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We present a derivative criterion for metric regularity of set-valued mappings that is based on works
of J.-P. Aubin and co-authors. A related implicit mapping theorem is also obtained. As applications,
we first show that Aubin criterion leads directly to the known fact that the mapping describing an
equality/inequality system is metrically regular if and only if the Mangasarian-Fromovitz condition holds.
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1. Introduction

This paper deals with metric regularity of set-valued mappings. Throughout, X and Y
are Banach spaces. The norms of both X and Y are denoted by ‖ · ‖; the closed ball
centered at x with radius r by IBr(x) and the open ball by IB◦

r(x); the closed unit ball is
simply IB and the open one IB◦. A neighborhood of a point x is any open set containing x.
The distance from a point x to a set A is denoted by d(x,A). By a mapping F from X
to Y we generally mean a set-valued mapping and write F : X →→ Y , having its inverse
F−1 defined as F−1(y) = {x | y ∈ F (x)} and graph gphF = {(x, y) | y ∈ F (x)}. When F
is single-valued (a function) we write F : X → Y .

Definition 1.1. A mapping F : X →→ Y is said to be metrically regular at x̄ for ȳ if
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(x̄, ȳ) ∈ gphF and there exist a constant κ > 0 and neighborhoods U of x̄ and V of ȳ
such that

d(x, F−1(y)) ≤ κd(y, F (x)) for all (x, y) ∈ U × V . (1)

The metric regularity can be identified with the finiteness of the regularity modulus defined
as

regF (x̄| ȳ) = inf{ κ | there exist neighborhoods U and V such that (1) holds}.

The absence of metric regularity is indicated by regF (x̄| ȳ) = ∞.

The concept of metric regularity goes back to classical results by Banach, Lyusternik and
Graves. More recently, its central role has been recognized in variational analysis for both
theoretical developments such as obtaining necessary optimality conditions and also in
numerically oriented studies, e.g., when deriving error bounds for solution approximations.
Discussions of the property of metric regularity, its relations to other properties and
characterizations by various approximations are presented in [21] and [13].

Given a mapping F : X →→ Y , the graphical (contingent ) derivative of F at (x, y) ∈ gphF
is the mapping DF (x|y) : X →→ Y whose graph is the tangent cone TgphF (x, y) to gphF
at (x, y):

v ∈ DF (x|y)(u) ⇐⇒ (u, v) ∈ TgphF (x, y).

Recall that the tangent cone is defined as follows: (u, v) ∈ TgphF (x, y) when there exist
sequences tn ↓ 0, un → u and vn → v such that y + tnvn ∈ F (x+ tnun) for all n.

The mapping DF (x|y) is positively homogeneous since its graph is a cone; specifically,
one has DF (x|y)(0) 3 0 and DF (x|y)(λu) = λDF (x|y)(u) for all u ∈ X for λ > 0. The
convexified graphical derivative D??F (x|y) of F at x for y is defined in a similar way:

v ∈ D??F (x|y)(u) ⇐⇒ (u, v) ∈ clco TgphF (x, y)

where clco stands for the closed convex hull. We also use the inner and the outer “norms"
(see [21], Section 9D) of a mapping H : X →→ Y :

‖H‖− = sup
x∈IB

inf
y∈H(x)

‖y‖ and ‖H‖+ = sup
x∈IB

sup
y∈H(x)

‖y‖.

Outer and inner norms can be related through adjoints. For a positively homogeneous
mapping F : X →→ Y the upper adjoint F ∗+ : Y ∗ →→ X∗ is defined by

(y∗, x∗) ∈ gphF ∗+ ⇐⇒ 〈x∗, x〉 ≤ 〈y∗, y〉 for all (x, y) ∈ gphF,

while the lower adjoint F ∗− : Y ∗ →→ X∗ is

(y∗, x∗) ∈ gphF ∗− ⇐⇒ 〈x∗, x〉 ≥ 〈y∗, y〉 for all (x, y) ∈ gphF,

where X∗ and Y ∗ are the dual spaces of X and Y . Borwein derived in [7] the following
duality relations between outer and inner norms for a sublinear mapping F with closed
graph:

‖F‖+ = ‖F ∗+‖− = ‖F ∗−‖− and ‖F‖− = ‖F ∗+‖+ = ‖F ∗−‖+.
Recall that a mapping F : X →→ Y is said to have a locally closed graph at (x̄, ȳ) when
gphF ∩ [IBr(x̄)× IBr(ȳ)] is a closed set for some r > 0.

The central result in this paper is the following theorem:
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Theorem 1.2 (Aubin criterion). Consider two Banach spaces X and Y , and a map-
ping F : X →→ Y which graph is locally closed at (x̄, ȳ) ∈ gphF . Then

regF (x̄|ȳ) ≤ lim sup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖DF (x|y)−1‖−, (2)

and hence F is metrically regular at x̄ for ȳ provided that

lim sup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖DF (x|y)−1‖− < ∞. (3)

If X is finite dimensional, then (2) becomes an equality,

regF (x̄|ȳ) = lim sup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖DF (x|y)−1‖−, (4)

and hence F is metrically regular at x̄ for ȳ if and only if (3) holds. Moreover, when both
spaces X and Y are finite dimensional one has

regF (x̄| ȳ) = lim sup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖D??F (x|y)−1‖−. (5)

Theorem 1.2 can be viewed as a partial extension of Theorem 5.4.3 in book [3] where a
sufficient condition for the Aubin property of the inverse F−1 is shown, for predecessors of
this result see [1] and [4]. That condition is in general weaker than (3) but, as we see here,
for a finite-dimensional X is actually equivalent to it. Recall that a mapping S : Y →→ X
has the Aubin property at ȳ for x̄ when (ȳ, x̄) ∈ gphS and there exist neighborhoods V
of ȳ and U of x̄ such that

e(S(y) ∩ U, S(y′)) ≤ κ‖y − y′‖ for all y, y′ ∈ V, (6)

where e(A,B) = supx∈A d(x,B) is the excess from A to B. The Aubin property of a
mapping S is known to be equivalent to the metric regularity of S−1 and was introduced
in [2] under the name “pseudo-Lipschitz" continuity, it was studied in [4] in the infinite
dimensional case, for more bibliographical details see [21]. Moreover, the infimum of the
constant κ in (6) is equal to regS−1(x̄| ȳ).
The equality (5) was stated recently in [6] with a proof based on viability theory. The
given here proof of (5) is inspired by the proof of Theorem 3.2.4 in [5] due to Frankowska.

The characterization of metric regularity exhibited in Theorem 1.2 complements, and in
some sense also completes, results previously displayed by J.-P. Aubin and co-authors;
therefore, we call it here the Aubin criterion for metric regularity.

In a sense “dual" to the Aubin criterion is the known Mordukhovich criterion in finite
dimensions, see [17] and [21] which uses the coderivative D∗F (x|y) defined as

v ∈ D∗F (x|y)(u) ⇐⇒ (v,−u) ∈ NgphF (x, y),

where NC(x) is the (nonconvex, limiting) normal cone to the set C at x. The Mor-
dukhovich criterion says that F is metrically regular at x̄ for ȳ if and only if

‖D∗F−1(ȳ |x̄)‖+ < ∞.
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One would expect that each of these criteria could be directly derived from the other one,
and this is clearly so when gphF is Clarke regular, see [21], 8.40 and 11.29. In infinite
dimensions, the characterizations of the metric regularity via coderivatives assume some
more from the spaces, e.g., to be Asplund, see [18, 19]. When the domain space X is finite
dimensional and Y is any Banach space, a necessary and sufficient condition for metric
regularity in terms of the Ioffe approximate coderivative is given in [14]. This latter result
is the closest to Theorem 1.2 from the literature known to the authors. We also refer to
the book [15] as a source of information on criteria for metric regularity.

If F : X → Y is a bounded linear mapping, denoted F ∈ L(X, Y ), then the Aubin
criterion (4) is also valid for X and Y Banach spaces and reduces to regF (x̄| ȳ) = ‖F−1‖−.
Equivalently, F is metrically regular (at any point) if and only if F is surjective; this covers
the classical case of the Banach open mapping principle. The equivalence among metric
regularity at the origin, the finiteness of the inner norm, and the surjectivity holds also for
mappings acting in Banach spaces whose graphs are closed and convex cones. Specifically,
we have the following result proved in [11], Example 2.1:

Proposition 1.3. Let X and Y be Banach spaces and let F : X →→ Y be such that gphF
is a closed and convex cone. Then the modulus of regularity of F at the origin satisfies

regF (0|0) = ‖DF (0|0)−1‖− = ‖F−1‖−.

Moreover, regF (0|0) < ∞ if and only if F is surjective and then F is metrically regular
at any point in its graph.

In Section 3 we give a proof of Theorem 1.2 by first obtaining the sufficiency part of the
Aubin criterion as a corollary from a more general “implicit mapping theorem" (Theo-
rem 2.1) in the following section, which is about the solution mapping of a generalized
equation of the form

0 ∈ G(p, x), (7)

where p is a parameter. We show that if the partial graphical derivative with respect to x
of the mapping G is bounded in the sense of (3), then G has a property of “partial metric
regularity."

In a related paper [16], Ledyaev and Zhu obtained an implicit mapping theorem for a
general inclusion of the form (7) in terms of coderivatives in Banach spaces assumed to
have Fréchet-smooth Lipschitz bump functions. Putting aside the derivative condition
in our Theorem 2.1 and the coderivative condition in Theorem 3.7 of [16] which are
independent from each other and can not be compared, we impose weaker conditions on
the mapping G and allow for arbitrary Banach spaces X and Y .

In Section 4 we present applications of the Aubin criterion to systems of inequalities
and to variational inequalities, obtaining a new characterization of strong regularity of
variational inequalities over polyhedral sets. We also give a new proof1 of the radius
(Eckart-Young) theorem first proven in [11] with the help of Mordukhovich criterion; for
history and recent developments, see [11], [10] and [8].

In addition to the Aubin criterion, in Section 4 we use a fundamental result in the modern
nonlinear analysis, commonly known as the Lyusternik-Graves theorem, for more see, e.g.,
1The initially submitted version of the paper did not contain this proof; it was provided by N. Zlateva
shortly before the paper went to press.
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[2], [4], [11] and [13]. First, we need some terminology. For a function g : X → Y and a
point x̄ ∈ int dom g, we introduce Lipschitz modulus of g at x̄ as follows:

lip g(x̄) = lim sup
x,x′→x̄
x6=x′

‖g(x)− g(x′)‖
‖x− x′‖

.

Recall that a function g : X → Y is strictly differentiable at x̄ ∈ int dom g with a strict
derivative mapping ∇g(x̄) ∈ L(X, Y ), the space of linear bounded mappings from X to
Y , if

lip(g −∇g(x̄))(x̄) = 0.

We use the following form of the Lyusternik-Graves theorem:

Theorem 1.4 (Lyusternik-Graves). Let X and Y be Banach spaces and consider a
mapping F : X →→ Y and a point (x̄, ȳ) ∈ gphF at which gphF is locally closed. Then
for any function g : X → Y which is strictly differentiable at x̄ one has

reg(g + F)(x̄| ȳ + g(x̄)) = reg(∇g(x̄) + F)(x̄| ȳ +∇g(x̄)x̄).

2. An implicit mapping theorem

In this section we study the inclusion (generalized equation)

0 ∈ G(p, x),

where G : P ×X →→ Y , X and Y are Banach spaces, P is a metric space, x ∈ X is the
variable we are solving for and p ∈ P is a parameter. Let us denote by S : P →→ X the
solution mapping which associates to a value p the set of solutions

S(p) := {x ∈ X | G(p, x) 3 0}. (8)

We will show that the local boundedness of the partial graphical derivative of the mapping
G in x, of the kind displayed in (3), implies partial metric regularity of G. The partial
graphical derivativeDxG(p, x|y) of G is defined as the graphical derivative of the mapping
x 7→ G(p, x) with p fixed.

Theorem 2.1 (Implicit mapping theorem). Let X and Y be Banach spaces, and let
P be a metric space. Consider a mapping G : P ×X →→ Y and a point (p̄, x̄, 0) ∈ gphG
such that the graph of G is locally closed near (p̄, x̄, 0) and the function p → d(0, G(p, x̄))
is upper semicontinuous at p̄. Then for every positive scalar c satisfying

lim sup
(p,x,y)→(p̄,x̄,0)
(p,x,y)∈gphG

‖DxG(p, x|y)−1‖− < c (9)

there exist neighborhoods V of p̄ and U of x̄ such that one has

d(x, S(p)) ≤ cd(0, G(p, x)) for x ∈ U and p ∈ V. (10)

Proof. On the product space Z := X × Y we consider the norm

|||(x, y)||| := max{‖x‖, c‖y‖},
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which makes (Z, ||| · |||) a Banach space, and on the space P × Z we introduce the metric

σ((p, z), (q, w)) := max{ρ(p, q), |||z − w|||} for p, q ∈ P, z, w ∈ Z,

where ρ stands for the metric of P .

A constant c satisfies (9) if and only if there exists η > 0 such that

for every (p, x, y) ∈ gphG with σ((p, x, y), (p̄, x̄, 0)) ≤ 3η,

and for every v ∈ Y there exists u ∈ DxG(p, x|y)−1(v) with ‖u‖ ≤ c‖v‖.
(11)

We can always choose η smaller so that the set gphG ∩ IB3η(p̄, x̄, 0) is closed. Next, let
us pick ε > 0 such that

cε < 1. (12)

In the proof we use the following lemma:

Lemma 2.2. For η and ε as above, choose any (p, ω, ν) ∈ gphG with (p, ω, ν) ∈ IBη(p̄, x̄,
0) and any s, 0 < s ≤ εη. Then for every y′ ∈ IB◦

s(ν) there exists Ýx with (p, Ýx, y′) ∈ gphG
such that

‖Ýx− ω‖ ≤ 1

ε
‖y′ − ν‖. (13)

Proof of Lemma 2.2. Pick (p, ω, ν) ∈ gphG and s as required. The set Ep := {(x, y)|
(p, x, y) ∈ gphG ∩ IB3η(p̄, x̄, 0)} ⊂ X × Y equipped with the metric induced by the norm
||| · ||| is a complete metric space. The function Vp : Ep → IR defined as

Vp(x, y) := ‖y′ − y‖ for (x, y) ∈ Ep

is continuous in its domain Ep. We apply the Ekeland variational principle to Vp for (x, y)
near (ω, ν) and the ε chosen in (12) to obtain the existence of (Ýx, Ýy) ∈ Ep such that

Vp(Ýx, Ýy) + ε|||(ω, ν)− (Ýx, Ýy)||| ≤ Vp(ω, ν) (14)

and

Vp(Ýx, Ýy) ≤ Vp(x, y) + ε|||(x, y)− (Ýx, Ýy)||| for all (x, y) ∈ Ep. (15)

The relations (14) and (15) come down as

‖y′ − Ýy‖+ ε|||(ω, ν)− (Ýx, Ýy)||| ≤ ‖y′ − ν‖ (16)

and

‖y′ − Ýy‖ ≤ ‖y′ − y‖+ ε|||(x, y)− (Ýx, Ýy)||| for all (x, y) ∈ Ep. (17)

From (16) we obtain

|||(ω, ν)− (Ýx, Ýy)||| ≤ 1

ε
‖y′ − ν‖. (18)

Since y′ ∈ IB◦
s(ν), we then have

|||(ω, ν)− (Ýx, Ýy)||| < s

ε
,
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and hence, from the choice of (p, ω, ν),

σ((p, Ýx, Ýy), (p̄, x̄, 0)) ≤ σ((p, Ýx, Ýy), (p, ω, ν)) + σ((p, ω, ν), (p̄, x̄, 0))

≤ η + |||(ω, ν)− (Ýx, Ýy)||| < η +
s

ε
≤ 2η.

Thus, (p, Ýx, Ýy) ∈ gphG with σ((p̄, x̄, 0), (p, Ýx, Ýy)) ≤ 2η, and then (11) implies that there
exists u ∈ X such that

y′ − Ýy ∈ DxG(p, Ýx|Ýy)(u) and ‖u‖ ≤ c‖y′ − Ýy‖. (19)

By the definition of the partial graphical derivative, there exist sequences tn ↓ 0, un → u,
and vn → y′ − Ýy such that

Ýy + tnvn ∈ G(p, Ýx+ tnun) for all n,

meaning that, for sufficiently large n, (Ýx+ tnun, Ýy+ tnvn) ∈ Ep. Now, if we plug the point
(Ýx+ tnun, Ýy + tnvn) into (17), we obtain

‖y′ − Ýy‖ ≤ ‖y′ − (Ýy + tnvn)‖+ ε|||(Ýx+ tnun, Ýy + tnvn)− (Ýx, Ýy)|||

resulting in

‖y′ − Ýy‖ ≤ (1− tn)‖y′ − Ýy‖+ tn‖vn − (y′ − Ýy)‖+ εtn|||(un, vn)|||.

After obvious simplifications, this gives

‖y′ − Ýy‖ ≤ ε|||(un, vn)|||+ ‖vn − (y′ − Ýy)‖.

Passing to the limit with n → ∞ we obtain

‖y′ − Ýy‖ ≤ ε|||(u, y′ − Ýy)|||

and hence, taking into account the second relation in (19) we conclude that

‖y′ − Ýy‖ ≤ εc‖y′ − Ýy‖.

Since by (12) εc < 1, we finally obtain that y′ = Ýy. Then (18) yields (13) and the proof
of the lemma is complete.

We continue with the proof of Theorem 2.1. Fix s ∈ (0, εη/2]. Since the function p →
d(0, G(p, x̄)) is upper semicontinuous at p̄, there exists δ > 0 such that d(0, G(p, x̄)) ≤ s/2
for all p with ρ(p, p̄) < δ. Of course, we can take smaller δ, e.g., δ ≤ s/ε. For such p
we can find y such that y ∈ G(p, x̄) with ‖y‖ ≤ d(0, G(p, x̄)) + s/3 < s. Then we apply
Lemma 2.2 with s, y′ = 0 and (p, ω, ν) = (p, x̄, y) inasmuch as

σ((p, x̄, y), (p̄, x̄, 0)) = max{ρ(p, p̄), c‖y‖} ≤ max{δ, cs} ≤ max
{s

ε
, cs

}

=
s

ε
≤ εη

ε
= η,

obtaining the existence of Ýx such that (p, Ýx, 0) ∈ gphG; that is, Ýx ∈ S(p). Also, from the
estimate (13) with ω = x̄ we have that Ýx ∈ IB◦

s/ε(x̄).

Set V := IB◦
δ(p̄), U := IB◦

s/ε(x̄) and pick p ∈ V and x ∈ U . We consider two cases.
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Case 1. d(0, G(p, x)) ≥ 2s.

We just proved that there exists Ýx ∈ S(p) with Ýx ∈ IB◦
s/ε(x̄); then

d(x, S(p)) ≤ d(x̄, S(p)) + ‖x− x̄‖ ≤ ‖x̄− Ýx‖+ ‖x− x̄‖

≤ s

ε
+

s

ε
=

2s

ε
≤ 1

ε
d(0, G(p, x)).

(20)

Case 2. d(0, G(p, x)) < 2s.

In this case, for a sufficiently small γ > 0 we can find yγ ∈ G(p, x) such that

‖yγ‖ ≤ d(0, G(p, x)) + γ < 2s.

Then
c‖yγ‖ < 2cs ≤ 2c

εη

2
< η

and, hence, (p, x, yγ) ∈ gphG is such that σ((p, x, yγ), (p̄, x̄, 0)) ≤ η. Applying Lemma 2.2
for (p, ω, ν) = (p, x, yγ), y

′ = 0 and 2s in place of s, we find Ýxγ ∈ S(p) such that

‖x− Ýxγ‖ ≤ 1

ε
‖yγ‖.

Then, by the choice of yγ,

d(x, S(p)) ≤ ‖x− Ýxγ‖ ≤ 1

ε
‖yγ‖ ≤ 1

ε
(d(0, G(p, x)) + γ),

thus

d(x, S(p)) ≤ 1

ε
(d(0, G(p, x)) + γ).

The left-hand side of this inequality does not depend on γ, hence letting γ ↓ 0 leads to

d(x, S(p)) ≤ 1

ε
d(0, G(p, x)). (21)

We obtained this inequality also in the Case 1 in (20), hence it holds for any p in V and
x ∈ U . Since 1/ε can be arbitrarily close to c, this gives us (10).

The relation (10), obtained in Theorem 2.1 can be considered as metric regularity of G
with respect to x at (p̄, x̄) for 0. Parallel to the partial metric regularity of G in x, we can
define the partial Aubin property for G in p in the following way: G : P ×X →→ Y is said
to have the Aubin property with respect to p uniformly in x at (p̄, x̄) for 0 if 0 ∈ G(p̄, x̄)
and there exist a constant κ > 0 and neighborhoods O of 0, Q for p̄ and U of x̄ such that

e(G(p, x) ∩O,G(p′, x)) ≤ κρ(p, p′) for all p, p′ ∈ Q and x ∈ U.

By combining this definition with (10) one obtains (see also [16], Corollary 3.9)

Proposition 2.3. Let G : P × X →→ Y be both metrically regular with respect to x and
have the Aubin property with respect to p uniformly in x at (p̄, x̄) for 0. Then the solution
mapping S has the Aubin property at p̄ for x̄.
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Proof. Take p, p′ near p̄ and x ∈ S(p) near x̄. Then we have

d(x, S(p′)) ≤ κ′d(0, G(p′, x)) ≤ κ′κρ(p, p′),

where κ′ and κ are the constants of the assumed metric regularity and Aubin property,
respectively. Since x is arbitrarily chosen in S(p) near x̄, we are done.

3. Proof of Theorem 1.2.

For short, denote

d−DF (x̄| ȳ) := lim sup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖DF (x|y)−1‖−.

Step 1. Proof of the inequality regF (x̄| ȳ) ≤ d−DF (x̄| ȳ).
If d−DF (x̄| ȳ) = +∞ there is nothing to prove. Let d−DF (x̄| ȳ) < ∞. Applying Theorem 2.1
with P = Y and G(p, x) = F (x) − p, for y in the place of p and ȳ = p̄, we have that
S(y) = F−1(y) and d(0, G(y, x)) = d(y, F (x)). Then for any c > d−DF (x̄| ȳ) from (10) we
obtain that F is metrically regular at x̄ for ȳ with a constant c. Thus, regF (x̄| ȳ) ≤ c
and therefore regF (x̄| ȳ) ≤ d−DF (x̄|ȳ) which gives us (2).

Step 2. Proof of regF (x̄| ȳ) = d−DF (x̄| ȳ) when X is finite dimensional.

If regF (x̄| ȳ) = +∞ we are done. Let regF (x̄| ȳ) < κ < ∞. Then there are neighborhoods
U of x̄ and V of ȳ such that

d(x, F−1(y)) ≤ κd(y, F (x)) whenever x ∈ U, y ∈ V. (22)

It is obvious that when F satisfies (22) one can choose V so small that F−1(y) ∩ U 6= ∅
for all y ∈ V . Pick any y ∈ V and x ∈ F−1(y)∩U , and let v ∈ IB. Take a sequence tn ↓ 0
such that yn := y + tnv ∈ V for all n. By (22) there exists xn ∈ F−1(y + tnv) such that

‖x− xn‖ = d(x, F−1(yn)) ≤ κd(yn, F (x)) ≤ κ‖yn − y‖ = κtn‖v‖.

For un := (xn − x)/tn we obtain

‖un‖ ≤ κ‖v‖; (23)

thus the sequence un is bounded and hence un → u for a subsequence. Since (xn, y+tnv) ∈
gphF , by the definition of the tangent cone, we obtain (u, v) ∈ TgphF (x, y) and hence,
by the definition of the graphical derivative, we have u ∈ DF (x|y)−1(v). From (23) it
follows

‖DF (x|y)−1‖− ≤ κ.

Since (x, y) ∈ gphF is arbitrarily chosen near (x̄, ȳ), we conclude that d−DF (x̄| ȳ) ≤ κ.
Finally, since κ can be arbitrarily close to regF (x̄| ȳ) we obtain d−DF (x̄| ȳ) ≤ regF (x̄| ȳ).
This, combined with (2), gives us (4) and Step 2 of the proof is complete.

Step 3. Proof of

lim sup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖D??F (x|y)−1‖− = d−DF (x̄| ȳ)

when both X and Y are finite dimensional.
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Since gphD??F (x|y) = clco gphDF (x|y), we have D??F (x|y)−1(v) ⊃ DF (x|y)−1(v) for
any v, which implies

inf
u∈D??F (x |y)−1(v)

‖u‖ ≤ inf
u∈DF (x |y)−1(v)

‖u‖,

consequently
‖D??F (x|y)−1‖− ≤ ‖DF (x|y)−1‖−,

and then
lim sup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖D??F (x|y)−1‖− ≤ d−DF (x̄| ȳ).

Therefore, we only need to prove the opposite inequality

d−DF (x̄| ȳ) ≤ lim sup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖D??F (x|y)−1‖− (24)

If the right hand side in (24) is finite, pick λ such that

lim sup
(x,y)→(x̄,ȳ)
(x,y)∈gphF

‖D??F (x|y)−1‖− < λ < +∞.

Let X×Y be equipped with the Euclidian norm, and let r > 0 be small enough to ensure
that

max
v∈IB

min
u∈D??F (x |y)−1(v)

‖u‖ ≤ λ for all (x, y) ∈ gphF ∩ IBr(x̄, ȳ), (25)

and that gphF ∩ IBr(x̄, ȳ) is a closed set. We will prove that

max
v∈IB

min
u∈DF (x |y)−1(v)

‖u‖ ≤ λ for all (x, y) ∈ gphF ∩ IB◦
r(x̄, ȳ). (26)

Fix v ∈ IB. For any sets A,B denote by d(A,B) := inf{‖a − b‖ | a ∈ A, b ∈ B}. Let us
fix (x, y) ∈ gphF ∩ IB◦

r(x̄, ȳ). Let (u
∗, v∗) ∈ gphDF (x|y) and w ∈ λIB be such that

‖(w, v)− (u∗, v∗)‖ = d(λIB × {v}, gphDF (x|y)).

Observe that the point (u∗, v∗) is the unique projection of any point in the open segment
((u∗, v∗), (w, v)) on gphDF (x|y). We will prove that (u∗, v∗) = (w, v) and this will be
enough to have (26) and hence (24).

By the definition of the graphical derivative, there exist sequences tn ↓ 0, un → u∗, and
vn → v∗ such that y + tnvn ∈ F (x + tnun) for all n. Let (xn, yn) be a point in cl gphF
which is closest to (x, y) + tn

2
(u∗ +w, v∗ + v) (a projection, not necessarily unique, of the

latter point on the closure of gphF ). Since (x, y) ∈ gphF we have

∥

∥

∥

∥

(x, y) +
tn
2
(u∗ + w, v∗ + v)− (xn, yn)

∥

∥

∥

∥

≤ tn
2
‖(u∗ + w, v∗ + v)‖ ,

and hence

‖(x, y)− (xn, yn)‖ ≤
∥

∥

∥

∥

(x, y) +
tn
2
(u∗ + w, v∗ + v)− (xn, yn)

∥

∥

∥

∥

+
tn
2
‖(u∗ + w, v∗ + v)‖ ≤ tn ‖(u∗ + w, v∗ + v)‖
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Thus, for n sufficiently large, we have (xn, yn) ∈ IB◦
r(x̄, ȳ) and hence (xn, yn) ∈ gphF ∩

IB◦
r(x̄, ȳ). Setting (ūn, v̄n) = (xn−x, yn−y)/tn, we deduce by the usual property of a

projection that

1

2
(u∗ + w, v∗ + v)− (ūn, v̄n) ∈ [TgphF (xn, yn)]

0 = [gphD??F (xn |yn)]0,

where K0 stands for the negative polar cone of a set K. Then, by (25), there exists
wn ∈ λIB such that v ∈ D??F (xn |yn)(wn) and from the above relation

〈

u∗ + w

2
− ūn, wn

〉

+

〈

v∗ + v

2
− v̄n, v

〉

≤ 0. (27)

We claim that (ūn, v̄n) converges to (u∗, v∗) as n → ∞. Indeed,

∥

∥

∥

∥

(

u∗ + w

2
,
v∗ + v

2

)

− (ūn, v̄n)

∥

∥

∥

∥

=
1

tn

∥

∥

∥

∥

(x, y) + tn

(

u∗ + w

2
,
v∗ + v

2

)

− (xn, yn)

∥

∥

∥

∥

≤ 1

tn

∥

∥

∥

∥

(x, y) + tn

(

u∗ + w

2
,
v∗ + v

2

)

− (x, y)− tn(un, vn)

∥

∥

∥

∥

=

∥

∥

∥

∥

(

u∗ + w

2
,
v∗ + v

2

)

− (un, vn)

∥

∥

∥

∥

.

Therefore, (ūn, v̄n) is a bounded sequence and then, since yn = y + tnv̄n ∈ F (xn) =
F (x + tnūn), every cluster point (ū, v̄) of it belongs to gphDF (x|y). Moreover, (ū, v̄)
satisfies

∥

∥

∥

∥

(

u∗ + w

2
,
v∗ + v

2

)

− (ū, v̄)

∥

∥

∥

∥

≤
∥

∥

∥

∥

(

u∗ + w

2
,
v∗ + v

2

)

− (u∗, v∗)

∥

∥

∥

∥

.

The above inequality together with the fact that (u∗, v∗) is the unique closest point to
1
2
(u∗ + w, v∗ + v) in gphDF (x|y) implies that (ū, v̄) = (u∗, v∗). Our claim is proved.

Up to a subsequence, wn satisfying (27) converges to some w̄ ∈ λIB. Passing to the limit
in (27) one obtains

〈w − u∗, w̄〉+ 〈v − v∗, v〉 ≤ 0. (28)

Since (w, v) is the unique closest point of (u∗, v∗) to the closed convex set λIB × {v}, we
have

〈w − u∗, w − w̄〉 ≤ 0. (29)

Finally, since (u∗, v∗) is the unique closest point to 1
2
(u∗+w, v∗+v) in gphDF (x|y) which

is a closed cone, we get
〈w − u∗, u∗〉+ 〈v − v∗, v∗〉 = 0. (30)

In view of (28), (29) and (30), we obtain

‖(w, v)− (u∗, v∗)‖2

= 〈w − u∗, w − w̄〉+ (〈w − u∗, w̄〉+ 〈v − v∗, v〉)− (〈w − u∗, u∗〉+ 〈v − v∗, v∗〉) ≤ 0.

Hence w = u∗ and v = v∗ and the proof is complete.
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4. Applications

As a first specific application of the Aubin criterion we consider the constraint system

Find x ∈ IRn such that fi(x)

{

= 0 for i = 1, . . . , r,

≤ 0 for i = r + 1, . . . ,m,
(31)

where fi : IRn → IR, i = 1, . . . ,m. This system can also be written as the inclusion
0 ∈ F (x) with F : IRn →→ IRm given by

F (x) = f(x) +K, (32)

where f = (f1, . . . , fm) and K = {0}r × IRm−r
+ . Let x̄ be a solution of (31) and f be

strictly differentiable at x̄. We denote the index set of active inequality constraints at x̄
as

J̄ = {i ∈ {r + 1, . . . ,m} | fi(x̄) = 0}.
We will now show that Aubin criterion directly leads to the following well-known result:

Theorem 4.1. The mapping F in (32) is metrically regular at x̄ for 0 if and only if
the Mangasarian-Fromovitz condition holds: the vectors ∇fi(x̄), i = 1, . . . , r are linearly
independent and also there exists w ∈ IRn such that

{

∇fi(x̄)w = 0 for i = 1, . . . , r,

∇fi(x̄)w < 0 for i ∈ J̄ .
(33)

Proof. By the Lyusternik-Graves theorem (Theorem 1.4) with F = K and g = f , the
metric regularity of the mapping F at x̄ for 0 is equivalent to the metric regularity at x̄
for 0 of its “partial linearizationÔ

F0(x) = f(x̄) + A(x− x̄) +K where A = ∇f(x̄).

Also, by the specific form of K,

v ∈ DK(x|y)(u) ⇐⇒

{

vi = 0 for i ∈ I(y),

vi ≥ 0 for i ∈ J(y),

where

I(y) = {i ∈ {1, . . . , r} | yi = 0} and J(y) = {i ∈ {r + 1, . . . ,m} | yi = 0}. (34)

Then, of course, J̄ = J(f(x̄)). Since fi(x̄) < 0 for i ∈ {r + 1, . . . ,m} \ J̄ , we have that
yi − fi(x) > 0 for all such i and for (x, y) close to (x̄, 0). This means that for such (x, y)
the set J(y) in (34) is always a subset of J̄ . Then the Aubin criterion for metric regularity
of F0 becomes the following condition: for every I ⊂ {1, . . . , r} and for every J ⊂ J̄ we
have:

∀v∈IRI∪J ∃u∈IRn such that (v−Au)i=0 for i∈I and (v−Au)i≥0 for i∈J. (35)

Assume that Mangasarian-Fromovitz condition holds and let I ⊂ {1, . . . , r} and J ⊂ J̄ .
If either I = ∅ or J = ∅ we skip the corresponding step of the proof. Let I 6= ∅. Then
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the matrix H = [∇fi(x̄)]i∈I is onto and hence, by the metric regularity of H there exists
a constant κ such that

∀v ∈ IRI ∃u ∈ IRn such that v −Hu = 0 and ‖u‖ ≤ κ‖v‖. (36)

This means in particular that taking v with a norm small enough we can have the corre-
sponding u in (36) with arbitrarily small norm. Then, since ∇fi(x̄)w < −α for all i ∈ J
and some α > 0, we end up having that for any v ∈ IRI∪J with sufficiently small norm

vi −∇fi(x̄)(u+ w)

{

= 0 for i ∈ I,

≥ 0 for i ∈ J.
(37)

By the positive homogeneity, from (36) and (37) we obtain (35).

Conversely, if (35) holds, then taking I = {1, . . . , r} and J = ∅ we conclude that
∇fi(x̄), i = 1, . . . , r must be linearly independent. Next, taking I = {1, . . . , r} and
J = J̄ , for

vi =

{

0 for i = 1, . . . , r,

−ε for i ∈ J̄

with some ε > 0 we obtain (33).

Our second application is for a mapping describing the variational inequality

〈f(x), u− x〉 ≥ 0 for all u ∈ C, (38)

where f : IRn → IRn and C a nonempty convex closed set in IRn that is polyhedral. In
terms of the normal cone mapping

NC(x) =

{

{y | 〈y, u− x〉 ≤ 0 for all u ∈ C} for x ∈ C,

∅ otherwise,

we can write the variational inequality (38) as the inclusion 0 ∈ F (x) where

F (x) = f(x) +NC(x). (39)

We assume that x̄ is a solution of (38) and f is strictly differentiable at x̄. Then, again,
the Lyusternik-Graves theorem, this time with F = NC and g = f , allows us to restrict
our attention to the linearized mapping

F0(x) = f(x̄) + A(x− x̄) +NC(x) where A = ∇f(x̄).

Let [v] be the subspace of dimension one (or zero for v = 0) spanned on a vector v ∈ IRn,
that is, [v] = {τv | τ ∈ IR}, and let [v]⊥ be its orthogonal complement. The form of the
graphical derivative of F0 will be obtained by introducing the critical cone K(x, v) to the
set C at x ∈ C for v ∈ NC(x),

K(x, v) = TC(x) ∩ [v]⊥,

via the following lemma:
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Lemma 4.2 (Reduction lemma [9]). Let C be a convex polyhedral set in IRn. For
any (x, v) ∈ gphNC there is a neighborhood O of the origin in IRn × IRn such that for
(x′, v′) ∈ O one has

v + v′ ∈ NC(x+ x′) ⇐⇒ v′ ∈ NK(x,v)(x
′).

Consequently,

(x′, v′) ∈ TgphNC
(x, v) ⇐⇒ v′ ∈ NK(x,v)(x

′),

and hence, for (x, y) ∈ gphF0 and v = y − f(x̄)− A(x− x̄), where A = ∇f(x̄), we have

DF0(x|y)(u) = Au+NK(x,v)(u). (40)

For any cone K, a set of the form

F = K ∩ [v]⊥ for some v ∈ K0,

where K0 is the polar to K, is said to be a face of K. The largest of the faces is K itself
while the smallest is the set K ∩ (−K) which is the largest subspace contained in K.
Every polyhedral cone has finitely many faces.

Our next lemma gives the form of the of critical cones in a neighborhood of a fixed
reference point. It is extracted from the proof of Theorem 2 in [9].

Lemma 4.3. Let C be a convex polyhedral set, let v̄ ∈ NC(x̄) and let K̄ be the critical
cone to C at x̄ for v̄. Then there exists an open neighborhood O of (x̄, v̄) such that for
every choice of (x, v) ∈ gphNC ∩O the corresponding critical cone K(x, v) has the form

K(x, v) = F1 − F2,

for some faces F1, F2 of K̄ with F1 ⊃ F2. And conversely, for every two faces F1, F2 of
K̄ with F1 ⊃ F2 and every neighborhood O of (x̄, v̄) there exists (x, v) ∈ O such that
K(x, v) = F1 − F2.

It was proved in [9], Theorem 1, that the metric regularity of a mapping F of the form (39)
with a polyhedral set C implies a sharper property called strong regularity. A mapping
F : X →→ Y is said to be strongly regular at x̄ for ȳ is it is metrically regular there and,
in addition, the graphical localization of its inverse F−1 near (ȳ, x̄) is single-valued. In
other words, F is strongly regular at x̄ for ȳ when there are neighborhoods U of x̄ and V
of ȳ such that the mapping V 3 y 7→ F−1(y) ∩ U is a Lipschitz continuous function.

We are now ready to apply the Aubin criterion to obtain a new necessary and suffi-
cient condition for strong regularity of variational inequalities over polyhedral sets, which
complements the criterion given in [9], Theorem 2:

Theorem 4.4. The variational inequality mapping (39) is strongly regular at x̄ for ȳ if
and only if for all choices of faces F1 and F2 of the critical cone K̄ to the set C at x̄ for
v̄ = ȳ − f(x̄), with F1 ⊃ F2, the following condition holds:

∀v ∈ IRn ∃u ∈ F1 − F2 such that (v − Au) ∈ (F1 − F2)
0 and v − Au ⊥ u.
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Proof. According to Aubin criterion given in Theorem 1.2, the mapping F0 (and, hence
F ) is metrically regular, and hence strongly regular, if and only if the limsup of the inner
norms of the graphical derivatives is finite. The form of the graphical derivative of F0 is
given in (40) while in Lemma 4.3 it is shown that there are finitely many critical cones
near the reference point (x̄, v̄) that are to be taken into account, and these cones are given
by faces of K̄ in a way described in this lemma. Hence, for any choice of faces F1 and F2

of K̄ with F1 ⊃ F2 it is enough to ensure that ‖A+NF1−F2‖− is finite. For any cone K

v ∈ NK(x) ⇐⇒ x ∈ K, v ∈ K0, x ⊥ v.

It remains to observe that the inner norm of the mapping A+NF1−F2 will be finite if and
only if the condition claimed in the theorem holds.

Our last aplication of Aubin criterion is a new proof of the radius theorem first proved
in [11].

Theorem 4.5. Let X and Y be finite-dimensional linear normed spaces and let F :
X →→ Y has closed graph locally near (x̄, ȳ) ∈ gphF . Then

inf
G∈L(X,Y )

{‖G‖ | F +G is not metrically regular at x̄ for ȳ +G(x̄)} =
1

regF (x̄|ȳ)
.

Moreover, the infimum is unchanged if taken with respect to linear mappings G of rank
1, but also remains unchanged when the perturbations G are locally Lipschitz continuous
functions with ‖G‖ replaced by the Lipschitz modulus lipG(x̄) of G at x̄.

Proof. The general perturbation inequality derived in [11], Corollary 3.4, yields (also in
infinite dimensions) the estimate

inf
G:X→Y

{lipG(x̄) | F +G is not metrically regular at x̄ for ȳ +G(x̄)} ≥ 1

regF (x̄| ȳ)
.

(41)
It remains to show the opposite inequality. The limit cases are easy to handle, since if
regF (x̄| ȳ) = ∞ we have nothing to prove, and if regF (x̄| ȳ) = 0, then by the general
perturbation inequality (41), which also holds in this case, we obtain the claimed equality.

Let now 0 < regF (x̄| ȳ) < ∞. By Theorem 1.2 we have regF (x̄| ȳ) = d−DF (x̄| ȳ) =
d−D??F (x̄| ȳ) where d−DF (x̄| ȳ) is defined in the beginning of Section 3 while d−D??F (x̄| ȳ) is
defined in the same way with DF replaced by D??F .

Take a sequence of positive reals εk → 0. Then for any k there exists (xk, yk) ∈ gphF
with (xk, yk) → (x̄, ȳ) and

d−D??F (x̄| ȳ) + εk ≥ ‖D??F (xk|yk)−1‖− ≥ d−D??F (x̄| ȳ)− εk > 0.

For short, set Hk := D??F (xk|yk); then Hk is a sublinear mapping with closed graph. For
Sk := H∗+

k the norm duality gives us ‖H−1
k ‖− = ‖S−1

k ‖+.
For each k choose a positive real rk which satisfies ‖S−1

k ‖+ − εk < 1/rk < ‖S−1
k ‖+. From

the last inequality there must exist (Ýyk, Ýxk) ∈ gphSk with ‖Ýxk‖ = 1 and ‖S−1
k ‖+ ≥ ‖Ýyk‖ >
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1/rk. Pick y∗k ∈ Y with 〈Ýyk, y∗k〉 = ‖Ýyk‖ and ‖y∗k‖ = 1 and define the rank-one mapping
ÝGk ∈ L(Y,X) as

ÝGk(y) := −〈y, y∗k〉
‖Ýyk‖

Ýxk.

Then ÝGk(Ýyk) = −Ýxk and hence (Sk + ÝGk)(Ýyk) = Sk(Ýyk) + ÝGk(Ýyk) = Sk(Ýyk) − Ýxk 3 0.
Therefore, Ýyk ∈ (Sk + ÝGk)

−1(0) and since Ýyk 6= 0, by [11], Proposition 2.5,

‖Sk + ÝGk‖+ = ∞. (42)

Note that ‖ ÝGk‖ = ‖Ýxk‖/‖Ýyk‖ = 1/‖Ýyk‖ < rk.

Since the sequences Ýyk, Ýxk and y∗k are bounded, we can extract from them subsequences
converging respectively to Ýy, Ýx and y∗; the limits then satisfy ‖Ýy‖ = d−D??F (x̄| ȳ), ‖Ýx‖ = 1

and ‖y∗‖ = 1. Define the rank-one mapping ÝG ∈ L(Y,X) as

ÝG(y) := −〈y, y∗〉
‖Ýy‖

Ýx.

Then we have ‖ ÝG‖ ≤ 1/d−D??F (x̄| ȳ) and ‖ ÝGk − ÝG‖ → 0.

Denote G := ( ÝG)∗ and suppose that F +G is metrically regular at x̄ for ȳ +G(x̄). Then
Theorem 1.2 yields that for some finite positive constant c and for k sufficiently large we
have

c > ‖D??(F +G)(xk|yk +G(xk))
−1‖− = ‖(D??F (xk|yk) +G)−1‖−,

which, by norm duality and the equality G∗ = (( ÝG)∗)∗ = ÝG, is equivalent to

c > ‖([D??F (xk|yk) +G]∗+)−1‖+ = ‖[D??F (xk|yk)∗+ +G∗]−1‖+ = ‖(Sk + ÝG)−1‖+. (43)

We apply the following lemma, which is a reformulation of a result by Robinson [20], see
also [8]:

Lemma 4.6. For a sublinear mapping H : X → Y with closed graph and for B ∈
L(X, Y ), if [‖H−1‖+]−1 ≥ ‖B‖, then

‖(H +B)−1‖+ ≤ [[‖H−1‖+]−1 − ‖B‖]−1.

Now we are ready to complete the proof of Theorem 4.5. Take k sufficiently large such that
‖ ÝG− ÝGk‖ ≤ 1/(2c) and (xk, yk) that satisfies (43). Setting Pk := Sk+ ÝG and Bk := ÝGk− ÝG
we have that [‖P−1

k ‖+]−1 ≥ 1/c > 1/(2c) ≥ ‖Bk‖. By Lemma 4.6 we obtain

‖Sk + ÝGk‖+ = ‖Pk +Bk‖+ ≤ [[‖P−1
k ‖+]−1 − ‖Bk‖]−1 ≤ 2c < ∞,

which contradicts (42). Hence, F + G is not metrically regular at x̄ for ȳ + G(x̄). Re-
membering that ‖G‖ = ‖ ÝG‖ ≤ 1/ regF (x̄| ȳ) we complete the proof.
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