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This paper gives a general characterization of satisficing, lexicographic agents, provides conditions for the
existence of a competitive equilibrium and considers the viability and multiphase dynamic of an abstract
adaptive society whose agents are governed by satisficing, lexicographic choice.

1. Introduction

If pure mathematics is the language and logic of symbolic relationships, then applied
mathematics is the synthesis and analysis of models that symbolize empirical experience.
The French school of mathematical economics beginning with Cournot and Walras cre-
ated a kind of pure applied mathematics when Arrow and Debreu (1954, [1]) re-expressed
general economic equilibrium theory in the language of Bourbaki, using set valued maps
and more general concepts of regularity. A decade later a newly minted functional analyst
set about mastering the foundations of this by then flourishing field. At the same time he
began extending the functional analysis itself, subsequently turning to the more general
domain of differential inclusions. Just as set valued maps greatly extend the applicable
domain of static, general equilibrium analysis, differential inclusions encompass a more
general way of characterizing change through time. The establishment of this new field
of applied mathematics implied a new pure mathematics, the structure and properties
of which our hero proceeded to develop and extend. I am speaking, of course, about
Jean–Pierre Aubin, whose gift for constructive abstraction relevant for modeling varied
phenomonological domains and whose genius for extending the pure mathematics these
models imply, we have long admired. Equally admirable has been his knack for recog-
nizing talent in others, inspiring and engaging them in a collaborative enterprise that
now constitutes an identifiable school, many members of which are assembled here at this
conference.

Just when Jean–Pierre was launching this remarkable enterprise, I met him at the Uni-
versity of Wisconsin’s Mathematical Research Center some time around 1965. I vis-
ited him shortly thereafter at his newly founded CEREMAD (Centre de Recherche de
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Mathématiques de la Décision) where I presented an abstract reformulation of the recur-
sive programming models that my students and I had constructed to explain production,
investment, and technological change in specific industries and agricultural regions. I
exploited discrete time difference inclusions to do so, which could make use of the al-
ready existing topology of set valued maps, to establish existence of compact orbits (Day
and Kennedy (1970)) and contraction properties to establish some weak stability results
(Cherene (1978)). Jean–Pierre, with Helene and other collaborators has used the alterna-
tive framework of differential inclusions to develop an economic viability theory far richer
in mathematical results.

I had hoped on this occasion to establish a link between these alternative approaches by
exploiting the recent work on impulse control and reset maps. After some intense effort,
I have not succeeded so far. I have not given up but for now I will have to be content
with an elaboration of a version of an abstract, adaptive society about which one can say
a few things not wholly without economic and mathematical interest.

In particular, I show how two fundamental concepts of behavioral economics, satisficing,
and sequential attention to goals (Simon (1957), [13]), March and Simon (1960), and Cyert
and March (1963, [4]) fit into the standard theory of rational choice and equilibrium, and
explain some interesting implications that arise in a dynamic context when cognitive
and informational limitations are important. A general discussion with illustrations and
references to the related literature is presented elsewhere (Day (1996), [6]).

2. Satisficing

As a preliminary, consider the abstract parametric optimal choice problem. Let x be a
choice vector in a linear, locally convex, topological choice space X and let w be a datum
or parameter in a topological information space W. The feasibility correspondence is a
nonempty, continuous multivalued map Γ : W → 2X , the utility or more generally, the
objective function is a real single-valued continuous function ϕ : X×W → IR. The indirect
objective function π : W → IR is defined by

π(w) := max
x∈Γ(w)

ϕ(x,w). (1)

The choice correspondence is a multi-valued map Ψ : W → 2X defined by

Ψ(w) := Arg max
x∈Γ(w)

ϕ(x,w). (2)

Remark 2.1. According to the Maximum Theorem (Berge (1963, [3], pp. 115–116)), π
is continuous and single-valued on W and Ψ is upper semi-continuous on W. If for each
w, ϕ(x,w) is quasi-concave, then the upper contour sets of the preference ordering,

M(x) :=
{

x | ϕ(x,w) ≥ π(w)
}

, (3)

are convex. Therefore, if for each w, Γ(w) is a convex set which is assumed henceforth,
then Ψ(w) is convex also.



R. H. Day / Behavioral Economics, Competitive Equilibrium and Multiple Phase ... 271

Define a real single-valued, continuous satisficing function, σ : W → IR. For each w the
set of satisficing choices is

Γ(x,w) ∩
{

x | ϕ(x,w) ≥ σ(w)
}

. (4)

Assume that if no satisficing choice is attainable, the problem reverts to that of finding
the best feasible choice.

Now consider the utility function defined by

ϕ(x,w) = min
[

µ(x,w), σ(w)
]

x ∈ X , w ∈ W, (5)

where µ(x,w) is a real continuous, quasi-convex, single-valued function on X ,W.

Remark 2.2. Given Remark 2.1 and the assumption just listed, Ψ is a nonempty, convex-
valued, upper semi-continuous map.

A stronger result, however, is needed for the lexicographic case.

I. Existence and Continuity of Satisficing Choices. (Robinson and Day (1974,
[12])). If µ is strictly quasi-concave in x for each fixed w and σ is continuous on W,
then the satisficing choice correspondence Ψ is nonempty, continuous and convex-valued
on W.

3. Satisficing Lexicographic Choice

Let N := (1, . . . , n). Let (ϕi : X ×W → IR, i ∈ N) be a family of utility or preference
functions arranged in a priority order given by the index i. Consider the lexicographic
sequence of choice problems

πi(w) := max
x∈Ψi−1(w)

ϕi(x,w), i ∈ N (6)

where Ψ0(w) := Γ(w). Lexicographic choices are constructed recursively by the sequence

Ψi(w) := Ψi−1(w) ∩
{

x | ϕi(x,w) ≥ πi(w)
}

, i ∈ N. (7)

Let σ1 be a nonnegative real number. Assume ϕ1(x,w) ≡ σ1 for all w ∈ W. Define the
lexicographic choice correspondence, Ψl : W → 2X by

Ψl(w) :=
⋂

i∈N

Ψi(w), w ∈ W. (8)

For a given index i > 1 the decision maker is indifferent among all choices in Ψi−1(w)
according to the criteria 1, . . . , i−1, but prefers a choice y to another choice x in Ψi−1(w)
whose utility is greater according to the ith criterion. Clearly, Ψi(w) ⊂ Ψi−1(w) for all
w ∈ W. Note that for l = 1, Ψl(w) = Γ(w): the highest priority is to find a feasible
solution. In practice this may not be an easy problem. Indeed, it may be the most
difficult problem in the sequence and the most costly one to solve.
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For the narrowing down process to be nontrivial, there must be room at least in the
choice correspondence Ψ1(w) for further choice according to the second criterion ϕ2. To
define such situations, we adopt the hypothesis of satisficing in priority order using a
family of satisficing functions (σi : W → IR. i ∈ N) and a family of utility functions
(µi : X ×W → IR, i ∈ N). We define the L∗ family of utility functions,

ϕi(x,w) := min
[

µi(x,w), σi(w)
]

, x ∈ X , w ∈ W, i ∈ N, (9)

where µ1(x,w) ≡ σ1(w) ≡ σ1 for all w ∈ W. Given (9), the sequence (7) is called an L∗

decision sequence and Ψl an L∗ choice correspondence. A decision maker so described is
an L∗ agent, and a choice x ∈ Ψl(w) is called an L∗ decision.

Obviously, for any given problem i in an L∗ decision sequence to have a solution and
hence for each correspondence in the L∗ decision sequence to be nonempty, the preceding
problem in the sequence must have had a solution. For each one to be upper semi-
continuous, its predecessor must be continuous.

II. Existence and Continuity of L∗ Choices (Day and Robinson (1972)).

(i) If µi : X × W → IR is continuous on X × W, strictly quasi-concave in x for each
w ∈ W, for each i = 2, . . . , n,
then Ψl is a single-valued, continuous function. In this case, define ψl ≡ Ψl.

(ii) If N = {1, . . . , n} for n finite and assumption (i) holds for each i = 1, . . . , n− 1 and
µn is continuous but merely quasi-concave in x, then Ψl is a convex-valued, upper
semi-continuous function.

For lack of a better terminology, refer to an L∗ ordering satisfying (i) as strong and one
satisfying (ii) as week.

Remark 3.1. For each w there must exist an l ∈ N depending on w such that Ψi(w) =
Ψl(w)(w) for all i > l(w). Call l(w) the determining criterion governing choice.

Remark 3.2. The continuity of L∗ decisions suggests that L∗ behavior can be rational-
ized by a single ordering. Indeed, a trivial ordering exists if the decision space is given a
norm. Analogous to the approach of Arrow and Hahn (1971, [2]) for the standard case,
a single utility function representing Ψl is just the map which associates with each pair
(x,w) the distance (with reverse sign) from x to Ψl(w). For each w, this (negative) dis-
tance is single-valued and continuous by virtue of the fact that Ψl(w) is convex. More
generally, for each w ∈ W, L∗ utility establishes a complete pre-ordering on X whose
upper and lower continuous sets defined by an x ∈ X are closed. Then, using Debreu
(1983, [9], Chapter 6),

III. A single-valued continuous real order preserving function exists that represents an
L∗ pre-ordering.

4. Opportunity Cost of High–Order Satisficing

At each stage in the lexicographic sequence, choices are constrained to be feasible, and
satisfice all higher order utility indexes. Consequently, the more criteria are satisficed, the
more constrained the choice. This implies that high order satisficing bears an opportunity



R. H. Day / Behavioral Economics, Competitive Equilibrium and Multiple Phase ... 273

cost in terms of the first nonsatisficed criterion. This yields interesting insights in various
applications.

To formalize this idea, let us introduce a family of constraint functions βi : X × W →
IR, i = 1, . . . ,m, and a family of limitation functions γi : W → IR, and assume that Γ(w)
defined by

Ψ0(w) ≡ Γ(w) :=
(

x | βi(x,w) ≤ γi(w), i = 1, . . . ,m
)

. (10)

For each value w ∈ W, the L∗ choice correspondence gives the solution set of the con-
strained optimization problem

maximize ϕl(w)(x,w) (11)

subject to
βi(x,w) ≤ γi(w), i = 1, . . . ,m (12)

and subject to
ϕi(x,w) ≥ σi(w), i = m+ 1, . . . ,m+ l(w)− 1 (13)

and to the non-negativity restriction x ≥ 0. This problem is equivalent to the Kuhn-
Tucker problem:

πl(w)(w) = max
x≥0

min
y≥0

(

ϕl(w)(x,w) +
m
∑

1

[

γi(w)− βi(x,w)
]

yi

+
m+l∗−1
∑

m+1

[

ϕi(x, w̄)− σi(w̄)
]

yi

)

.

(14)

Let
(

x(w), y(w)
)

be a solution of this primal-dual problem where y(w) = (y1, . . . , ym+n).
The dual variables yi(w), i = 1, . . . ,m have the usual interpretation: they are the marginal
payoffs in terms of the objective function ϕl(w)(x,w) of a marginal increase in the ith

constraining factor i = 1, . . . ,m, and the marginal increase in payoff in terms of a marginal
decrease in the ith satisficing level, i = m+1, . . . ,m+ l(w)− 1. Decreasing the satisficing
level of the determining criterion expands the region of choices that are both feasible and
l(w)− 1 satisficing.

IV. Corresponding to every L∗ decision x∗(w) is a dual imputation vector y∗(w) defined
by (14) which gives the marginal opportunity cost of each resource and each satisficing
coefficient in terms of the determining criterion.

5. Competitive Equilibrium with L∗ Agents

Could an economy of lexicographic agents possess a competitive equilibrium? Certainly,
excess demand functions will be more complicated than is usually represented in texts,
as illustrated in Day and Robinson (1972), but the continuity of choice with respect to
parameter perturbations suggests that the answer is affirmative anyway. To verify this,
let us outline the relevant considerations for the Arrow-Debreu pure exchange economy.

For consumers, the choice variable xk is a consumption vector of commodities in a com-
modity space X , the datum is a price vector w ≡ p, which appears in the consumer k’s
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budget set, say Γk(w) ≡ Bk(p) :=
{

xk ∈ X | p(xk − ξk) ≤ 0
}

where ξk is the vector

of (positive) initial commodity endowments. It is assumed that agents’ preferences are
independent of prices.

Now suppose each consumer, k, has an L∗ family,
{

µk
i (x) := min{µk

i (x), σ
k
i }, i = 1, . . .

}

where the σi are satisficing constants and where the utility functions µf and satisficing
constants do not depend on prices. Assume that each µk

i (·) is strictly quasi-concave
and assume the nonsatiation requirement: that for each xk ∈ X k there exists an l ≥ 1
(depending on k) and a consumption vector yk ∈ X k such that

ϕk
l (y

k) > ϕk
l (x

k). (15)

Remark 2.2 implies that ϕk
i (x

k) = σk
i = ϕk

i (y
k), i = 1, . . . , l − 1. If the L∗ family is

strong, each criterion can be satisficed but the consumer’s list of needs and wants is never
exhausted. If we assume a weak L∗ preference ordering, it means that the last lth criterion
is nonsatiable and cannot be satisficed.

The excess demand correspondence is z(p) =
∑

k Ψ
k
l (p). Assume p belongs to the unit

simplex. Then a competitive pure exchange equilibrium is a vector p̃ and a set of vectors
x̃ such that for each k

x̃k∗ = Ψk
l (p̃), z(p̃) ≤ 0, p̃z(p̃) = 0.

Each consumer’s demand correspondence defined by Ψk
l (p̃) is an upper semi-continuous

correspondence by virtue of II. Given this, the conditions of existence are met. The
argument can be extended to the case of a production economy where the firms have the
single criterion of maximizing profits. Without going into details, we have:

V. Consider an economic system whose firms and households are described by Assump-
tions I, II, and IV of Arrow-Debreu. Assume the households are strong L∗ agents who
satisfy the nonsatiation requirement (15) and the assumptions of II(ii). This economic
system possesses a competitive equilibrium.

Remark 5.1. A competitive equilibrium depends on all the parameters of preference
and technology, in particular on both the order and satisficing coefficients of the several
utility functions. Any change in priorities or satisficing levels will change the equilibrium
solutions.

6. Characterization of an Abstract Adaptive L∗ System

Now consider the implications of L∗ preferences when agents adapt out of equilibrium
in response to experience and to changes in the environment. For this purpose, I will
formulate an abstract adaptive society along the lines used in Day (1996, [6]) made up of
interacting agents with L∗ preferences and a co-evolving environment. The agents take
action based on plans which are based on information obtained by observing the state of
the environment. The emerging environmental state depends on its previous value and
on the various agents’ actions.

6.1. An Agent/Environment System

For simplicity, let us begin with a single agent interacting with an external environment
(that perhaps includes other agents). The environmental state is zt. The agent observes
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this state and derives information, wt, about it. On the basis of this information, plans
are formed. Actions are not the same things as plans. In reality, they often involve a
more or less conscious attempt to control behavior according to plan, but they are also
contingent on the current state of the environment and on information that unfolds after
formulation of the plan. The dependence of actions on information and states via the
controlling function can cause deviations from plans.

In formal terms, let

A be the action space,
X be the plans space,
W be the information space,
Z be the state space.

Define the operators

δ : A×Z → W, an information function;
Γ : W → P(X ), a feasibility correspondence;
ψ∗ : W → X , a strong L∗ planning operator;
ζ : A×X ×W ×Z → A, a control operator;
ω : A×X → Z, a state transition operator.

Begin with a state zt ∈ Z. This leads to an information δ(at, zt) = wt+1 ∈ W. The plan-
ning correspondence has the structure of equation (1). Given a plan, given the available
information, and given the state, an action emerges at+1 = at+ ζ(xt+1, wt+1, zt), which we
consider to be a modification or departure of the previous action at. This is just a discrete
counterpart of the concept of action as a continuous trajectory in an action space. We can
think of the action as a continuous flow in the interval [t, t+1). Then a new state unfolds
zt+1 = ω(at, zt). In this formulation the information, planning, and control functions are
known by the agent. The agent’s knowledge of a state z and the state transition operator
ω is incorporated in w and the structure of the feasibility operator Γ.

By composition we have an action operator α : A×Z → A,

at+1 = α(at, zt) := at + ζ
(

ψ∗(δ(a, z), z), δ(a, z), z
)

. (16)

The co-evolution of the agent/environment system is given by the discrete dynamic system

at+1 = α(at, zt)
zt+1 = ω(at, zt).

(17)

Define a region of potential action defined by a potentiality correspondence,

F : (a, z) −→ F (a, z) ⊂ A,

which describes the set of potential actions given current behavior and the environmental
state. Actions are potential if

F (at, zt) 6= ∅. (18)

If

at+1 = α(at, zt) ∈ F (at, zt), (19)
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then the action operator α is practical and the agent is viable at time t.

The feasibility operator, Γ(wt), can be thought of as providing an estimate of the set
F (at, zt). Even if the agent has an optimal feasible plan, a potential action may not exist.
What the individual considers to be feasible may be distinct from what is actually the set
of viable actions. It is essential that the control function make up for this possibility by
being practical.

In addition to the viability conditions the environmental feedback effect of action must
return the system to a state in U . In this case, we will say that the system is environ-
mentally friendly.

VI. If there exists a nonempty set U ⊂ U such that

(i) for all u ∈ U , F (u) 6= ∅ and α(w) ∈ F (a, z) (control is practical),

(ii) and
(

α(u), w(z)
)

∈ U (the system is environmentally friendly),

then for all u0 ∈ U , ut+1 = Φ(ut) :=
(

α(ut), ω(ut)
)

∈ U, t = 1, 2, 3, . . . ,

and the agent/environment system is viable on U .

6.2. An L∗ Agent/Environment System

Next, consider the implication of L∗ objectives on behavior in the agent/environment
system just described. It was noted above that the L∗ choice problem could be charac-
terized as the solution of a programming problem. This implies that an L∗ plan satisfies
a dual system of equated constraints associated with that solution. If the information on
which plans are based changes from period to period, this system of equated constraints
may change. The characterization of Ψl in terms of this system of equated constraints
will change correspondingly. There are a finite number of possible equated constraint
systems. Let us index these sets by a subscript p ∈ [1, . . . , p̄]. Then associated with each
w there is at least one system of equated constraints, p = p(w), and a single-valued map
πp : (W → X ),

x(t) = πp(wt) ∈ Ψl(wt).

Define
Wp =

{

w ∈ W | x(t) = πp(w) ∈ Ψl(w)
}

.

Let us refer to πp as the p
th planning rule and the set Wp as the p

th planning information
zone and define W0 as the set such that for all wt ∈ W0, xt = π0(wt) = 0 where 0 is the
null vector.

As w = δ(a, z), each action/state pair will lead to an information in one or the other
of these information zones. This induces a partition

{

U1, . . . , Up

}

on U ⊂ A × Z with
p̄
⋃

p=1

Up = U such that for each u ∈ U there exists a p such that

u ∈ Up =⇒ δ(u) ∈ Wp.

Now define the p action rules

αp(u) := a+ ζ
(

πp(δ(u)), δ(u), u
)

, u ∈ Up,
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where u = (a, z), and let θp(u) :=
(

αp(u), w(u)
)

. Then we arrive at:

VII. The trajectory of the L∗ agent/environment system is described by the multiple
phase dynamical system

ut+1 = θ(ut) := θp(up) ∈ Up.

As the system evolves, from time to time ut may cross the boundary from one phase
zone Ut to another implying that the system of equated constraints will have changed.
The phase structure switches endogenously. The implication is that different constraints
(associated with different resources, for example) may be binding or – and this is the
point in the present context – a different set of needs and wants may be satisficed. The
particular preferences governing choice at any time and the values imputed to the various
constraining factors will therefore change. The map ψ(w) may not be continuous even if
the assumptions of III(i) are satisfied. This means that trajectories can exhibit discrete
jumps from time to time even when change may have been very gradual in between times.1

6.3. Evolving Preference Orderings

In reality, people change their minds about priorities with the result that they are re-
ordered from time to time. To account for this phenomenon within the agent/environment
system framework, assume that not only the objective and satisficing functions depend
on states, but their order does also. Let N(w) := {i1(w), i2(w), . . . } ⊂ N := {1, 2, . . . } ⊂
IN+. We can then refer to the jth element in N(w), ij(w) by the index j.

Consider the L∗ family defined in (8) except replace N by N(w). For any information
datum wt, the L∗ planning correspondence is well defined and can be characterized by
Kuhn-Tucker optimization problem (10–14) with the proviso that now the criterion l(wt)
is the l(wt)

th element in N(wt).

VIII. Given this interpretation, the number and order of criteria satisficed and the deci-
sion rules governing behavior evolve.

7. An Abstract Adaptive L∗ Society

If there are a number of L∗ agents interacting with each other and their common en-
vironment, and if each is characterized as in §6, then we have an abstract adaptive L∗

society. Identify each agent by an index k ∈ K := {1, . . . , k̄} and the information, plans,
and action spaces associated with each by superscripts, k. Similarly, identify each agent’s
information, plan, and action space likewise and define the social spaces:

A := A1 × · · · × Ak̄

X := X 1 × · · · × X k̄

W := W1 × · · · ×W k̄

U := A×Z
1For a general characterization of the structure of multiple phase trajectories, see (Day (1994, [7], Chapters
6 and 9). The discussion there is in terms of single-valued maps but all of the concepts hold for the more
general dynamical systems described here.
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with a social action a := (a1, . . . , ak̄), social plan x := (x1, . . . , xk̄), and social information
w := (w1, . . . , wk̄). Define the corresponding social action, planning, information, and
state transition functions on the product spaces appropriately:

δ(a, z) :=
(

δ1(a, z), . . . , δk̄(a, z)
)

ψ(w) :=
(

ψ1(w1), . . . , ψk̄(wk̄)
)

α(a, z) :=
(

α1(a1, z), . . . , αk̄(ak̄, z)
)

ω : (a, z) −→ ω(a, z)

Notice that each agent may form information about the other agents as well as the envi-
ronment.

The existence of potential behavior for each agent as described in §6 must hold here but in
addition the several agents must also satisfy inter-agent compatibility. Such a requirement
can be described by a compatibility region C ⊂ A×Z.

IX. Define u := (u1, . . . , uk̄) ∈ U := ×k̄
k=1U

k where uk = (ak, z), k = 1, . . . , k̄.

(i) Define the multiagent potentiality correspondence mapping
F : A× Z −→ A,

F(a, z) := ×k̄
k=1F

k(ak, z), where F k(ak, z) 6= ∅

for all k.

(ii) If there exists a set U ⊂ A×Z such that for all u ∈ U ,

α(u) ∈ F(u),

then all agents are individually, potentially viable,

(iii) and

Φ(ut) :=
(

α(u), ω(u)
)

∈ C,

then for all u0 ∈ U ,

ut+1 =
(

α(ut), ω(ut)
)

∈ U, t = 1, . . . ,

the system is viable.

Obviously, all of the properties described in §6 carry over to the present case. Thus,
the trajectory of behavior will be characterized by multiple phase dynamics and evolving
priorities where the various equated constraints at each time and specific order of priorities
may vary among the agents. Consequently, the qualitative as well as the quantitative
history of each agent may be unique. Also implied is an endogenous evolution in the
distribution of satisficed wants and needs; a possible convergence – or divergence – of
social values, a development of social accord or discord. These social developments could
have an important feedback effect on action and on the possibility that the compatibility
property will hold.
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carnación, R. Fabella, E. de Dios (eds.), University of the Philippines Press, Quezon City
(1996) 1–23.

[7] R. H. Day: Complex Economic Dynamics. Volume I. An Introduction to Dynamical Systems
and Market Mechanisms, MIT Press, Cambridge (1994)

[8] R. H. Day, S. M. Robinson: Economic decisions with L∗∗ utility, in: Multiple Criteria
Decision Making, J. L. Cochrane, M. Zeleny (eds.), University of South Carolina Press,
Columbia (1973).

[9] G. Debreu: Representation of a preference ordering by a numerical function, in: Mathemat-
ical Economics: Twenty Papers of Gerard Debreu, Cambridge University Press, Cambridge
(1983) 105–110.

[10] J. Encarnación: A note on lexicographical preferences, Econometrica 32 (1964) 215–217.

[11] N. Georgescu-Roegen: Choice, expectations and measurability, Quarterly Journal of Eco-
nomics 68 (1954) 503–504.

[12] S. M. Robinson, R. H. Day: A sufficient condition for continuity of optimal sets in mathe-
matical programming, J. Math. Anal. Appl. 45 (1974) 506–511.

[13] H. Simon: Administrative Behavior, 2nd Edition, Free Press, New York (1957)


