
Journal of Convex Analysis

Volume 13 (2006), No. 2, 443–461

A Set Evolution Approach to the Control of
Uncertain Systems with Discrete-Time Measurement

Sylvain Rigal
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We investigate here a continuous time minimization problem in the presence of disturbances in the
dynamics. The only information available to the controller is an incomplete observation of the state space
at times given in advance. Also, the initial state is not supposed to be perfectly known. The corresponding
control problem can be understood as a dynamic game of Min-Max type where the controller wants to
minimize the cost - by choosing a strategy depending on a discrete-time incomplete measurement - against
the worst case of disturbance and initial state. Our main goal is to pass from imperfect information in
the measurement space to perfect information in the estimation space, hence we introduce a second
problem based on estimation sets on the state. We prove that the value functions of both problems are
equal. Finally, we provide a characterization of the value function through a system of Hamilton-Jacobi
equations and inequalities in terms of Dini derivatives.
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Introduction

Consider the following minimization problem

minimize g(x(T )) (1)

subject to
x′(t) = f(x(t), u(t), v(t)), (2)

where x ∈ IRn is the state variable, u(·) : [t0, T ] → U the control, and v(·) : [t0, T ] → V
a disturbance in the dynamics. We can consider u and v as two players acting on the
system. The parameter T > 0 defines a prescribed fixed time horizon, while the initial
moment is t0, and we suppose that a discretization {t1, t2, ..., tN} of [t0, T ] is given in
advance and satisfies

t0 < t1 < t2 < ... < tN = T.

The initial state x(t0) is known only through the estimation

x(t0) = e ∈ E0, (3)
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and the information available to the controller is not the current state, but only a sequence
of discrete-time measurements (yk)k∈[1,N ] such that:

yk = h(x(tk)), tk ∈ {t1, t2, ..., tN} (4)

where h(·) : IRn → Y is given, Y being a subset of IRp, p ≤ n. The main concern of the
paper is the optimal control problem of system (2) where the controller wants to minimize
- by choosing u(·) - the cost (1) against the worst case of disturbance v(·) and initial state
e ∈ E0. The only informations available to the controller are the initial estimation E0

and the measurement (yk)k∈[1,N ]. Hence, the control performance is understood in Min-
Max sense, which yields a dynamic game with a discrete-time incomplete measurement.
In other words, the disturbance can be viewed as a first player (choosing an open-loop
control v(·)), while the controller u can be viewed as a second player playing a strategy
over the on-line measurements (yk)k∈[1,N ].

Controlling problems with uncertainties via the differential game approach has already
been studied in several papers, both in continuous and discrete-time (see e.g. [5, 6, 8, 12,
15, 16, 19]). In the case of perfect measurement, one can associate a finite dimensional
Hamilton-Jacobi-Bellman-Isaacs equation to the optimal control problem. But, according
to [5, 6, 8] and [15], this equation becomes infinite dimensional in the case of imperfect
measurement. However, it has been proved in [5] that the problem with incomplete mea-
surement can be reformulated as a problem with complete information in the information
space, which is still infinite dimensional. In other works (cf. [10, 14, 20, 29]), the authors
have provided examples where the problem could be reformulated with complete informa-
tion in the estimation space. Generally, the estimation space is also infinite dimensional,
but in some cases, one can equivalently replace it with a finite dimensional space. For
instance, using the certainty equivalence principle found in [8, 9] for specific games with
incomplete state information leads to a finite dimensional H-J-I equation as in [28]. Let
us also quote [25, 24, 30] where Viability theory [1] is used to deal with uncertain state
information qualitative problems.

Nevertheless, none of the mentioned work combine continuous systems with discrete mea-
surements. A typical case of discrete measurements in a continuous control context con-
sists in a planar pursuit game where the light is alternatively put on and off at times
fixed in advance. When the light is on, the player knows some of the coordinates of the
current state, but when the light is off the player is supposed to be “blindÔ. This example,
derived from [28], has also good applications in the real world. GPS position update for
autonomous vehicles is one of them: Autonomous vehicles operate in continuous mode
while the GPS information is updated only every second. Another interesting application
arises when voluntarily choosing discrete-time measurements over continuous measure-
ments. For example, when dealing with autonomous vehicles, energy saving becomes a
real issue and making use of the detectors at low sampling rates helps saving energy.
Therefore, one could eval! uate the cost (1) for different sampling rates - or discretiza-
tions {t1, t2, ..., tN} - to find out which is the smallest one keeping the cost under a certain
threshold.

As suggested by the literature (see [10, 14, 20, 27, 29]), we shall start from the incomplete
information problem and reformulate it as a complete information problem. According to
the information known to the controller, the control synthesis should be first considered
in a feedback form which may depend on the current and past values of the discrete-time
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measurement (yk)i∈[1,N ], but not on v nor e. The corresponding feedback law is a function
γ(·, ·) : IR+ × Y N → U called the ouput feedback strategy. Usually, the guaranteed value
obtained by using a given output feedback strategy γ is

I1(t0, E0; γ) := sup
e,v(·)

g (x(T, t0, e, γ, v(·))) , (5)

x(·, t0, e, γ, v(·)) being the trajectory of system (2) corresponding to control u(·) := γ(·, ·),
disturbance v(·) and initial condition (3). Here, instead of considering single trajectories
x(·), we rather take a set-evolution approach such as in [25, 20, 27]. We consider the tube
of all possible trajectories of (2) corresponding to a given strategy γ and measurement
(yk)k∈IN . This tube, called the estimation tube and denoted by E(·, t0, E0, γ, (yk)k∈IN),
represents the set evolution of E0 for given strategy γ and measurement (yk)k∈IN , and takes
into account all possible disturbances v(·). Two related theories have been developed to
describe the dynamics of the set-evolution: The approach of the ‘funnel equations’ as in
[18, 31] and the framework of the mutational equations [2, 3]. However, in the context of
our paper, both approaches are equivalent.

Let us now explain how this paper is organized. After the preliminaries of Section 1,
we introduce in Section 1.2 the estimation tubes. In the case of output feedback strate-
gies, we give in Section 1.3 a reformulation of the value function I1 involving estimation
tubes instead of single trajectories, and we prove the corresponding dynamic programming
principle. In Section 1.4, we investigate feedback controls depending only on the current
estimation E(·) instead of the whole history of the measurement. Moreover, we eliminate
the need for a continuous trajectory x(·) in the formulation of the problem. This leads to
a new dynamic game with state E(t) for which full information is available, and we prove
in Theorem 1.6 that the corresponding value function I2(t0, E0) coincides with the value
function I1(t0, E0) of the initial output feedback formulation. This is the main result of
our ! paper. Then, we prove in Section 2 the Lipschitz continuity of the value function,
and we provide a new characterization through a system of mixed Hamilton-Jacobi equa-
tions and inequalities in terms of Dini derivatives. Finally, as a concluding paragraph, we
discuss in Section 3 some possible extensions of the present work.

1. Output Feedback and Estimation Feedback Formulations

1.1. Hypotheses and Notations

In the sequel, control system (2) is supposed to satisfy the following standing suppositions:

Condition 1.1.

1. f(·, ·, ·) : IRn × U × V → IRn has the form

f(x, u, v) = f0(x, v) + f1(x)u

where f0(·) : IRn × IRm → IRn and f1(·) : IRn → IRn×l are continuous, locally
Lipschitz in x uniformly with respect to the other variables (Lf being their Lipschitz
constant). U and V are convex compact subsets of IRl and IRm respectively. They
are bounded by M > 0: U ⊂ MBIRl and V ⊂ MBIRm.

2. f0(·, V ) has convex compact values.
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3. f satisfies the linear growth condition

∃c > 0, ∀x ∈ IRn, ∀u ∈ U, ∀v ∈ V, ||f(x, u, v)|| ≤ c(1 + ||x||)

where BIRl and BIRm represent respectively the unit ball in IRl and the unit ball in IRm.
As a consequence to Condition 1.1, the set-valued map F (·, ·) : IRn ×U → IRn defined by

F (x, u) := f(x, u, V ), ∀x ∈ IRn, ∀u ∈ U (6)

has convex compact values.

Throughout this paper, the unit ball in IRn will be denoted by B, while comp(IRn) denotes
the collection of all the compact sets of IRn. For any two sets A,B ∈ comp(IRn), we denote
by H+(A,B) := min{ε ≥ 0 | A ⊂ B + εB} the Hausdorff semidistance from A to B and
by H(A,B) := max{H+(A,B), H+(B,A)} the Hausdorff distance between A and B.

We denote by U[t0,T ] and V[t0,T ] respectively the sets of all measurable open-loop admissible
controls u(·) : [t0, T ] → U and disturbance v(·) : [t0, T ] → V . Similarly, X[t0,T ] denotes
the set of all continuous fonctions x(·) : [t0, T ] → IRn. If i is an integer, we denote
i ∈ [j, k] when i ∈ {j, j +1, ..., k}. We denote by Y N the set of all sequences (yk)k∈[1,N ] of
measurements on [t1, T ]. If h−1(y) denotes the set of all states x ∈ IRn compatible with
measurement y, we suppose that

Condition 1.2. For every y ∈ Y , the set h−1(y) := {x ∈ IRn | y = h(x)} is nonempty
and closed.

Note that h can also be used to characterize E0. For example, one can fix y0 ∈ Y and
choose E0 = {e ∈ IRn | h(e) = y0}.

1.2. Construction of the Estimation Tubes

Fix an open-loop control u(·) and consider all possible trajectories of system (2), (3). On
[t0, t1), the uncertainty due to the disturbance v gives rise to the following differential
inclusion

x′(t) ∈ F (x(t), u(t)), a.e. t ∈ [t0, t1), (7)

where F is the set-valued map defined by (6). For any given control u(·), the set of all
possible states of system (2), (3) at time t ∈ [t0, t1) is called the reachable set of system
(3), (7) at time t, denoted by

RF,u[E0](t) := {x(t) | ∃e ∈ E0, ∃v(·), x(·) solution to system (2), (3)}. (8)

Similarly, for any given control u(·), the set of all possible trajectories of system (2), (3)
on [t0, t1) is a time depending tube E(·, t0, E0, u(·)) called the solution tube of system (7)
in IRn starting from E0. It provides the deterministic estimation of the trajectory on
[t0, t1)

1:
x(t) ∈ E(t, t0, E0, u(·)) := RF,u[E0](t− t0), a.e. t ∈ [t0, t1).

For t = t1, the measurement y1 is given, thus the state x(t1) belongs to

E(t1, t0, E0, u(·), y1) = RF,u[E0](t1 − t0) ∩ h−1(y1),
1This formulation of the set-evolution is equivalent to what both the funnel equations and the mutational
equations would give in the particular collection comp(IRn).
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and, similarly, for any measurement yk corresponding to time tk, we have

E(tk, tk−1, E(tk−1), u(·), yk) = RF,u[E(tk−1)](tk − tk−1) ∩ h−1(yk).

Define τ(·) and σ(·) by:

t ∈ [tk, tk+1) ⇒ τ(t) := tk, and t ∈ [tk, tk+1) ⇒ σ(t) := tk+1.

Then, for given control u(·) and measurement (yk)k∈[1,N ], the initial set

E(t0) = E0 (9)

“propagatesÔ according to the equation

∀t ∈ (t0, T ),

{

E(t, t0, E0, u(·), (yk)k∈[1,N ]) = RF,u[E(τ(t))](t− τ(t)), if t 6∈ {t1, ..., tN−1}
E(σ(t), t0, E0, u(·), (yk)k∈[1,N ]) = RF,u[E(τ(t))](σ(t)− τ(t)) ∩ h−1(yj)

(10)
where yj is the measurement at time tj := σ(t).

1.3. Output Feedback Formulation

We call ouptut feedback strategy (or merely strategy) on [t0, T ] any mapping γ : [t0, T ] ×
Y N → U such that γ(t0, (yk)k∈[1,N ]) is independent of (yk)k∈[1,N ], and for any t ∈ (t0, T ), if
two given sequences (y1k)k∈[1,N ] and (y2k)k∈[1,N ] coincide for all k such that tk ≤ τ(t), then
γ(t, (y1k)k∈[1,N ]) = γ(t, (y2k)k∈[1,N ]). These strategies are a particular case of the so-called
“Varayia-Roxin-Elliott-Kalton non-anticipative strategiesÔ (see e.g. Appendix B5 in [7]
and Section 1 in [11]).

Given a pair (t0, E0), an output feedback γ : [t0, T ] × Y N → U , and a “disturbanceÔ
(e, v(·)) ∈ E0 × V[t0,T ), the following system (11)-(13) has a unique solution (u(·), x(·),
(yk)k∈[1,N ]) ∈ U[t0,T ] ×X[t0,T ] × Y N :

u(t) = γ(t, (yk)k∈[1,i]) (11)

x′(t) = f(x(t), u(t), v(t)), x(t0) = e (12)

yk = h(x(tk)) (13)

where i is such that τ(t) = ti. Hence, the corresponding guaranteed result obtained by
using the strategy γ is given by (5), and

I1(t0, E0) := inf
γ
I1(t0, E0; γ) (14)

is the minimal guaranteed value that can be achieved starting from the set E0 at time t0
over all possible strategies on [t0, T ]. In the sequel, we shall refer to system (11)-(13) as
system S1:

S1







u(t) = γ(t, (yk)k∈[1,i])
x′(t) = f(x(t), u(t), v(t)), x(t0) = e
yk = h(x(tk))

and we refer to problem (1), (11)-(13) as problem P1:

P1







min
x(·) solution

to S1

g(x(T ))
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Then, any solution (u(·), x(·), (yk)i∈[1,N ]) of system S1 is associated with a unique tube
E(·, t0, E0, u(·), (yk)i∈[1,N ]) by (9)-(10) and we have the following lemma:

Lemma 1.3. Fix E0 ∈ comp(IRn). If we denote by E(·, t0, E0, γ, (yk)k∈[1,N ]) the tube
associated by (9)-(10) to a given solution of system S1, then

I1(t0, E0) = inf
γ

sup
(yk)k∈[1,N ]

G(E(T, t0, E0, γ, (yk)))

where G is defined as follows:

∀Z ∈ comp(IRn),

{

G(Z) := sup
z∈Z

g(z) if Z 6= ∅

G(∅) := −∞ else.
(15)

Proof. Let us denote

I1′(t0, E0) := inf
γ

sup
(yk)k∈[1,N ]

G(E(T, t0, E0, γ, (yk))) (16)

We want to prove I1 = I1′ .

First, fix γ : [t0, T ] × Y N → U , e ∈ E0, and v(·) ∈ V[t0,T ]. Let x(·, t0, e, γ, v(·)) be the
corresponding solution to system S1, and (yk)k∈[1,N ] the corresponding measure. Denote
by E(·, t0, E0, γ, (yk)k∈[1,N ]) the tube associated to γ and (yk)k∈[1,N ] by (9)-(10). For any
t ∈ [0, T ], we obviously have x(t, t0, e, γ, v(·)) ∈ E(t, t0, E0, γ, (yk)), thus

g(x(T, t0, e, γ, v(·))) ≤ G(E(T, t0, E0, γ, (yk)k∈[1,N ])),

hence
g(x(T, t0, e, γ, v(·))) ≤ sup

(yk)k∈[1,N ]

G(E(T, t0, E0, γ, (yk))),

so that taking the supremum over all possible e and v(·) leads to

sup
e,v(·)

g(x(T, t0, e, γ, v(·))) ≤ sup
(yk)k∈[1,N ]

G(E(T, t0, E0, γ, (yk))),

for any γ. Take the infimum over all possible strategies γ, then (14) and (16) give I1 ≤ I1′ .

Conversely, fix an output feedback strategy γ : [t0, T ] × Y N → U and a measurement
(yk)k∈[1,N ] such that the corresponding tube E(·, t0, E0, γ, (yk)k∈[1,N ]) solution to system
S1 and (9)-(10) is non-degenerate (i.e. E(T, t0, E0, γ, (yk)k∈[1,N ]) 6= ∅). Then, there exists
xN ∈ E(T, t0, E0, γ, (yk)k∈[1,N ]) such that

g(xN) = G(E(T, t0, E0, γ, (yk)k∈[1,N ])),

and, according to (8), (10) there exist vN−1(·) : [tN−1, T ] → V and xN−1 ∈ E(tN−1, t0, E0,
γ, (yk)k∈[1,N−1]) such that

xN = x(T, tN−1, xN−1, γ, vN−1(·)).

We can repeat the process recursively to define a sequence of disturbances (v0(·), ...,
vN−1(·)) and a sequence of states (xN−1, ..., x1, e) with e ∈ E0 such that

xN = x(T, t0, e, γ, (v0(·), ..., vN−1(·))).
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So we have

G(E(T, t0, E0, γ, (yk)k∈[1,N ])) = g(x(T, t0, e, γ, (v0(·), ..., vN−1(·)))),

thus
G(E(T, t0, E0, γ, (yk)k∈[1,N ])) ≤ sup

e,v(·)
g(x(T, t0, e, γ, v(·)))

for any γ, (yk)k∈[1,N ], hence

sup
(yk)k∈[1,N ]

G(E(T, t0, E0, γ, (yk))) ≤ sup
e,v(·)

g(x(T, t0, e, γ, v(·)),

so finally I1′ ≤ I1, and I1′ = I1.

Now we prove the following dynamic programming equation:

Proposition 1.4. The value function of problem P1 satisfies:

I1(t0, E0) = inf
γ

sup
(yi)i∈[1,j]

I1(t, E(t, t0, E0, γ, (yi))), ∀t ∈ [t0, T ],

with j such that tj = τ(t).

Proof. First, fix ε > 0. According to Lemma 1.3, there exists γε : [t0, T ]× Y N → U such
that

I1(t0, E0) ≤ sup
(yk)k∈[1,N ]

G(E(T, t0, E0, γ
ε, (yk))) ≤ I1(t0, E0) + ε.

Let t ∈ [t0, T ] be given and let us denote by tj := τ(t) the last measurement time before
t. We have:

I1(t0, E0) ≥ sup
(yi)i∈[1,j]

sup
(yk)k∈[j+1,N ]

G(E(T, t, E(t, t0, E0, γ
ε, (yi)), γ

ε, (yk)))− ε

≥ sup
(yi)i∈[1,j]

inf
γ

sup
(yk)k∈[j,N ]

G(E(T, t, E(t, t0, E0, γ
ε, (yi)), γ, (yk)))− ε

≥ sup
(yi)i∈[1,j]

I1(t, E(t, t0, E0, γ
ε, (yi))− ε

≥ inf
γε

sup
(yi)i∈[1,j]

I1(t, E(t, t0, E0, γ
ε, (yi))− ε

ε being arbitrary, we have

I1(t0, E0) ≥ inf
γ

sup
(yi)i∈[1,j]

I1(t, E(t, t0, E0, γ, (yi)).

Conversely, fix ε > 0 and t ∈ [t0, T ] and denote by tj := τ(t). From Lemma 1.3 we deduce
the following: For any K ∈ comp(IRn), there exists γK : [t, T ]× Y N−j → U such that

sup
(yk)k∈[j+1,N ]

G(E(T, t,K, γK , (yk)) ≤ I1(t,K) + ε. (17)

Now, let γ : [t0, T ] × Y N → U be a given strategy and let us denote by E(t) :=
E(t, t0, E0, γ, (yi)i∈[1,j]). We define a new strategy γ̃ : [t0, T ]× Y → U by

∀(yk)k∈[1,N ] ∈ Y N , γ̃(s, (yk)) =

{

γ(s, (yk)) ∀s ∈ [t0, t]
γE(t)(s, (yk)) ∀s ∈ [t, T ]
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then we have

G(E(T, t0, E0, γ̃, (yk)k∈[1,N ]) = G(E(T, t, E(t), γE(t), (yk)k∈[j+1,N ]). (18)

From (17), we infer:

sup
(yk)k∈[j+1,N ]

G(E(T, t, E(t), γE(t), (yk)) ≤ I1(t, E(t)) + ε.

Thus, by taking the supremum over all possible measurements (yi)i∈[1,j], we have

sup
(yk)k∈[1,N ]

G(E(T, t, E(t), γE(t), (yk)) ≤ sup
(yi)i∈[1,j]

I1(t, E(t)) + ε.

Then, (18) gives

sup
(yk)k∈[1,N ]

G(E(T, t0, E0, γ̃, (yk)) ≤ sup
(yi)i∈[1,j]

I1(t, E(t)) + ε.

Hence, for any given strategy γ̃ we obtain:

I1(t0, E0) ≤ I1(t0, E0; γ̃) ≤ sup
(yi)i∈[1,j]

I1(t, E(t)) + ε.

By taking the infimum over all possible strategies γ, we have

I1(t0, E0) ≤ inf
γ

sup
(yi)i∈[1,j]

I1(t, E(t, t0, E0, γ, (yi)i∈[1,j])) + ε,

which gives the wished result, ε > 0 being arbitrary.

1.4. Estimation Feedback Formulation

The drawback of the output feedback formulation lies in its dependency on the whole
history of the measurement (yk)k∈[1,N ]. We shall now see that without loss of performance
one may use control strategies depending only on the current estimation of the state E(t)
determined by (9)-(10).

We call estimation feedback (we still use the term “strategyÔ) any mapping (t, E) 7→
φ(t, E) ∈ U defined on [t0, T ] × comp(IRn), measurable in t. Every such strategy makes
use of the exact estimation (10) at every measurement time tk ∈ {t0, ..., tN−1}. Namely,
substituting yk = h(x(tk)) in (10), we obtain the following closed-loop system for an initial
set E0 ∈ comp(IRn):

u(t) = φ(t, E(τ(t))) (19)

x′(t) = f(x(t), u(t), v(t)), x(t0) = e ∈ E0 (20)

E(t) = RF,u[E(τ(t))](t− τ(t)), if t 6∈ {t1, ..., tN−1} (21)

E(σ(t)) = RF,u[E(τ(t))](σ(t)− τ(t)) ∩ h−1(h(x(σ(t)))) (22)

E(t0) = E0 (23)

The corresponding guaranteed result obtained by using the strategy φ is:

I2′(t0, E0;φ) := sup
E(·) solution to

(19)-(23)

G(E(T )) (24)
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and
I2′(t0, E0) := inf

φ
I2′(t0, E0;φ) (25)

is the minimal guaranteed value that can be achieved starting from the set E0 at time t0
over all possible estimation feedbacks on [t0, T ].

We can prove that the value of the output feedback problem coincides with that of the
estimation feedback problem, namely I1(t0, E0) = I2′(t0, E0). However, the above esti-
mation feedback formulation still requires a continuous trajectory x(·) corresponding to
a disturbance v(·) through (20). In order to deal with this particular issue, we introduce
an “improvedÔ estimation feedback formulation by replacing (20) with the inclusion

x(tk) ∈ RF,u[E(tk−1)](tk − tk−1), k ∈ [1, N ]. (26)

In the sequel, we shall refer to system (19), (21)-(23) and (26) as system S2:

S2























u(t) = φ(t, E(τ(t)))
E(t) = RF,u[E(τ(t))](t− τ(t)), if t 6∈ {t0, ..., tN}

x(σ(t)) ∈ RF,u[E(τ(t))](σ(t)− τ(t))
E(σ(t)) = RF,u[E(τ(t))](σ(t)− τ(t)) ∩ h−1(h(x(σ(t))))
E(t0) = E0

and we shall refer to the corresponding minimization problem as problem P2:

P2







min
E(·) solution

to S2

G(E(T ))

where G is defined by (15). Then, for any given strategy φ, a tube E(·, t0, E0, φ, (xk)k∈[1,N ])
solution to system S2 is determined by the choice of a sequence (xk)k∈[1,N ] such that
xk := x(tk) satisfies (26) at every measurement time tk. In other words, the state x(tk) is
now allowed to “jumpÔ at every measurement step to the “worstÔ point in the reachable
set, and the continuous trajectory x(·) is eliminated from consideration. The new value
function is now

I2(t0, E0) := inf
φ

sup
E(·) solution to

system S2

G(E(T, t0, E0, φ, (xk)k∈[1,N ])) (27)

and we prove the following proposition:

Proposition 1.5. I2 satisfies the dynamic programming:

I2(t0, E0) = inf
φ

sup
E(·) solution to

system S2

I2(t, E(t, t0, E0, φ, (xi)i∈[1,j]))), ∀t ∈ [t0, T ],

j being such that τ(t) = tj.

Proof. A tube solution to system S2 is determined by the choice of a strategy φ and
a sequence (xk)k∈[1,N ] such that xk := x(tk) satisfies (26) at every measurement time tk.
Hence, (27) can be written the following way:

I2(t0, E0) := inf
φ

sup
(xk)k∈[1,N ]

G(E(T, t0, E0, φ, (xk)))
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Thus, for any given ε > 0. there exists φε : [t0, T ]× comp(IRn) → U such that

I2(t0, E0) ≤ sup
(xk)k∈[1,N ]

G(E(T, t0, E0, φ
ε, (xk))) ≤ I2(t0, E0) + ε.

Fix t ∈ (t0, T ), and denote by tj := τ(t) the latest measurement time before t. We have:

I2(t0, E0) ≥ sup
(xi)i∈[1,j]

sup
(xk)k∈[j+1,N ]

G(E(T, t, E(t, t0, E0, φ
ε, (xi)), φ

ε, (xk)))− ε

≥ sup
(xi)i∈[1,j]

inf
φ

sup
(xk)k∈[j+1,N ]

G(E(T, t, E(t, t0, E0, φ
ε, (xi)), φ, (xk)))− ε

≥ sup
(xi)i∈[1,j]

I2(t, E(t, t0, E0, φ
ε, (xi))− ε

≥ inf
φ

sup
(xi)i∈[1,j]

I2(t, E(t, t0, E0, φ, (xi))− ε,

as the result is true for any ε > 0, we have

I2(t0, E0) ≥ inf
φ|[t0,t]

sup
(xi)i∈[0,j]

I2(t, E(t, t0, E0, φ, (xi)).

On the other hand, fix ε > 0 and t > 0 and denote by tj := τ(t) the last measurement
time before t. From (27) we deduce the following: For any K in comp(IRn), there exists
φK : [t, T ]× comp(IRn) → U such that

sup
(xk)k∈[j+1,N ]

G(E(T, t,K, φK , (xk)) ≤ I2(t,K) + ε. (28)

Now, let φ : [t0, T ] × comp(IRn) → U be a given strategy and let us denote by E(t) :=
E(t, t0, E0, φ, (xi)i∈[1,j]). We define a new strategy φ̃ : [t0, T ]× comp(IRn) → U by

∀E ∈ comp(IRn), φ̃(s, E) =

{

φ(s, E) ∀s ∈ [0, t]
φE(t)(s, E) ∀s ∈ [t, T ]

then we have

G(E(T, t0, E0, φ̃, (xk)k∈[1,N ]) = G(E(T, t, E(t), φE(t), (xk)k∈[j+1,N ]), (29)

and we deduce the following from (28)

sup
(xk)k∈[j+1,N ]

G(E(T, t, E(t), φE(t), (xk)) ≤ I2(t, E(t)) + ε.

Thus, by taking the supremum over all possible states (xi)i∈[1,j], we have

sup
(xk)k∈[1,N ]

G(E(T, t, E(t), φE(t), (xk)) ≤ sup
(xi)i∈[1,j]

I2(t, E(t)) + ε.

Then, (29) gives

sup
(xk)k∈[1,N ]

G(E(T, t0, E0, φ̃, (xk)) ≤ sup
(xi)i∈[1,j]

I2(t, E(t)) + ε,
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so that
inf
φ

sup
(xk)k∈[1,N ]

G(E(T, t0, E0, φ, (xk)) ≤ sup
(xi)i∈[1,j]

I2(t, E(t)) + ε,

and we have
I2(t0, E0) ≤ inf

φ
sup

(xi)i∈[1,j]

I2(t, E(t)) + ε

which holds true for any given ε > 0 and completes the proof.

Here is a key result of this paper:

Theorem 1.6. The value function of problem P1 in the class of output feedback strate-
gies, and the value function of problem P2 in the class of estimation feedback strategies
coincide.

Proof. Fix E0 ∈ comp(IRn). We obviously have I1(T,E0) = I2(T,E0) = G(E0). Then,
considering the problem on [tN−1, T ] with initial condition E(tN−1) := E0, we prove
that I1(tN−1, E0) = I2(tN−1, E0): Fix ε > 0, according to Lemma 1.3 there exists γε :
[tN−1, T ]× Y → U such that

I1(tN−1, E0) ≤ sup
yN

G(E(T, tN−1, E0, γ
ε, yN)) ≤ I1(tN−1, E0) + ε.

By (10), we have

sup
yN

G(RF,γε [E0](T − tN−1) ∩ h−1(yN)) ≤ I1(tN−1, E0) + ε.

In the previous inequality, we can restrict the sup to those yN ∈ h(RF,γε [E0](T − tN−1))
with no loss of generality. Moreover, tN−1 being the initial time, the first measurement
involved here is yN . Hence, γε can be understood as an open-loop control on [tN−1, T ).
Also, one can easily to prove that the reachable set RF,γε [E0](T − tN−1) at time T does
not depend on the value γε(T, yN) of the control at that time. Hence, for any estimation
feedback strategy φ : [tN−1, T ]× comp(IRn) → U such that φ(t, E0) := γε(t) on [tN−1, T ).
Note that φ(T, ·) and φ(·, Z) with Z 6= E0 can take any value. We have RF,γε [E0](T −
tN−1) = RF,φ[E0](T − tN−1), thus

sup
xN∈RF,φ[E0](T−tN−1)

G
(

RF,φ[E0](T − tN−1) ∩ h−1(h(xN))
)

≤ I1(tN−1, E0) + ε.

By (22), and taking the infimum over all possible strategies φ, we have

inf
φ

sup
E(·) solution to

system S2

G(E(T, tN−1, E0, φ, xN)) ≤ I1(tN−1, E0) + ε.

By (27), this leads to I2(tN−1, E0) ≤ I1(tN−1, E0). Conversely, according to (27), for any
given ε > 0, there exists φε : [tN−1, T ]× comp(IRn) → U such that

I2(tN−1, E0) ≤ sup
xN

G(E(T, tN−1, E0, φ
ε, xN)) ≤ I2(tN−1, E0) + ε,

where xN := x(T ) satisfies (26) at time T . From (22), we deduce the following:

sup
xN

G
(

RF,φε [E0](T − tN−1) ∩ h−1(h(xN))
)

≤ I2(t0, E0) + ε.
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For any output feedback strategy γ : [tN−1, T ] × Y → U such that γ(t) = φε(t, E0) on
[tN−1, T ), we have RF,φε [E0](T − tN−1) = RF,γ[E0](T − tN−1). Note that γ(T, ·) can take
any value. Denote yN := h(xN), we have

sup
yN

G
(

RF,γ[E0](T − tN−1) ∩ h−1(yN)
)

≤ I2(t0, E0) + ε.

By (10), we have:
sup
yN

G (E(T,E0, tN−1, γ, yN) ≤ I2(t0, E0) + ε.

Taking the infimum over all possible strategies γ and using Lemma 1.3, we have
I1(tN−1, E0) ≤ I2(tN−1, E0). This finally leads to I1(tN−1, E0) = I2(tN−1, E0) for any
E0 ∈ comp(IRn).

Then, consider the problem on [tN−2, T ] with initial condition E(tN−2) := E0. Fix an
output feedback strategy γ : [tN−2, tN−1]×Y → U , and let φ : [tN−2, tN−1]×comp(IRn) →
U be an estimation feedback strategy such that φ(t, E0) = γ(t) on [tN−2, tN−1). Note that
φ(tN−1, ·) and φ(·, Z) with Z 6= E0 can take any value. We have RF,φ[E0](tN−1 − tN−2) =
RF,γ[E0](tN−1 − tN−2) and we deduce the following from (22) and from Proposition 1.5:

I2(tN−2, E0) ≤ sup
xN−1

I2
(

tN−1, RF,φ[E0](tN−1 − tN−2) ∩ h−1(h(xN−2))
)

.

Denote yN−1 := h(xN−1), according to (10) we have

I2(tN−2, E0) ≤ sup
yN−1

I2 (tN−1, E(tN−1, E(tN−1, tN−2, E0, γ, yN−1)) ,

which holds true for any γ. Because I1(tN−1, E) = I2(tN−1, E) for any E ∈ comp(IRn),
we have

I2(tN−2, E0) ≤ sup
yN−1

I1 (tN−1, E(tN−1, E(tN−1, tN−2, E0, γ, yN−1)) .

Hence, taking the infimum over all possible strategies γ and using Proposition 1.4, we
deduce the following: I2(tN−2, E0) ≤ I1(tN−2, E0). Conversely, fix ε > 0, according to
Proposition 1.5, there exists φε : [tN−2, tN−1]× comp(IRn) → U such that

I2(tN−2, E0) ≤ sup
xN−1

I2(tN−1, E(tN−1, tN−2, E0, φ
ε, xN−1)) ≤ I2(tN−2, E0) + ε.

Following the same idea as above, we denote yN−1 := h(xN−1). For any output feedback
strategy γ : [tN−2, tN−1] × Y → U such that γ(t) := φε(t, E0) on [tN−2, tN−1). Note that
γ(tN−1, ·) can take any value. We have

sup
yN−1

I2(tN−1, E(tN−1, tN−2, E0, γ, yN−1)) ≤ I2(tN−2, E0) + ε.

Moreover, I1(tN−1, E) = I2(tN−1, E) for any E ∈ comp(IRn), hence

sup
yN−1

I1(tN−1, E(tN−1, tN−2, E0, γ, yN−1)) ≤ I2(tN−2, E0) + ε,

and, taking the infimum over all possible strategies γ, we deduce from Proposition 1.4 the
following: I1(tN−2, E0) ≤ I2(tN−2, E0)). So, we have I2(tN−2, E0) = I1(tN−2, E0), and we
can obtain the final result by an easy iteration.
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2. The Value Function

2.1. Regularity of the Value Function

Proposition 2.1. If g(·) is a Lipschitz function, then I2(·, ·) is locally Lipschitz on any
intervall [tk, tk+1) with k ∈ [0, N − 1], namely: For any E ∈ comp(IRn), there exists
LE > 0 such that for any k ∈ [0, N − 1], for any (t, s) ∈ [tk, tk+1)× [tk, tk+1), and for any
E ′ ∈ comp(IRn), we have

|I2(t, E)− I2(s, E
′)| ≤ LE(H(E,E′) + |t− s|).

Proof. Fix k ∈ [0, N−1], t ∈ [tk, tk+1), and E, E′ ∈ comp(IRn). We first prove that there
exists LI2 > 0, independent from t, E,E′ such that |I2(t, E) − I2(t, E

′)| ≤ LI2H(E,E′).
Let φ(·, ·) be a given estimation feedback. According to (27), for any ε > 0 there exists
φε(·, ·) : [t, T ]× comp(IRn) → U , independent from φ, such that2

I2(t, E)− I2(t, E
′) ≤ sup

E(·) solution to
system S2

G (E(T, t, E, φ))− sup
Eε(·) solution to

system S2

G (Eε(T, t, E
′, φε)) + ε.

Then, for any estimation feedback φ(·, ·) and for any Eε(·) solution to system S2 corre-
sponding to φε, we have

I2(t, E)− I2(t, E
′) ≤ sup

E(·) solution to
system S2

G(E(T, t, E, φ))−G(Eε(T, t, E
′, φε)) + ε. (30)

The idea here is to choose both an estimation feedback φ and a tube Eε(·, t, E′, φε) corre-
sponding to φε, such that any tube E(·, t, E, φ) of system S2 corresponding to the chosen
φ stays "close enough" to Eε(·, t, E′, φε). Typically, on [t, tk+1), we choose φ(·, ·) by setting

φ(s, E) := φε(s, E′), ∀s ∈ [t, tk+1),

Note that φ(·, Z) with Z 6= E can take any value on [t, tk+1). Denote by u(·) := φ(·, E).
Fix s ∈ [t, tk+1) and consider a ∈ RF,u[E](s). Then, there exist a perturbation v(·) and a
trajectory x0(·) of system (2) such that x0(s) = a and x0(t) = e ∈ E. Let e′ ∈ E ′ be such
that |e − e′| ≤ H(E,E′). Then we consider the trajectory x1(·) of system (2) starting
from e′ for the same u(·) and v(·) as above, and we denote by b := x1(s). Thus we have:

|a− b| ≤ eLf (s−t)|e− e′| ≤ eLf (s−t)H(E,E′)

and
RF,u[E](s− t) ⊂ RF,u[E

′](s− t) + eLf (s−t)H(E,E′)B.

Interchanging a and b, we finally obtain

H (E(s, t, E, φ), Eε(s, t, E
′, φε)) ≤ eLf sH(E,E′), ∀s ∈ [t, tk+1).

For x0
k+1 ∈ RF,u[E](tk+1 − t), we choose φ(·, ·) on [tk+1, tk+2) by setting:

φ(s, RF,u[E](tk+1 − t) ∩ h−1h(x0
k+1))

:= φε(t, RF,u[E
′](tk+1 − t) ∩ h−1h(x1

k+1)), ∀s ∈ [tk+1, tk+2),
2In this proof, for the convenience of the reader, we do not explicit the dependency of the tubes on the
state (xk)k∈[1,N ]. Hence, for a given strategy φ, the corresponding tube starting from E at time t will be
denoted here by E(·, t, E, φ).
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where x1
k+1 is such that x1

k+1 ∈ RF,u[E
′](tk+1 − t) and |x1

k+1 − x0
k+1| ≤ eLf (tk+1−t)H(E,E′).

Note that for Z 6= RF,u[E](tk+1) ∩ h−1h(x0
k+1), one can take any value for φ(t, Z) on

[tk+1, tk+2). Then, similarly to what has been done on [t, tk+1], we fix s ∈ [tk+1, tk+2). For
any a ∈ RF,u[RF,u[E](tk+1− t)∩h−1h(x0

k+1)](s− tk+1), there exist a perturbation v(·) and
a trajectory x0(·) of system (2) on [tk+1, tk+2) such that x0(s) = a and x0(tk+1) = x0

k+1.
Then, we consider the trajectory x1(·) of the same system on [tk+1, tk+2) starting from
x1(tk+1) := x1

k+1. We denote by b := x1(s) and we have

|a− b| ≤ eLf (s−tk+1)|x0
k+1 − x1

k+1| ≤ eLf (s−tk+1)eLf (tk+1−t)H(E,E′)

so, one easily deduces that

RF,u[RF,u[E](tk+1 − t) ∩ h−1h(x0
k+1)](s− tk+1)

⊂ RF,u[RF,u[E
′](tk+1 − t) ∩ h−1h(x1

k+1)](s− tk+1) + eLf (s−tk+1)H(E,E′)B,

and, interchanging a and b, we finally have

H (E(s, t, E, φ), Eε(s, t, E
′, φε)) ≤ eLf (s−t)H(E,E′), ∀s ∈ [tk+1, tk+2).

By iterating, we define a tube Eε(·, t, E′, φε) and an estimation feedback φ such that for
any corresponding tube E(·, t, E, φ) solution to system S2 we have

H (E(s, t, E, φ), Eε(s, t, E
′, φε)) ≤ eLf (s−t)H(E,E′), ∀s ∈ [t, T ].

Moreover, g being Lipschitz, it is easy to prove that G is Lipschitz too. Hence, we can
deduce the following result from (30):

|I2(t, E)− I2(t, E
′)| ≤ C(H(E,E′)),

C being a constant. Now, fix s ∈ (t, tk+1), we have:

|I2(t, E)− I2(s, E
′)| ≤ |I2(t, E)− I2(t, E

′)|+ |I2(t, E′)− I2(s, E
′)|

≤ CH(E,E′) + |I2(t, E′)− I2(s, E
′)|

≤ CH(E,E′) + | inf
φ

sup
E(·) solution to

system S2

I2 (s, E(s, t, E′, φ))− I2(s, E
′)|

≤ C



H(E,E′) + inf
φ

sup
E(·) solution to

system S2

H (E(s, t, E′, φ), E′)



 .

Fix a strategy φ : [t, s]× comp(IRn) → U and a corresponding tube E(·, t, E′, φ) solution
to system S2. As s ∈ (t, tk+1) ⊂ [tk, tk+1), no measurement is involved, and we have
E(s, t, E′, φ) = RF,φ[E

′](s− t). Then, the growth condition in Condition 1.1 implies in a
standard way that

H (E(s, t, E′, φ), E′) ≤ 2c(1 + |E ′|)|s− t|,

hence the result.



S. Rigal / A Set Evolution Approach to the Control of Uncertain Systems with ... 457

2.2. Characterization of the value function

Let J(·, ·) : [t0, T ]× comp(IRn) → IR be a Lipschtiz function, let E ∈ comp(IRn) be fixed
and F : E → comp(IRn) be a set-valued map defined on E.

Definition 2.2. We define the lower Dini derivative of J at E in the direction of F as

D−J(E;F ) := lim inf
h→0+

inf

{

J(E ′)− J(E)

h
| E ′ ∈ comp(IRn), (Id+ hF )(E) ⊂ E ′

}

.

where Id is the identity mapping. We have the following characterization of the value
function:

Theorem 2.3. Suppose that g(·) is Lipschitz and consider the following system:



















































inf
u∈U

D−I2(t0, E; (1, f(·, u, V ))) ≤ 0

I2(t
−
1 , E) = sup

x1∈E
I2(t1, E ∩ h−1h(x1))

s · ··
inf
u∈U

D−I2(tN−2, E); (1, f(·, u, V ))) ≤ 0

I2(t
−
N−1, E) = sup

xN−1∈E
I2(tN−1, E ∩ h−1h(xN−1))

inf
u∈U

D−I2(tN−1, E; (1, f(·, u, V ))) ≤ 0

(31)

with the side condition

I2(T,E) = G(E) ∀E ∈ comp(IRn). (32)

Then, the optimal value function I2 is the minimal solution to (31)-(32) that is Lipschitz
on every intervall [tk, tk+1) with k ∈ [0, N − 1].

Proof. First, we consider the problem on [t0, t1). To prove the result, we shall use the
dynamic programming principle. Fix (t0, E0) and consider a sequence hk → 0+ such that
tk := t0 + hk ∈ [t0, t1) for all k ∈ IN . Thus, according to Proposition 1.5, for any k ∈ IN ,
there exists φk such that:

I2(t0, E0) ≥ I2(tk, E(tk, t0, E0, φk(E0, ·), (xk)k∈[1,N ]))−
hk

k
. (33)

Denote

ūk :=
1

hk

∫ tk

t0

φk(E0, s)ds.

Since U is compact, there exists ū ∈ U such that βk := |ūk − ū| → 0 up to a subsequence.
Then, according to the structural and the convexity assumptions from Condition 1.1, one
can prove in a standard way that there is a constant C such that:

H
(

E
(

tk, t0, E0, φk(E0, ·), (xk)k∈[1,N ]

)

, (I + hkf(·, ū, V )) (E0)
)

≤ Chk(hk + βk).

Thus, we have

(I + hkf(·, ū, V ))(E0) ⊂ E
(

tk, t0, E0, φk(E0, ·), (xk)k∈[1,N ]

)

+ Chk(hk + βk)B.
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Moreover, (33) implies

I2
(

tk, E(tk, t0, E0, φk(E0, ·), (xk)k∈[1,N ])
)

− I2(t0, E0) ≤
hk

k
→ 0,

such that we have
D−I2 (t0, E0; (1, f(·, ū, V ))) ≤ 0,

and
inf
u∈U

D−I2 (t0, E0; (1, f(·, u, V ))) ≤ 0.

Now, we consider the problem at measurement time t1. By using the dynamic program-
ming between t−1 and t1, for any tube E(·) solution to system S2, we obtain the following:

I2(t
−
1 , E(t−1 )) = sup

x1∈E(t−1 )

I2
(

t1, E(t−1 ) ∩ h−1h(x1)
)

and we can repeat the process recursively on every intervall [ti, ti+1) and at every moment
ti so that I2 is finally solution to system (31).

Now, let J be a solution to (31). Then, Epi J is viable on [t0, t1) for the system (33) with
target {t1} × Epi J , thus for any E0, there exist a control φ and a corresponding tube
E(·) defined on [t0, t1) such that

J(t−1 , E(t−1 )) ≤ J(t0, E0),

and
J(t−1 , E(t−1 )) = sup

x1∈E(t−1 )

J
(

t1, E(t−1 ) ∩ h−1h(x1)
)

.

For any arbitrary x1 ∈ E(t−1 ), we have J(t
−
1 , E(t−1 )) ≤ J(t1, E(t−1 )∩h−1h(x1)). Moreover,

Epi J is also viable on [t1, t2) for the system (33) with target {t2} × Epi J , thus for any
E1, there exists φ and E(·) defined on [t1, t2) such that

J
(

t−2 , E(t−2 )
)

≤ J(t1, E1).

By taking E1 := E(t−1 )∩h−1h(x1), we obtain J(t−2 , E(t−2 )) ≤ J(t0, E0), and we can repeat
the process recursively to finally obtain

G(E(T )) = J(T,E(T )) ≤ J(t0, E0),

E(·) being any tube associated to a certain control φ. In other words, φ is fixed by
construction and one can freely choose the sequence {x1...xN} which determines tube
E(·). Then, by taking the supremum over all possible tubes E(·) corresponding to that
given φ and starting from E0, we have

sup
E(·) solution to

system S2

G(E(T )) ≤ J(t0, E0)

and we finally take the infimum over all possible strategies φ to get

I2(t0, E0) = inf
φ

sup
E(·) solution to

system S2

G(E(T )) ≤ J(t0, E0)

which completes the proof.
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3. Conclusion

First, let us underline the fact that the present work can be easily extended to the case
of set evolutions in a prescribed collection of sets (see e.g. [25, 26]) which is better suited
for further numerical applications.

Also, a possible extension of the approach we have considered here would be to introduce a
noise in the measurement. Namely, one could replace the initial incomplete measurement
(4) with the following noisy measurement:

yk = h(x(tk), wk), tk ∈ {t1, t2, ..., tN}

where wk ∈ W is a disturbance. Then, the corresponding value function of the control
problem would become

I(t0, E0) := inf
φ

sup
E(·) solution to

system S2

sup
(wk)k∈[1,N ]

G(E(T, t0, E0, φ, (xk)k∈[1,N ], (wk)k∈[1,N ])),

and one could easily adapt the results of this paper to the case of a noisy measurement.

Then, this work could also be easily adapted to integral cost or minimal time problems.
Actually, an integral cost problem with fixed end time can equivalently be written as a
terminal cost problem for an “extended systemÔ. For example, for the following problem:

minimize

∫ T

t0

g(x(s))ds,

one can extend System (2) in the following way:
{

x′(t) = f(x(t), u(t), v(t))
z′(t) = g(x(t))

then, the new problem becomes
minimize z(T ),

which is equivalent to the problem considered in this paper as soon as g satisfies Condition
1 namely, it is continuous, locally Lipschitz, and satisfies the linear growth condition.

Similarly, in order to include minimal time problems in our approach, one could generalize
it by considering a time-dependent cost g(x, t) and by introducing a set M ⊂ [t0, T ]× IRn

which will determine the termination time T (E(·)) of the control process in the following
way: T (E(·)) := min{t ≥ t0 | (t, E(t)) ∈ M}. In the case of a fixed end time, we would
have M = {T} × IRn. In the case of a minimal time problem, we would have g(x, t) = t.

Finally, another interesting problem would be to study some numerical schemes from
which we may be able to derive discrete approximated controls, as optimal strategies for
the player u cannot be characterized from the knowledge of the value function (writing
the Pontryaguin maximum principle in this case is too difficult). Such numerical schemes
have already been successfully introduced in the fully discrete time case (see [20]), and
they are being investigated in the fully continuous time. Hence, the present work is a first
step towards numerical schemes in the case of continuous time systems with discrete time
measurements, but this will be investigated in a future work.
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game, Journal Européen des Systèmes Automatisés 29(6) (1995).

[29] F. C. Schweppe: Uncertain Dynamic Systems, Prentice-Hall, Englewood Cliffs (1973).

[30] J. S. Shamma, K.-Y. Tu: Optimal feedback control for systems with constraints and satu-
rations: Scalar control case, J. Math. Anal. Appl. 196 (1995) 452–466.

[31] V. M. Veliov: Funnel equations and regulation of uncertain systems, in: Set-Valued Analysis
and Differential Inclusions, A. B. Kurzhanski, V. M. Veliov (eds.), Birkhäuser, Basel (1993)
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