 in up to down order at times 0, 0.033, 0.05
and terminal time 0.1.
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Figure 4.4: The spreading control in Example 2
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Now, by assuming that the actuator g is satisfying, as in Table 4.1, the following condition,

g(x1, x2) > 0 on Ω (19)

it follows that,

v ≥ sup
σ

m− S(h)r − hr2

hg
(20)

In other words, an approximate spreading control will be provided by a suitable selection
of the set-valued map

z ∈ D → Fh(ω(z), z),

where

Fh(σ, r)
.
=

[

sup
σ

m− S(h)r − hr2

hg
,+∞

)

.

for each σ ⊂ Ω and r ∈ L2(Ω).

5. Conclusion

In the present paper, spreading control techniques have been applied to control with
target condition in semilinear parabolic systems. The novelty is that a unified approach
is provided along with an easy implementable algorithm. The latter leads to an FSC
law, a solution to the problem, which generates a spread whose speed is greater than
(µ(Ω) − µ(ω0))/tf where ω0 stands for the zone where the constraints initially hold. A
consequence is that, through its speed, the spread can be controlled in such a manner
that the target condition is reached at terminal time. Thus the speed generated by that
FSC law increases with µ(Ω)− µ(ω0) and decreases regards tf .
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