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In this paper we show that prox-regular functions are locally uniquely determined by their subgradients
i.e. if two functions are prox-regular at x̄ for v̄, then in a neighborhood of (x̄, v̄), the functions differ
by an additive constant. The class of prox-regular functions includes all convex functions, all qualified
convexly composite functions (i.e. with an appropriate constraint qualification) and all pln functions.
This result represents an improvement over previous results since the class of prox-regular functions is
strictly bigger than the class of pln functions (an example is provided in this paper).
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1. Introduction and main result

A fundamental problem in nonsmooth analysis is to identify functions that can be recov-
ered up to an additive constant, from the knowledge of their subgradients. More precisely,
a function f is deemed integrable if whenever ∂#g(x) = ∂#f(x) for all x then f and g
differ only by an additive constant. Here ∂# refers to a subdifferential, which can be
taken in many different ways. In this paper ∂f(x) denotes the set of limiting proximal
subgradients; see [8].

Probably the most well known and the oldest result in this area concerns convex functions.
If two l.s.c. convex functions (defined on Banach spaces) have the same subgradients,
then they differ by a constant; see Rockafellar [21]. The result is also valid for locally
Lipschitzian functions that are upper regular, semismooth or separably regular functions;
see [11]. However the result fails for arbitrary locally Lipschitzian functions.

Example 1.1 (Benoist [1]). For every countable dense set D ⊂ IR, there exists in-
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finitely many Lipschitzian functions f , differing by more than a constant, such that

∂pf(x) =

{

(−1,+1) if x ∈ D,

∅ if x 6∈ D.

Here ∂pf(x) denotes the set of proximal subgradients (v ∈ ∂pf(x) when for all y, f(y) ≥
f(x)+ < v, y − x > −t‖y − x‖2 for some t > 0).

The first work outside the field of locally Lipschitzian functions was done by Poliquin for
the primal-lower-nice (pln) functions. If two functions are pln at x̄ and have the same
subgradients, then on a neighborhood of x̄ the functions differ by a constant; see Poliquin
[16]. Note that the class of pln functions includes all convex functions and all convexly
composite functions with an appropriate constraint qualification. Later this result was
extended to Hilbert spaces by Thibault and Zagrodny [23] and additional results were
provided in Bernard, Thibault and Zagrodny [2]. Other work on the subject inlude [3],
[11], [20], [24] and [25].

Poliquin and Rockafellar in [17] introduced the class of prox-regular functions (a definition
is given in the next paragraph). These functions are more general than the pln functions,
yet admit effective generalizations of many of the subdifferential properties of extended-
valued convex functions. For more on prox-regular functions and their rich subdifferential
properties see, [4], [5], [6], [7], [9], [10], [12], [15], [17], [18], [19].

Let X be a real Hilbert space, f : X → IR := IR ∪ {±∞} be a lower semicontinuous
(l.s.c.) function and ∂f denotes the set of limiting proximal subgradients of f . Then f is
said to be prox-regular at x̄, a point where f is finite, for the subgradient v̄ ∈ ∂f(x̄), if
there exist parameters ε > 0 and r ≥ 0 such that for every point (x, v) ∈ gph ∂f obeying
‖x− x̄‖ < ε, |f(x)− f(x̄)| < ε, and ‖v − v̄‖ < ε, one has the local estimate

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
‖x′ − x‖2 for all x′ ∈ IB(x̄; ε).

To obtain the integration result in this paper we need not only that the functions be
prox-regular but we need to know that the function values are close when the points are
close. This is called subdifferential continuity. A function f : X → IR is subdifferentially
continuous at x̄ for v̄, where v̄ ∈ ∂f(x̄), if for every δ > 0 there exist ε > 0 such that
|f(x)− f(x̄)| < δ whenever ‖x− x̄‖ < ε and ‖v− v̄‖ < ε with v ∈ ∂f(x). If this holds for
all v̄ ∈ ∂f(x̄), f is said to be subdifferentially continuous at x̄.

In this paper, we prove, in an arbitrary Hilbert space, that if two functions, which have
the same limiting subgradients locally, are prox-regular and subdifferentially continuous
relative to a pair (x̄, v̄) then the functions differ by a constant in a local neighborhood of
(x̄, v̄).

Theorem 1.2. Let X be a Hilbert space. Let fi : X → IR be prox-regular at x̄ for
v̄ ∈ ∂fi(x̄), i = 1, 2. Assume that f1 and f2 have the same limiting subgradients in
a neighborhood of x̄, and that f1 is subdifferentially continuous at x̄ for v̄. Then f2
is subdifferentially continuous at x̄ for v̄ and there is a k in IR and ε > 0 such that
f1(x) = f2(x) + k for all x with the properties that ‖x − x̄‖ ≤ ε and x has a subgradient
v (v ∈ ∂f(x)) with ‖v − v̄‖ ≤ ε.
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The following examples show that the sudifferentially continuous assumption in Theorem
1.2 is necessary.

Example 1.3 (necessity of subdifferential continuity). Let

f1(x) =

{

0 if x ≤ 0,

1 if x > 0,
f2(x) =

{

0 if x ≤ 0,

2 if x > 0,

then

∂f1(x) = ∂pf1(x) = ∂f2(x) = ∂pf2(x) =

{

{0} if x 6= 0,

[0,∞) if x = 0.

These two functions are prox-regular but not subdifferentially continuous at x̄ = 0 for
v̄ = 0. We see that they do not differ by a constant in any neighborhood of (x̄, v̄).

The following example shows that Theorem 1.2 covers a much broader class of functions
than that of pln functions and provides an example that illustrates that not only does x
have to be close to x̄ but it has to have a subgradient that is close to v̄ (note that the
functions values are close since we have subdifferential continuity).

Example 1.4 (necessity of the closeness of the subgradients). Let

f1(x) =

{

0 if x ≤ 0,
√
x if x > 0,

f2(x) =

{

0 if x ≤ 0,

1 +
√
x if x > 0,

then

∂f1(x) = ∂pf1(x) = ∂f2(x) = ∂pf2(x) =











{0} if x < 0,

[0,∞) if x = 0,
1

2
√
x

if x > 0.

First, we claim that both f1 and f2 are prox-regular and subdifferentially continuous at
x̄ = 0 for v̄ = 0. To see this , take ε = 1

4
and for i = 1, 2, let Ti be the fi-attentive

ε-localization Ti of ∂fi at (x̄, v̄). Recall that for a function f , the f -attentive ε-localization
T of ∂f at (x̄, v̄) is

T (x) =

{
{

v ∈ ∂f(x)
∣

∣ ‖v − v̄‖ < ε
}

if ‖x− x̄‖ < ε and |f(x)− f(x̄)| < ε,

∅ otherwise.

An easy calculation gives,

Ti(x) =











{0} if − 1
4
< x < 0,

[0, 1
4
) if x = 0,

∅ if 0 < x < 1
4
.

Then the prox-regularity of fi, i = 1, 2, follows from the monotonicity of Ti. Indeed
Theorem 3.4 of [4] in Hilbert spaces and Theorem 3.2 of [17] in finite dimensional spaces
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state that a function is prox-regular if and only if an f -attentive ε-localization of the
subgradient mapping is r-monotone i.e. the localization plus r-times the identity mapping
is monotone (obviously if the localization itself is monotone then it is r-monotone). Since
f1 is continuous it remains to verify that f2 is subdifferentially continuous at x̄ = 0 for
v̄ = 0. Indeed, for any sequence (xn, vn) → (0, 0) with vn ∈ ∂f2(xn) eventually we have
f2(xn) = 0 = f2(0). Thus, f2 too is subdifferentially continuous at x̄ = 0 for v̄ = 0. Yet
f1 and f2 differ by different constants on any neighborhood of x̄ = 0. However, when we
restrict to points x that also have a close subgradient i.e, with ε = 1

4
, if ‖x− x̄‖ < ε but

‖v − v̄‖ < ε with v ∈ ∂f1(x) = ∂f2(x), then such x has to be in (−ε, 0] and we have
f1(x) = 0 = f2(x) for all x in (−ε, 0].

This example also reveals that Theorem 1.2 covers a much broader class of functions than
that of pln functions. For this, we only have to verify that f1 is not pln at x̄ = 0. Here
we make use of a corresponding subgradient characterization available for pln functions.

Theorem 1.5 (Levy, Poliquin and Thibault [13], Corollary 2.3). Let f : X → IR
be a l.s.c. function that is finite at x̄. The following are equivalent:

(a) f is primal-lower-nice at x̄.

(b) There exist positive constants ε, c and R such that

〈v1 − v2, x1 − x2〉 ≥ −r‖x1 − x2‖2

whenever vi ∈ ∂pf(xi), ‖vi‖ ≤ cr, r ≥ R and ‖xi − x̄‖ ≤ ε, i = 1, 2.

If f1 were pln at x̄ = 0 then there would be constants ε, c and R as in Theorem 1.5.
Then for any r > R, consider the mapping T formed by adding r times the identity to
the subgradient mapping of f1, (Note that the displayed inequality in (b) of Theorem 1.5
amounts to saying that T is monotone).

T (x) :=
1

2
√
x
+ rx for x ∈ (0, ε).

The critical points of T are given by T ′(x) = − 1

4x
3
2
+ r = 0, and attained at xm := 1

(4r)
2
3
.

Since T ′′(x) = 3

8x
5
2
> 0, xm is a local minimum for T . Now restrict the subgradients of f1

such that 1
2
√
x
≤ cr, i.e, x0 :=

1
4c2r2

≤ x. Then for T to be monotone on [x0, ε), xm has to

be less than or equal to x0. This requires that r
2 ≤ 1

2c3
. But, for the large values of r this

is impossible and this contradicts the monotonicity of T required by Theorem 1.5. This
confirms that f1 is not pln at x̄ = 0.

2. Proof of the main result

In the proof of our main result we use the Moreau envelopes and Proximal mappings to
go from one function to another. Recall that for a proper, l.s.c. function f : X → IR and
parameter value λ > 0, the Moreau envelope function, eλ and the proximal mapping, Pλ

are defined by

eλ(x) := inf
x′

{

f(x′) +
1

2λ

∥

∥x′ − x
∥

∥

2
}

,
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Pλ(x) := argmin
x′

{

f(x′) +
1

2λ

∥

∥x′ − x
∥

∥

2
}

.

Let f : X → IR be prox-regular at x̄ for v̄ ∈ ∂f(x̄). Then v̄ is actually a proximal
subgradient of f at x̄. In order to simplify our analysis, without any loss of generality,
we normalize to the case x̄ = 0, v̄ = 0 and f(0) = 0. Since our primary interest of f
and ∂f depend only on the local geometry of epi f around (x̄, f(x̄)), we may further, if
necessary, add to f the indicator of some ball with center at x̄ to make dom f be bounded.
By taking the radius of that ball small enough we can get the quadratic inequality for
v̄ ∈ ∂pf(x̄) to hold for all x. Thus we work under the baseline assumptions that

f is locally l.s.c. at 0 with f(0) = 0, and

r > 0 is such that f(x) ≥ − r
2

∥

∥x
∥

∥

2
for all x

}

(1)

which imply that

eλ(0) = 0 and Pλ(0) = {0} when λ ∈ (0, 1/r). (2)

First we extend some of the results of Propositions 4.2 and 4.3 of [17] to Hilbert spaces.
First, we require a lemma.

Lemma 2.1 ([17], Lemma 4.1)). Under assumptions (1), consider any λ ∈ (0, 1/r)
and let µ = (1− λr)−1. For any ρ > 0,

f(x′) +
1

2λ

∥

∥x′ − x
∥

∥

2 ≤ eλ(x) + ρ =⇒



























∥

∥x′
∥

∥ ≤ 2µ
∥

∥x
∥

∥+
√
2λµρ,

f(x′) ≤ 1

2λ

∥

∥x
∥

∥

2
+ ρ,

f(x′) ≥ −r

2

(

2µ
∥

∥x
∥

∥+
√

2λµρ
)2

.

(3)

Proof. The same proof of [17], Lemma 4.1 can be carried over to this Hilbertian case,
since the only requirement there was the norm be given by an inner product.

The results in the next two propositions can be found in [4] and [7].

Proposition 2.2. Under assumptions (1), consider any λ ∈ (0, 1/r). For any ε > 0
there is a neighborhood Vλ of x̄ = 0 such that

(a) eλ is Lipschitz continuous on Vλ with constant ε and bounded below by a quadratic
function,

(b)
∥

∥x′
∥

∥ < ε, |f(x′)| < ε and λ−1‖x− x′‖ < ε for all x′ ∈ Pλ(x) when x ∈ Vλ.

Proof (from [7]). (The proof given here differs from that of [4]. It also differs from
the proof given in Poliquin and Rockafellar [17], Proposition 4.2 (a) and (c) because the
argument given there relies on the existence of minimizers of a l.s.c. function over a
compact set, which is not true in the case of Hilbert spaces). Let µ = (1 − λr)−1 and
ε′ ∈ (0, ε). Choose δλ > 0 and ρ > 0 small enough that (2ε′ + 3δλ)/λ ≤ ε and

2µδλ +
√

2λµρ ≤ ε′,
1

2λ
δ2λ + ρ ≤ ε′,

r

2

(

2µδλ +
√

2λµρ
)2

≤ ε′,
δλ(1 + 2µ)

λ
≤ ε′,
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and let Vλ :=
{

x
∣

∣ ‖x‖ ≤ δλ
}

and C :=
{

x
∣

∣ ‖x‖ ≤ ε′
}

.

(a) Let x and y belong to Vλ. For any ρ > 0, by the definition of eλ(y) as an infimum,
there exists x′ such that

f(x′) +
1

2λ
‖x′ − y‖2 ≤ eλ(y) + ρ.

Then by Lemma 2.1 we have ‖x′‖ ≤ 2µ‖x‖+
√
2λµρ ≤ 2µδλ +

√
2λµρ ≤ ε′, thus x′ ∈ C.

We have

eλ(x)− eλ(y) ≤ f(x′) +
1

2λ
‖x′ − x‖2 − f(x′)− 1

2λ
‖x′ − y‖2 + ρ

=
1

2λ
‖x− y‖2 − 1

λ
〈x− y, x′ − y〉+ ρ

≤ 1

2λ
‖x− y‖2 + 1

λ
‖x− y‖‖x′ − y‖+ ρ

≤ K‖x− y‖+ ρ, (4)

where K is chosen so that K := (1/λ) sup{‖x‖+ 2‖z − x‖; x ∈ Vλ, z ∈ C} < ∞.

Indeed, we have K ≥ (1/λ){‖y‖+ 2‖x′ − y‖} for all y ∈ Vλ and x′ ∈ C and hence

‖x− y‖K ≥ 1

λ
{‖x− y‖‖y‖+ 2‖x− y‖‖x′ − y‖}.

We also have that ‖x− y‖K ≥ 1
λ
‖x‖‖x− y‖ because K ≥ 1

λ
‖x‖ for all x in Vλ. In adding

these inequalities together, we get the inequality in (4):

‖x− y‖K ≥ 1

2λ
{‖x− y‖(‖x‖+ ‖y‖) + 2‖x− y‖‖x′ − y‖}

≥ 1

2λ
‖x− y‖2 + 1

λ
‖x− y‖‖x′ − y‖.

And this constant K cannot be bigger than ε:

K =
1

λ
sup{‖x‖+ 2‖z − x‖; x ∈ Vλ, z ∈ C} (5)

≤ 1

λ
sup{‖x‖+ 2(‖z‖+ ‖x‖); x ∈ Vλ, z ∈ C} (6)

≤ 1

λ
(3δλ + 2ε′) ≤ ε. (7)

Reversing the roles of x and y, and then letting ρ↘0 in (4) shows that eλ is Lipschitz of
rank ε on Vλ.

The asserted lower bound for eλ follows from

eλ(x) = inf
x′

{

f(x′) +
1

2λ
‖x′ − x‖2

}

≥ inf
x′

{

−r

2
‖x′‖2 + 1

2λ
‖x′ − x‖2

}

=
1
2λ

r
2

1
2λ

− r
2

‖x‖2

= − r

2(1− rλ)
‖x‖2.
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(b) When x′ ∈ Pλ(x), then Lemma 2.1 is true for every ρ > 0 which implies

‖x′‖ ≤ 2µ‖x‖ ≤ 2µδλ ≤ ε′ < ε,

f(x′) ≤ 1

2λ
‖x‖2 ≤ 1

2λ
δ2λ ≤ ε′ < ε,

f(x′) ≥ −r

2
(2µ‖x‖)2 ≥ −2rµ2δ2λ ≥ −ε′ > −ε,

and also

1

λ
‖x− x′‖ ≤ 1

λ
(‖x‖+ ‖x′‖)

≤ 1

λ
(1 + 2µ)‖x‖

≤ δλ
λ
(1 + 2µ) ≤ ε′ < ε.

Proposition 2.3. Under assumptions (1) there exists for each λ ∈ (0, 1/r) a neighbor-
hood Vλ of x̄ = 0 on which

x′ ∈ Pλ(x) =⇒ λ−1(x− x′) ∈ ∂f(x′), i.e., x′ ∈ (I + λ∂f)−1(x).

Proof. Recall that the existence of a proximal subgradient at x′ corresponds to the
existence of a “local quadratic supportÔ to f at x′. When x′ ∈ Pλ(x) we have

f(x′′) +
1

2λ
‖x′′ − x‖2 ≥ f(x′) +

1

2λ
‖x′ − x‖2 for all x′′,

so that f(x′′)−f(x′) ≥ q(x′′) for the quadratic function q(x′′) =
(

‖x′−x‖2−‖x′′−x‖2
)

/2λ.
We have q(x′) = 0 and Dq(x′) = λ−1(x − x′), so q forms a local quadratic support to f
at x′. Thus λ−1(x− x′) ∈ ∂pf(x

′).

When we assume f to be prox-regular, the above propositions with the r-monotonicity of
the localization of the subgradient mapping entail the C1+ smoothness of eλ and the local
single-valuedness of Pλ as seen by the next theorem. The finite-dimensional case can be
found in [17], Theorem 4.4. The extension to Hilbert spaces is given in [4] Proposition
5.3.

Theorem 2.4 ([17], Prop. 5.3). Suppose that f is prox-regular at x̄ = 0 for v̄ = 0 with
respect to ε and r, in particular with (1) holding. Let T be the f -attentive ε-localization of
∂f around (0, 0). Then for each λ ∈ (0, 1/r) there is a neighborhood Vλ of x̄ = 0 such that,
on Vλ, the mapping Pλ is single-valued and Lipschitz continuous with constant 1/(1−λr)
and

Pλ(x) = (I + λT )−1(x) = [singleton],

while the function eλ is of class C1+ with Deλ(0) = 0 and

Deλ(x) =
x− Pλ(x)

λ
= λ−1

[

I − [I + λT ]−1] (x).

We can now prove our main result.
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Proof of Theorem 1.2. Without loss of generality we normalize to the case x̄ = 0,
v̄ = 0 with

fi is locally l.s.c. at 0 with fi(0) = 0, and r > 0

is such that fi(x) ≥ − r
2

∥

∥x
∥

∥

2
for all x, and i = 1, 2

}

(5)

which imply that

eiλ(0) = 0 and P i
λ(0) = {0} when λ ∈ (0, 1/r) and i = 1, 2, (6)

where eiλ and P i
λ are the Moreau envelope function and the proximal mapping of fi,

respectively.
We may further assume that there exists ε > 0 such that f1 and f2 are prox-regular at
x̄ = 0 for v̄ = 0 with respect to the same r with (5) holding. For i = 1, 2 let Ti be the
fi-attentive ε-localization Ti of ∂fi around (0, 0). We can assume that Ti + rI (where i
is the identity mapping) is monotone; see [4] Theorem 3.4). Then, by Theorem 2.4, for
each λ ∈ (0, 1/r) and i = 1, 2 there exists δλ > 0 such that, on Vλ := {x ; ‖x‖ < δλ}, the
mappings P i

λ are single-valued and Lipschitz continuous with constant 1/(1− λr) and

P i
λ(x) = (I + λTi)

−1(x) = [singleton], (7)

while the functions eiλ is of class C1+ with Deiλ(0) = 0 and

Deiλ(x) =
x− P i

λ(x)

λ
= λ−1

[

I − [I + λTi]
−1] (x), (8)

and the properties in Propositions 2.2 and 2.3 hold.

Decreasing ε further if necessary, we can arrange that f1 and f2 have the same subgradients
on εIB, where ε > 0 comes from the definition of prox-regularity of fi.

Claim 1. For each λ ∈ (0, 1/r) , we have P 1
λ (x) = P 2

λ (x) = [singleton], and e1λ(x) = e2λ(x)
on Vλ.

Proof of Claim 1. First notice that the proximal mappings P i
λ, i = 1, 2 are single-valued

on Vλ by (7). Let any x in Vλ and xi = P i
λ(x), i = 1, 2. Then by Propositions 2.2(b) and

2.3 we have ‖x1‖ < ε, |f1(x1)| < ε and ‖v1‖ < ε, where v1 =
1
λ
(x−x1) ∈ ∂f1(x1). With the

same reasoning x2 = P 2
λ (x) gives ‖x2‖ < ε and ‖v2‖ < ε, where v2 =

1
λ
(x−x2) ∈ ∂f2(x2).

Since ‖x2‖ < ε we have v2 ∈ ∂f2(x2) = ∂f1(x2). Since f1 is subdifferentially continuous
at x̄ = 0 , we may also assume that |f1(x2)| < ε. The monotonicity of Ti + rI implies, for
the pairs (x1, v1) and (x2, v2), that

〈[

x− x1

λ

]

−
[

x− x2

λ

]

, x1 − x2

〉

≥ −r
∥

∥x1 − x2

∥

∥

2
,

hence −λ−1
∥

∥x1 − x2

∥

∥

2 ≥ −r
∥

∥x1 − x2

∥

∥

2
. Then (1 − λr)‖x1 − x2‖2 ≤ 0, so x1 = x2.

Therefore, we have P 1
λ (x) = P 2

λ (x) and by (8), De1λ(x) = De2λ(x) on Vλ. Thus we conclude
e1λ(x) = e2λ(x) since eiλ(0) = 0 when λ ∈ (0, 1/r) and i = 1, 2 by (6).

Claim 2. For all x in dom ∂f1 ∩ (δλ/4)IB and v in ∂f1(x) with 0 < δλ/4 < ε and λ < 3
such that ‖v‖ < (δλ/4) < ε we have P 1

λ (zλ) = P 2
λ (zλ) = {x}, where zλ = x+ λv.

Proof of Claim 2. Take any x in dom ∂f1 ∩ (δλ/4)IB and restrict λ < 3. Then

‖zλ‖ ≤ ‖x‖+ λ‖v‖ <
δλ
4

+ λ
δλ
4

= (1 + λ)
δλ
4

< 4(
δλ
4
) = δλ,
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so zλ belongs to Vλ.

Let x̃ be an element of P 1
λ (zλ) = P 2

λ (zλ) (equality due to Claim 1). Then by Propositions
2.2(b) and 2.3 we have ‖x̃‖ < ε, |f1(x̃)| < ε and ‖ṽ‖ < ε, where ṽ = 1

λ
(zλ − x̃) ∈ ∂f1(x̃).

By our hypothesis v =
zλ−x

λ
∈ ∂f1(x) with ‖v‖ < (δλ/4) < ε and ‖x‖ < (δλ/4) < ε. Since

f1 is subdifferentially continuous at x̄ = 0 , we may also assume that |f1(x)| < ε. Again
the monotonicity of Ti + rI gives for the pairs (x̃, ṽ) and (x, v) that

〈[

zλ − x̃

λ

]

−
[

zλ − x

λ

]

, x̃− x

〉

≥ −r
∥

∥x̃− x
∥

∥

2
,

hence −λ−1
∥

∥x̃− x
∥

∥

2 ≥ −r
∥

∥x̃− x
∥

∥

2
. Then (1− λr)‖x̃− x‖2 ≤ 0, so x̃ = x. Thus we have

P 1
λ (zλ) = P 2

λ (zλ) = {x} as claimed.

Claim 3. If x belongs to dom ∂f1 with x near x̄ = 0 and x has a subgradient v ∈ ∂f1(x) =
∂f2(x) close to v̄ = 0, then f1(x) = f2(x).

Proof of Claim 3. For λ < 3, take any x in dom ∂f1 ∩ (δλ/4)IB and v in ∂f1(x) with
‖v‖ < (δλ/4) < ε. We then have zλ = x + λy in Vλ. Then by Claims 1 and 2, we get
P 1
λ (zλ) = P 2

λ (zλ) = {x} and e1λ(zλ) = e2λ(zλ). This means

f1(x) +
1

2λ
‖x− zλ‖2 = f2(x) +

1

2λ
‖x− zλ‖2,

and hence f1(x) = f2(x). This completes the Claim and hence the Theorem.
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