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This paper analyzes inequality systems with an arbitrary number of proper lower semicontinuous convex
constraint functions and a closed convex constraint subset of a locally convex topological vector space.
More in detail, starting from well-known results on linear systems (with no constraint set), the paper
reviews and completes previous works on the above class of convex systems, providing consistency the-
orems, two new versions of Farkas’ lemma, and optimality conditions in convex optimization. A new
closed cone constraint qualification is proposed. Suitable counterparts of these results for cone-convex
systems are also given.

1. Introduction

This paper mainly deals with systems of the form

σ := {ft(x) ≤ 0, t ∈ T ; x ∈ C},

where T is an arbitrary (possibly infinite) index set, C ⊂ X, X is a locally convex
Hausdorff topological vector space, and ft : X → R ∪ {+∞} for all t ∈ T . We assume
that σ satisfies the following mild condition:

(A) C is a nonempty closed convex subset of X and ft is a proper lower semicontinuous
(l.s.c., in brief) convex function, for all t ∈ T .

In many applications C = X, in which case we write σ := {ft(x) ≤ 0, t ∈ T}. The
system σ is called semi-infinite if either the dimension of X or the number of constraints
(|T |) is finite. If both cardinal numbers are finite, then σ is called ordinary or finite.
Observe that when all the functions ft, t ∈ T , are finite valued, σ can be reformulated as
{g(x) ∈ −RT

+; x ∈ C}, where RT
+ is the positive cone in RT and g : X → RT is defined as

(g (x)) (t) := ft(x) for x ∈ X and t ∈ T . It can easily be observed that g satisfies

g(αx1 + (1− α)x2)− αg(x1)− (1− α)g(x2) ∈ −RT
+,
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for every x1, x2 ∈ X and every α ∈ [0, 1]. This will be an example of the class of systems
that we introduce next.

Let X and Y be locally convex Hausdorff topological vector spaces, and let S be a convex
cone in Y , not necessarily solid (i.e., with nonempty interior). The mapping g : X → Y
is called S-convex if

g(αx1 + (1− α)x2)− αg(x1)− (1− α)g(x2) ∈ −S,

for every x1, x2 ∈ X and every α ∈ [0, 1]. We associate with S, g, and a constraint set
C ⊂ X, the cone-convex system

σ∗ := {g(x) ∈ −S; x ∈ C}.

The focus of the paper is on systems satisfying (A). Our approach is based on lineariza-
tion; i.e., the original system is replaced by a linear equivalent one obtained via the Fenchel
conjugates of all the involved functions. In this way it is possible to apply well-known
consistency and Farkas-like theorems for linear systems. More in detail, Section 2 contains
the necessary notations, recalls some basic results on convexity, and states the required
results on linear systems. In Section 3 some consistency theorems are given, Section 4
provides a new nonasymptotic version of Farkas’ lemma for σ under a new weak regularity
condition, and Section 5 yields a Kuhn-Tucker optimality condition for convex programs
in which only a finite number of constraints are present. The results in Sections 3, 4 and
5, which are valid under very general regularity conditions, are applied to an important
class of cone-convex systems thanks to the fact that they can be reformulated as convex
systems satisfying (A).

Most results in the paper involve either the topological closure of certain subsets of the
topological dual of X, X∗, endowed with the weak∗-topology, or closures of subsets of the
product space X∗×R, or the cone R(T )

+ of the so-called generalized sequences λ = (λt)t∈T
such that λt ∈ R+, for each t ∈ T, and with only finitely many λt different from zero.

2. Preliminaries

For a set D ⊂ X, the closure of D will be denoted clD. The convex hull of D will be
represented by convD, and the convex cone generated by D∪{0} by coneD. In the sequel,
and for the sake of convenience, the closure with respect to the weak∗-topology of a subset
A of the dual space X∗ will be denoted by clA as well (which specially makes sense when
A is convex).

Let further I be an arbitrary index set, {Xi, i ∈ I} be a family of subsets of X, and let =
be the collection of all the nonempty finite subsets of I. Then

cone

(

⋃

i∈I

Xi

)

=
⋃

J∈=

cone

(

⋃

j∈J

Xj

)

=
⋃

J∈=

(

∑

j∈J

coneXj

)

. (1)

Lemma 2.1. Let A be a nonempty subset of X and let B be a convex cone of X containing
the vector zero. Then

cone(A+B) ⊂ cone(A ∪B) ⊂ cl cone(A+B). (2)
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Proof. We have to prove only the second inclusion. Since 0 ∈ B, A ⊂ A+B. It remains
to be proved that B ⊂ cl cone(A+B). Let b ∈ B. If we take an arbitrary a ∈ A, and from
the assumption on B, a+nb ∈ A+B for any n ∈ N. It follows that n−1a+b ∈ cone(A+B)
for any n ∈ N. Letting n → ∞ we get b ∈ cl cone(A+B).

It is worth noting, from (2), that if cone(A+B) is closed then cone(A∪B) = cone(A+B)
is closed. The converse is not true as the following simple example shows.

Example 2.2. Let X = R2, B = {0}×R+, and A = {1}×R+. Then cone(A∪B) = R2
+

is closed whereas cone(A + B) = (R++ × R+) ∪ {(0, 0)}, which is not a closed subset of
R2

+.

For a nonempty closed convex set C in X, the recession cone of C, denoted by C∞, is
defined in [17] as

C∞ :=
⋂

ε>0

[

cl
⋃

0<λ<ε

λC

]

,

where λC := {λc | c ∈ C}. According to [17, Theorem 2A], C∞ can be characterized
algebraically as

C∞ = {z ∈ X | C + z ⊂ C}

=

{

z ∈ X

∣

∣

∣

∣

there exists some c ∈ C such that
c+ λz ∈ C for every λ ≥ 0

}

(3)

= {z ∈ X | c+ λz ∈ C for all c ∈ C and every λ ≥ 0} .

For a set D ⊂ X, the indicator function δD is defined as δD(x) = 0 if x ∈ D and
δD(x) = +∞ if x /∈ D. If D is nonempty, closed and convex, then δD is a proper
l.s.c. convex function. The normal cone of D at x is given by

ND (x) = {u ∈ X∗ | u (y − x) ≤ 0 for all y ∈ D} ,

when x ∈ D, and ND (x) = ?, otherwise.

Now let f : X → R∪ {+∞} be a proper l.s.c. convex function. The effective domain, the
graph, and the epigraph of f are

dom f = {x ∈ X | f(x) < +∞},

gphf = {(x, f (x)) ∈ X × R | x ∈ dom f} ,
and

epi f = {(x, γ) ∈ X × R | x ∈ dom f, f(x) ≤ γ},
respectively, whereas the conjugate function of f, f∗ : X∗ → R ∪ {+∞}, is defined by

f ∗(v) = sup{v(x)− f(x) | x ∈ dom f}.

In particular, it is obvious that the support function of D ⊂ X is the conjugate of the
indicator function of D, and

δ∗D (u) = δ∗cl(convD) (u) = sup
x∈D

u(x), u ∈ X∗.
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It is well-known that f ∗ is also a proper l.s.c. convex function and its conjugate, denoted
by f ∗∗, coincides with f . We also define the subdifferential of f at x ∈ dom f as

∂f (x) = {u ∈ X∗ | f (y) ≥ f (x) + u (y − x) ∀y ∈ X} ,

and the recession function of f, denoted by f∞, as the proper l.s.c. sublinear function
verifying

epi f∞ = (epi f)∞.

For z ∈ X and µ ∈ R, (4) gives rise to the following equivalence:

f∞(z) ≤ µ ⇔ f(x+ λz) ≤ f(x) + λµ, for all x ∈ X and all λ ≥ 0.

Thus, as a consequence of the so-called property of increasing slopes of the convex func-
tions, we have

f∞(z) ≤ µ ⇔ sup
λ>0

f(x+ λz)− f(x)

λ
= lim

λ→∞

f(x+ λz)− f(x)

λ
≤ µ, for all x ∈ X,

so that

f∞(z) = lim
λ→∞

f(x+ λz)− f(x)

λ
, for all x ∈ X.

Hence
{z ∈ X | f∞(z) ≤ 0} = {x ∈ X | f(x) ≤ η}∞, (4)

for every η such that the lower sublevel set {x ∈ X | f(x) ≤ η} is nonempty. Consequently,
f has bounded lower sublevel sets when {z ∈ X | f∞(z) ≤ 0} = {0} and dimX < ∞,
but this statement is no longer true in the infinite-dimensional setting. Moreover, [17,
Corollary 3D] establishes the following useful identity

f∞ = δ∗cl(domf∗). (5)

The following lemma was established in [3, Theorem 3.1] for proper l.s.c. convex functions
defined on a Banach space. However, the result still holds for locally convex vector spaces
without any change in the proof.

Lemma 2.3 (Convex subdifferential sum formulae). Let g, h : X → R ∪ {+∞} be
proper l.s.c. convex functions. If epig∗ + epih∗ is weak∗-closed then for each a ∈ domg ∩
domh,

∂(g + h)(a) = ∂g(a) + ∂h(a).

It is worth noting that the conclusion of Lemma 2.3 still holds if one of the functions g or
h is continuous at one point in domg ∩ domh. In fact, if, for instance, g is continuous at
c ∈ domg, it is clear that c ∈ int(domg)∩domh, and this implies 0 ∈ core(domg−domh),
which, in turn, entails that cone(domg− domh) is a closed space. It then follows from [3,
Proposition 3.1] that the set epig∗ + epih∗ is weak∗-closed.

Finally, in this introduction, we consider linear systems of the form

σ := {at(x) ≤ bt, t ∈ T},
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where at ∈ X∗ and bt ∈ R, for all t ∈ T (observe that σ satisfies condition (A), with
C = X). We say that the system σ is consistent if there exists z ∈ X satisfying all the
inequalities in σ. If σ is consistent, an inequality a(x) ≤ b, a ∈ X∗ and b ∈ R, is a
consequence of σ if a(z) ≤ b for all z ∈ X solution of σ. Now we recall two well-known
results characterizing the consistency and the consequent inequalities of σ in terms of
(at, bt) ∈ X × R, t ∈ T.

Lemma 2.4 (Consistency theorem). The following statements are equivalent to each
other:

(i) σ = {at(x) ≤ bt, t ∈ T} is consistent;

(ii) (0,−1) /∈ cl cone {(at, bt), t ∈ T} ;
(iii) cl cone {(at, bt), t ∈ T ; (0, 1)} 6= cl cone {at, t ∈ T} × R.

Lemma 2.5 (Farkas’ lemma). If σ = {at(x) ≤ bt, t ∈ T} is consistent, v ∈ X∗ and
α ∈ R, then the following statements are equivalent:

(i) v(x) ≤ α is a consequence of σ;

(ii) (v, α) ∈ cl cone {(at, bt), t ∈ T ; (0, 1)} .

[(i)⇔(ii)] and [(i)⇔(iii)] in Lemma 2.4 are equivalent to [5, Theorem 1] and [8, Theorem
4.2], respectively, whereas Lemma 2.5 is equivalent to [4, Theorem 2] (actually these
papers consider systems of the form {x (at) ≤ bt, t ∈ T}, where at ∈ X and the space of
the unknown x is X∗). Since the consistency is preserved by the aggregation of a trivial
inequality (with a = 0 and b ≥ 0), it is obvious that the cone in Lemma 2.4(ii) can be
replaced with the cone in Lemma 2.5(ii) (this is [4, Theorem 1]).

3. Consistency

Assume that σ = {ft(x) ≤ 0, t ∈ T ; x ∈ C} satisfies the condition (A). Since ft is a
proper l.s.c. convex function, we have f ∗∗

t = ft for all t ∈ T . Therefore, for each t ∈ T ,
we have

ft(x) ≤ 0 ⇐⇒ f ∗∗
t (x) ≤ 0

⇐⇒ ut(x)− f ∗
t (ut) ≤ 0, ∀ut ∈ domf ∗

t

⇐⇒ ut(x) ≤ f ∗
t (ut), ∀ut ∈ domf ∗

t

⇐⇒ ut(x) ≤ f ∗
t (ut) + α, ∀ut ∈ domf ∗

t and ∀α ∈ R+.

On the other hand x ∈ C can be expressed as δC(x) ≤ 0, with δC proper, l.s.c. and convex,
so that

δC(x) ≤ 0 ⇐⇒ u(x) ≤ δ∗C(u), ∀u ∈ domδ∗C
⇐⇒ u(x) ≤ δ∗C(u) + β, ∀u ∈ domδ∗C and ∀β ∈ R+.

Then the following linear systems have the same solutions in X as σ (so that they are
called linearizations of σ):

σ1 :=

{

ut(x) ≤ f ∗
t (ut), ut ∈ domf ∗

t , t ∈ T
u(x) ≤ δ∗C(u), u ∈ domδ∗C

}

,
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and

σ2 :=

{

ut(x) ≤ f ∗
t (ut) + α, ut ∈ domf ∗

t , t ∈ T, α ∈ R+

u(x) ≤ δ∗C(u) + β, u ∈ domδ∗C , β ∈ R+

}

.

Theorem 3.1. Let σ = {ft(x) ≤ 0, t ∈ T ;x ∈ C} be a convex system satisfying condition
(A). Then the following statements are equivalent to each other:

(i) σ is consistent;

(ii) (0,−1) /∈ cl cone
{⋃

t∈T gphf ∗
t ∪ gphδ∗C

}

;

(iii) (0,−1) /∈ cl cone
{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

;

(iv) cl cone
{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

6= cl cone
{⋃

t∈T domf ∗
t ∪ domδ∗C

}

× R.

Proof. The equivalence between (i) and (ii) is straightforward consequence of [(i)⇐⇒(ii)]
in Lemma 2.4, taking into account that the set of coefficient vectors of σ1 is

{(ut, f
∗
t (ut)), ut ∈ domf ∗

t , t ∈ T ; (u, δ∗C(u)), u ∈ domδ∗C} =
⋃

t∈T

gphf ∗
t ∪ gphδ∗C .

Now observe that the set of coefficient vectors of σ2 is

{(ut, f
∗
t (ut) + α), ut ∈ domf ∗

t , t ∈ T, α ≥ 0; (u, δ∗C(u) + β), u ∈ domδ∗C , β ≥ 0}

=
⋃

t∈T

epif ∗
t ∪ epiδ∗C .

Hence, by the same argument as before, σ is consistent if and only if

(0,−1) /∈ cl cone

{

⋃

t∈T

epif ∗
t ∪ epiδ∗C

}

,

so that [(i)⇐⇒(iii)] holds.

Finally, [(i)⇐⇒(iv)] follows from [(i)⇐⇒(iii)] in Lemma 2.4, applied to σ1, taking into
account the identity

cone

[

⋃

t∈T

gphf ∗
t ∪ gphδ∗C ∪ {(0, 1)}

]

= cone

{

⋃

t∈T

epif ∗
t ∪ epiδ∗C

}

. (6)

Observe that, according to Lemma 2.1 (since epiδ∗C is a convex cone containing zero), we
have

cone

{

⋃

t∈T

epif ∗
t + epiδ∗C

}

⊂ cone

{

⋃

t∈T

epif ∗
t ∪ epiδ∗C

}

, (7)

and

cl cone

{

⋃

t∈T

epif ∗
t ∪ epiδ∗C

}

= cl cone

{

⋃

t∈T

epif ∗
t + epiδ∗C

}

. (8)

From (8), it is possible to replace, in statements (iii) and (iv) of Theorem 3.1, cone
{⋃

t∈T
epif ∗

t ∪ epiδ∗C} with cone
{⋃

t∈T epif ∗
t + epiδ∗C

}

. In particular, if C = X = Rn, then
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epiδ∗C = {0}×R+ and [(i)⇐⇒(iii)] means that σ = {ft(x) ≤ 0, t ∈ T} is consistent if and
only if

(0,−1) /∈ cl cone

{

⋃

t∈T

epif ∗
t ∪ ({0} × R+)

}

= cl cone

(

⋃

t∈T

epif ∗
t

)

(this is [6, Proposition 3.1]). Similarly, from [(i)⇐⇒(ii)], it is easy to prove that, if C = X,
then σ = {ft(x) ≤ 0, t ∈ T} is consistent if and only if (0,−1) /∈ cl cone

(⋃

t∈T gphf ∗
t

)

(this is [9, Theorem 3]).

We have observed that, if K is either

cone

{

⋃

t∈T

gphf ∗
t ∪ gphδ∗C

}

or cone

{

⋃

t∈T

epif ∗
t ∪ epiδ∗C

}

,

then

{v (x) ≤ α, (v, α) ∈ K}

is a linearization of σ. The same is true for

cone

{

⋃

t∈T

epif ∗
t + epiδ∗C

}

,

by (7), (8), and Lemma 2.5. These assertions come from the fact that the aggregation
of constraints which are consequent relations of a consistent system does not modify its
solution set.

The following results involve two desirable properties of σ = {ft(x) ≤ 0, t ∈ T ;x ∈ C} and
a certain convex cone, K ⊂ X∗ × R, such that {v (x) ≤ α, (v, α) ∈ K} is a linearization
of σ:

(C) K is weak∗-closed;

(D) K is solid if X is infinite dimensional, and

C∞ ∩ {x ∈ X | f∞
t (x) ≤ 0, t ∈ T} = {0}. (9)

Notice that, by (7) and (8), if (C) holds for cone
{⋃

t∈T epif ∗
t + epiδ∗C

}

, then it also holds
for cone

{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

, but the converse statement is not true; i.e., the closed cone
constraint qualification (C) is strictly weaker for cone

{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

.

Example 3.2. Consider C = X = R and σ = {f (x) = x ≤ 0}. Then f ∗ = δ{1}
and δ∗C = δ{0}, so that (C) holds for cone

{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

whereas it fails for
cone

{⋃

t∈T epif ∗
t + epiδ∗C

}

(recall Example 2.2). On the other hand, since C∞ = R and
f∞ (x) = x, we have {x ∈ C∞ | f∞(x) ≤ 0} = ]−∞, 0] 6= {0} so that (D) cannot hold
independently of K.

Concerning the couple of cones formed by cone
{⋃

t∈T gphf ∗
t ∪ gphδ∗C

}

and cone
{⋃

t∈T
epif ∗

t ∪ epiδ∗C}, we can have that (C) holds for exactly one of them. The following example
shows the nontrivial part of this statement.
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Example 3.3. Consider C = X = R2 and the inconsistent system

σ =
{

ft (x) = tx1 + t2x2 + 1 ≤ 0, t ∈ [−1, 1]
}

.

Then

cone

{

⋃

t∈T

gphf ∗
t ∪ gphδ∗C

}

= cone
{(

t, t2,−1
)

, t ∈ [−1, 1]
}

is closed whereas

cone

{

⋃

t∈T

epif ∗
t ∪ epiδ∗C

}

= cone

[

⋃

t∈T

gphf ∗
t ∪ gphδ∗C ∪ {(0, 0, 1)}

]

is not closed, so that (C) holds for cone
{⋃

t∈T gphf ∗
t ∪ gphδ∗C

}

but not for
cone

{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

. Let us observe that (D) also fails since

{x ∈ C∞ | f∞
t (x) ≤ 0, t ∈ [−1, 1]} =

{

x ∈ C∞ | tx1 + t2x2 ≤ 0, t ∈ [−1, 1]
}

= {0} × ]−∞, 0] .

It is worth noting that the system in Example 3.3 is inconsistent. The following proposi-
tion shows that if σ is consistent and (C) holds for cone

{⋃

t∈T gphf ∗
t ∪ gphδ∗C

}

, then it
also holds for cone

{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

.

Proposition 3.4. If σ is consistent and cone
{⋃

t∈T gphf ∗
t ∪ gphδ∗C

}

is weak∗-closed, then
cone

{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

is also weak∗-closed.

Proof. In fact, since (0,−1) /∈ cone
{⋃

t∈T gphf ∗
t ∪ gphδ∗C

}

, this cone being weak∗-closed
by hypothesis, and since cone {(0, 1)} is weak∗-closed and locally compact (because it is
finite-dimensional) and (6) holds, we get the conclusion from the well-known Dieudonné
theorem (see, for instance, [21, Theorem 1.1.8]).

The regularity condition (C), with K := cone
{⋃

t∈T epif ∗
t + epiδ∗C

}

, was introduced in
[13] for the case where X is a Banach space and all the functions involved are finite
valued, and it is called the closed cone constraint qualification. It is worth emphasizing
that this regularity condition is strictly weaker than several known interior type regularity
conditions (for more details, see [13]). In the particular case that X = Rn, condition (C)
is called Farkas-Minkowski constraint qualification and plays a crucial role in convex semi-
infinite optimization (see [7]). When σ is linear and X = Rn, cone

{⋃

t∈T gphf ∗
t ∪ gphδ∗C

}

and cone
{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

are called 2nd moment cone and characteristic cone of σ,
respectively (see, e.g. [7]). The recession condition (9) appeared in [2], in relation with
the so-called limiting Lagrangian. Another constraint qualification based on the use of
recession directions was introduced in [14, Theorem 3.2].

Theorem 3.5 (Generalized Fan’s theorem). Suppose that σ = {ft(x) ≤ 0, t ∈ T ; x ∈
C} satisfies (A) and let K be either cone

{⋃

t∈T gphf ∗
t ∪ gphδ∗C

}

or cone
{⋃

t∈T epif ∗
t

∪epiδ∗C} . If either (C) or (D) holds for K, then the following statements are equivalent:

(i) σ is consistent;

(ii) (0,−1) /∈ K;
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(iii) For any λ ∈ R(T )
+ , there exists xλ ∈ C such that

∑

t∈T

λtft(xλ) ≤ 0.

Proof. [(i) =⇒ (iii)] This implication is obvious.

[(iii) =⇒ (ii)] We shall prove this implication without using any regularity condition.

Suppose that (iii) holds and assume, on the contrary, that (ii) does not hold, i.e., (0,−1) ∈
K. Since

cone

{

⋃

t∈T

gphf ∗
t ∪ gphδ∗C

}

⊂ cone

{

⋃

t∈T

epif ∗
t ∪ epiδ∗C

}

,

we can suppose that

(0,−1) ∈ cone

{

⋃

t∈T

epif ∗
t ∪ epiδ∗C

}

= cone

{

⋃

t∈T

epif ∗
t

}

+ epiδ∗C ,

so that, by (1), there exist λ ∈ R(T )
+ , ut ∈ domf ∗

t and αt ≥ 0, for each t ∈ T , v ∈ domδ∗C ,
and β ≥ 0, such that only finitely many λt are positive, and the following equation holds

(0,−1) =
∑

t∈T

λt(ut, f
∗
t (ut) + αt) + (v, δ∗C(v) + β).

Hence, −1 =
∑

t∈T λt(f
∗
t (ut)+αt)+δ∗C(v)+β and 0 =

∑

t∈T λtut(x)+v(x), for all x ∈ X,
so that

1 =
∑

t∈T

λt(ut(x)− f ∗
t (ut)− αt) + v(x)− δ∗C(v)− β

≤
∑

t∈T

λtft(x) + δC(x)−
∑

t∈T

λtαt − β.

Thus,

1 ≤ 1 +
∑

t∈T

λtαt + β ≤
∑

t∈T

λtft(x)

for all x ∈ C, which contradicts (iii).

[(ii) =⇒ (i)] Assume that (ii) holds. If (C) is satisfied (i.e., K is weak∗-closed), (i) and
(ii) are equivalent by Theorem 3.1.

Now assume that (D) holds. Consider, first, that

(0,−1) /∈ K = cone

{

⋃

t∈T

gphf ∗
t ∪ gphδ∗C

}

.

We can apply the weak separation theorem ([10, 11E] if X is infinite dimensional) to
conclude the existence of z ∈ X and α ∈ R, not both simultaneously equal to zero, such
that

0(z) + (−1)α = −α ≥ 0,
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at the same time that

ut(z) + f ∗
t (ut)α ≤ 0, ∀ut ∈ domf ∗

t , ∀t ∈ T,
v(z) + δ∗C(v)α ≤ 0, ∀v ∈ domδ∗C .

If α = 0, we get

ut(z) ≤ 0, ∀ut ∈ domf ∗
t , ∀t ∈ T,

v(z) ≤ 0, ∀v ∈ domδ∗C .

(5) yields
f∞
t (z) = δ∗cl(domf∗

t )
(z) = δ∗domf∗

t
(z) ≤ 0, ∀t ∈ T,

and
δ∞C (z) = δ∗cl(domδ∗C)(z) = δ∗domδ∗C

(z) ≤ 0.

Due to (4) one has

{z ∈ X | δ∞C (z) ≤ 0} = {x ∈ X | δC(x) ≤ 0}∞ = C∞,

and we obtain a contradiction because z 6= 0 and

z ∈ C∞ ∩ {u ∈ X | f∞
t (u) ≤ 0, t ∈ T} .

Thus, we have proved that α < 0 and ẑ := z
|α| satisfies

ut(ẑ)− f ∗
t (ut) ≤ 0, ∀ut ∈ domf ∗

t , ∀t ∈ T,
v(ẑ)− δ∗C(v) ≤ 0, ∀v ∈ domδ∗C .

Taking suprema in the left-hand sides we get ft(ẑ) ≤ 0, for all t ∈ T , and δC(ẑ) ≤ 0 (i.e.,
ẑ ∈ C). Hence ẑ is a solution of σ and (i) holds.

The proof of this implication is the same, under (D), when

(0,−1) /∈ K = cone

{

⋃

t∈T

epif ∗
t ∪ epiδ∗C

}

.

Obviously, if (C) holds for K := cone
{⋃

t∈T epif ∗
t + epiδ∗C

}

, then (i), (ii) and (iii) are
also equivalent by (7), (8) and the own Theorem 3.5.

The equivalence [(i) ⇔ (iii)] was proved by the first time in [1] under the assumption that
X = Rn and C is compact (so that (9) trivially holds). The compactness was replaced
by the weaker recession condition (9), which is equivalent to (D) in this context (as far
as (0,−1) can be weakly separated from K even though K is nonsolid), in [18, Theorem
21.3]. The simpler proof of this extension in [15, Theorem 3.1] has been adapted to an
arbitrary X in Theorem 3.5.

The first infinite dimensional version of [(i) ⇔ (iii)] was proved in [5, Theorem 1], as-
suming that all the functions ft, t ∈ T , are real-valued and C is compact. Since then,
Fan’s theorem has been extended to more general situations under different types of as-
sumptions. For instance, the extension to functions ft : X → R∪{+∞}, maintaining the
compactness assumption, is [19, Theorem 2], where different applications can be found.
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Now, assume that the cone-convex system σ∗ := {g(x) ∈ −S; x ∈ C} satisfies the
following condition:

(B) C is a nonempty closed convex subset of X, the convex cone S is closed (not neces-
sarily with nonempty interior), and the mapping g is continuous and S-convex.

Then, for each v belonging to the dual cone S+, v ◦ g : X → R defined by (v ◦ g)(x) :=
v(g(x)), is a continuous convex function. Moreover, it is clear that

g(x) ∈ −S ⇐⇒ (v ◦ g)(x) ≤ 0, for all v ∈ S+.

Therefore the cone-convex system σ∗ has the same solutions as the convex system

σ := {(v ◦ g)(x) ≤ 0, v ∈ S+; x ∈ C},

with σ satisfying condition (A). Consider the constraint qualifications (C) and (D) as in
Theorem 3.5, with (9) reformulated as

C∞ ∩
{

u ∈ X | (v ◦ g)∞ (u) ≤ 0, v ∈ S+
}

= {0}. (10)

Corollary 3.6. Let σ∗ := {g(x) ∈ −S; x ∈ C} satisfying (B) and let K be either
cone

{⋃

v∈S+ gph(v ◦ g)∗ ∪ gphδ∗C
}

or cone
{⋃

v∈S+ epi(v ◦ g)∗ ∪ epiδ∗C
}

. If either (C) or
(D) holds for K, then the following statements are equivalent:

(i) σ∗ is consistent;

(ii) (0,−1) /∈ K;

(iii) For any λ ∈ R(S+)
+ , there exists xλ ∈ C such that

∑

v∈S+ λv(v ◦ g)(xλ) ≤ 0;

(iv) For any v ∈ S+, there exists xv ∈ C such that (v ◦ g)(xv) ≤ 0.

Proof. The proof of the equivalence between (i), (ii) and (iii) is a straightforward con-
sequence of Theorem 3.5. Since [(iii) ⇒ (iv)] holds trivially, it will be enough to prove
that [(iv) ⇒ (ii)] is true.

Assume that (iv) holds but (ii) fails; more precisely, that

(0,−1) ∈ cone

{

⋃

v∈S+

epi(v ◦ g)∗ ∪ epiδ∗C

}

.

Applying the fact that
⋃

v∈S+ epi(v ◦ g)∗ is a convex cone (see the proof of [13, Lemma
2.1]), and repeating the argument in the proof of the implication [(iii)=⇒(ii)] in Theorem
3.5, it is easy to prove the existence of v ∈ S+ such that 1 ≤ (v ◦ g)(x) for all x ∈ C.
Thus (iv) also fails.

Finally, it is obvious that if

(0,−1) /∈ K = cone

{

⋃

v∈S+

epi(v ◦ g)∗ ∪ epiδ∗C

}

,

one also has

(0,−1) /∈ K = cone

{

⋃

v∈S+

gph(v ◦ g)∗ ∪ gphδ∗C

}

.
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If the closed cone constraint qualification (C) holds for K :=
⋃

v∈S+ epi(v ◦ g)∗ + epiδ∗C
(which is a convex cone because it is the sum of two convex cones), then (i), (ii), (iii),
and (iv) are equivalent. In this case, the equivalence between (i) and (ii) was established
recently in [13, Lemma 2.1], by means of a direct proof using the separation theorem.
In [13], it is shown that this closed cone constraint qualification is strictly weaker than
other known interior-type regularity conditions; e.g., the generalized Slater condition,
requiring the existence of x0 ∈ C such that g(x0) ∈ −intS, or conditions of the form
0 ∈ core(g(C) + S) or 0 ∈ sqri(g(C) + S) (sqriB stands for the strong quasi-relative
interior of the set B).

Note also that without any regularity condition, (i) is equivalent to (0,−1) /∈ cl(K), where
K is any of the three mentioned cones (by Theorem 3.1).

4. Generalized Farkas’ Lemma

We are now in a position to establish some generalized Farkas’ lemmas in both asymptotic
and non-asymptotic forms.

Theorem 4.1 (Asymptotic Farkas’ lemma). Let σ = {ft(x) ≤ 0, t ∈ T ;x ∈ C} be a
consistent convex system satisfying condition (A), v ∈ X∗ and α ∈ R. Then, the following
statements are equivalent:

(i) ft(x) ≤ 0 for all t ∈ T and x ∈ C =⇒ v(x) ≤ α;

(ii) (v, α) ∈ cl cone
(⋃

t∈T epif ∗
t ∪ epiδ∗C

)

.

Proof. Let

σ2 :=

{

ut(x) ≤ f ∗
t (ut) + α, ut ∈ domf ∗

t , t ∈ T, α ∈ R+

u(x) ≤ δ∗C(u) + β, u ∈ domδ∗C , β ∈ R+

}

.

Recalling that σ and σ2 have the same solutions, it follows from Lemma 2.5 that (i) is
equivalent to

(v, α) ∈ cl cone {B ∪ (0, 1)} ,

where B denotes the set of coefficient vectors of σ2, i.e., B =
⋃

t∈T epif ∗
t ∪ epiδ∗C . Since

(0, 1) ∈ cl coneB, (i) is in fact equivalent to

(v, α) ∈ cl cone

(

⋃

t∈T

epif ∗
t ∪ epiδ∗C

)

.

As a consequence of Theorem 4.1, K = cl cone
(⋃

t∈T epif ∗
t ∪ epiδ∗C

)

is the greatest convex
cone K such that {v (x) ≤ α, (v, α) ∈ K} is a linearization of σ.

An asymptotic Farkas’ lemma similar to Theorem 4.1 can be found in [11, Corollary 2.1],
where the right-hand side of the inclusion in (ii) is expressed in terms of ε-subdifferentials
of the functions ft, for all t ∈ T . The next result was established in [11, Theorem 2.1].

Corollary 4.2. Let σ = {ft(x) ≤ 0, t ∈ T ;x ∈ C} be a consistent convex system satis-
fying condition (A) and let f : X → R ∪ {+∞} be a proper l.s.c. convex function. Then
the following statements are equivalent:
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(i) ft(x) ≤ 0 for all t ∈ T and x ∈ C =⇒ f(x) ≤ 0;

(ii) epif ∗ ⊂ cl cone
(⋃

t∈T epif ∗
t ∪ epiδ∗C

)

.

Proof. Since {v(x) ≤ α, (v, α) ∈ epif ∗} is a linearization of {f(x) ≤ 0}, (i) is equivalent
to the fact that, for each (v, α) ∈ epif ∗,

ft(x) ≤ 0 for all t ∈ T and x ∈ C =⇒ v(x) ≤ α.

By Theorem 4.1 the last implication is equivalent to

(v, α) ∈ cl cone

(

⋃

t∈T

epif ∗
t ∪ epiδ∗C

)

for each (v, α) ∈ epif ∗
t . This is (ii).

The next straightforward consequence of Corollary 4.2 extends the dual characterization
of set containments of convex sets in [12, Theorem 3.2].

Corollary 4.3. Let {ft(x) ≤ 0, t ∈ T ;x ∈ C} and {hw(x) ≤ 0, w ∈ W ;x ∈ D} be
consistent convex systems on X satisfying condition (A), and let A and B be the respective
solution sets. Then, A ⊂ B if and only if

⋃

w∈W

epih∗
w ∪ epiδ∗D ⊂ cl cone

(

⋃

t∈T

epif ∗
t ∪ epiδ∗C

)

.

Consequently, A = B if and only if

cl cone

(

⋃

w∈W

epih∗
w ∪ epiδ∗D

)

= cl cone

(

⋃

t∈T

epif ∗
t ∪ epiδ∗C

)

.

Now we prove that a nonasymptotic version of Farkas’ lemma can be obtained under both
regularity conditions.

Theorem 4.4 (Nonasymptotic Farkas’ lemma). Let σ = {ft(x) ≤ 0, t ∈ T ;x ∈ C}
be a consistent convex system satisfying condition (A), v ∈ X∗¿{0}, and α ∈ R.

If (D) holds for K := cone
{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

, then the following statements are equiv-
alent to each other:

(i) ft(x) ≤ 0, ∀t ∈ T, and x ∈ C =⇒ v(x) ≥ α;

(ii) −(v, α− ρ) ∈ K, ∀ρ > 0;

(iii)

sup
λ∈R(T )

+

inf
x∈C

{

v(x) +
∑

t∈T

λtft(x)

}

≥ α. (11)

If (C) holds for K := cone
{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

, the following condition can be added to
the list of equivalent statements:

(iv) −(v, α) ∈ K.
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Moreover, the supremum in (11) is attained, and (iii) can be replaced by

(iii′) There exists λ ∈ R(T )
+ such that

v(x) +
∑

t∈T

λtft(x) ≥ α, ∀x ∈ C. (12)

Remark 4.5. Observe that [(iv) =⇒ (ii)]. In fact, (iv) entails the existence of λ ∈ R(T )
+ ,

ut ∈ dom f ∗
t , αt ≥ 0, for each t ∈ T , u ∈ dom δ∗C , and β ≥ 0, such that

−(v, α) =
∑

t∈T

λt(ut, f
∗
t (ut) + αt) + (u, δ∗C(u) + β). (13)

Consequently,

−(v, α− ρ) =
∑

t∈T

λt(ut, f
∗
t (ut) + αt) + (u, δ∗C(u) + β + ρ) ∈ K.

Proof. Assume that (D) holds for K := cone
{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

.

[(i) =⇒ (ii)] The statement (i) is equivalent to the inconsistency of the system

σ(ρ) :=







ft(x) ≤ 0, t ∈ T,
v(x)− α+ ρ ≤ 0,
x ∈ C







,

whichever ρ > 0 we take. Observe that σ(ρ) satisfies (D) for the cone

K + cone epi(v(.)− α+ ρ)∗ = K + cone {(v, α− ρ+ µ) | µ ≥ 0} .

The equivalence between (i) and (ii) in Theorem 3.5 entails that σ(ρ) is inconsistent if
and only if

(0,−1) ∈ K + cone {(v, α− ρ+ µ) | µ ≥ 0} .

Since σ = {ft(x) ≤ 0, t ∈ T ;x ∈ C} is consistent, Theorem 3.5 precludes (0,−1) ∈ K,
and there must exist λ > 0 and µ ≥ 0 such that

(0,−1) ∈ K + λ (v, α− ρ+ µ) ,

and so,

−(v, α− ρ) ∈ 1

λ
{K + (0, 1 + λµ)} ⊂ 1

λ
K = K.

[(ii) =⇒ (iii)] If we apply now the equivalence between (i) and (iii) in Theorem 3.5, σ(ρ)

will be inconsistent, for every ρ > 0, if and only if there exist λρ ∈ R(T )
+ and µρ ≥ 0 such

that

µρ(v(x)− α+ ρ) +
∑

t∈T

λρ
t ft(x) > 0, for all x ∈ C. (14)
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It must be µρ > 0 (otherwise, the system σ = {ft(x) ≤ 0, t ∈ T ;x ∈ C} will be inconsistent
(once again by Theorem 3.5). Defining γp := λρ/µρ, (14) yields

inf
x∈C

{

v(x) +
∑

t∈T

γρ
t ft(x)

}

≥ α− ρ.

Now, letting ρ ↓ 0 we obtain (11).

[(iii) =⇒ (i)] Now we assume (11). Given ρ > 0, there exists λρ ∈ R(T )
+ such that

inf
x∈C

{

v(x) +
∑

t∈T

λρ
t ft(x)

}

≥ α− ρ

2
.

Then

inf
x∈C

{

(v(x)− α+ ρ) +
∑

t∈T

λρ
t ft(x)

}

≥ ρ

2
> 0,

so that σ(ρ) is inconsistent (again by Theorem 3.5), i.e., (i) holds.

In the second part of the proof, we assume that (C) is satisfied for the cone K =
cone

{⋃

t∈T epif ∗
t ∪ epiδ∗C

}

. Under this assumption, (ii) implies (iv) as far as K is closed,
and so, (ii) and (iv) are equivalent according to the remark previous to the proof.

Now the equivalence of (i) and (iv) follows immediately from Theorem 4.1 and the closed
cone constraint qualification (C). It suffices to prove that (iv) implies (iii′) since the
implication [(iii′) =⇒ (iii)] is obvious.

[(iv) =⇒ (iii′)] We have already seen that (iv) entails the existence of λ ∈ R(T )
+ , ut ∈

dom f ∗
t , αt ≥ 0, for each t ∈ T , u ∈ dom δ∗C , and β ≥ 0, such that (13) holds, which is

equivalent to

−v =
∑

t∈T

λtut + u, (15)

and

−α =
∑

t∈T

λtf
∗
t (ut) + δ∗C(u) +

∑

t∈T

λtαt + β (16)

≥
∑

t∈T

λtf
∗
t (ut) + δ∗C(u).

Note that for each x ∈ X, δ∗C(u) ≥ u(x) − δC(x) and f ∗
t (ut) ≥ ut(x) − ft(x), for each

t ∈ T . It follows from (16) that

−α ≥
∑

t∈T

λt(ut(x)− ft(x)) + u(x)− δC(x).

Taking (15) into account, the last inequality implies

−α ≥ −v(x)−
∑

t∈T

λtft(x)− δC(x)
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for all x ∈ X. Thus for all x ∈ C, we have

v(x) +
∑

t∈T

λtft(x) ≥ α,

which proves (iii′). The proof is complete.

Observe that, if cone
(⋃

t∈T epif ∗
t + epiδ∗C

)

is closed, then Lemma 2.1 allows us to replace
“ ∪ " with “ + " in Theorem 4.4.

The next corollary is a straightforward consequence of Theorem 4.4 (see also Corollary
3.6).

Corollary 4.6. Let σ∗ := {g(x) ∈ −S; x ∈ C} satisfying (B) and let u ∈ X∗, α ∈ R. If
cone(

⋃

v∈S+ epi(v◦g)∗∪epiδ∗C) is weak∗-closed, then the following statements are equivalent
to each other:

(i) g(x) ∈ −S and x ∈ C =⇒ u(x) ≥ α;

(ii) −(u, α) ∈ cone(
⋃

v∈S+ epi(v ◦ g)∗ ∪ epiδ∗C);

(iii) There exists v ∈ S+ such that u(x) + (v ◦ g)(x) ≥ α, for all x ∈ C.

5. Optimality Conditions for Convex Programs

Let σ = {ft(x) ≤ 0, t ∈ T ;x ∈ C} be a consistent convex system satisfying condition (A).
Consider the convex optimization problem

Minimize f(x)

(CP) subject to ft(x) ≤ 0, t ∈ T,

x ∈ C,

where f is a proper l.s.c. convex funtion.

Let A := {x ∈ C | ft(x) ≤ 0, t ∈ T} be the feasible set of (CP), and assume that
A ∩ domf 6= ∅.
A first question to be addressed is the existence of points in A minimizing the value of
the objective function. These points are called minimizers of the problem (CP).

Proposition 5.1. If X is the Euclidean space and (9) holds, the set of minimizers of
(CP) is non-empty.

Proof. The function
h := f + δA

is a proper l.s.c. convex function (as a consequence of the fact that A ∩ domf 6= ∅) such
that

{z ∈ X | h∞(z) ≤ 0} = {z ∈ X | f∞(z) ≤ 0} ∩ A∞ = {0},
since, according with [18, Theorem 9.4],

A∞ = C∞ ∩ {z ∈ X | f∞
t (z) ≤ 0, t ∈ T} = {0}.

By [18, Theorem 27.2] h attains its infimum at points which are, obviously, minimizers of
(CP).
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Remark 5.2. The statement in Proposition 5.1 can be false even in the case that X is a
reflexive Banach space, as the following example shows:

Example 5.3. Let us consider the convex optimization problem in the Hilbert space `2

(CP) Minimize {f(x) | x ∈ C},

where x = (ξn)n≥1 ∈ `2,

C :=
{

x ∈ `2 ||ξn| ≤ n, ∀n ∈ N
}

,

and

f(x) :=
∞
∑

n=1

ξn
n
.

If a := (αn)n≥1 with αn = 1/n, n = 1, 2, ..., we have a ∈ `2 and f is a continuous linear
(and, so, convex) functional on `2.

In [21, Example 1.1.1] it is proved that C is a closed convex set which is not bounded
(because nen ∈ C, for every n ∈ N) and such that C∞ = {0}. Therefore, the recession
condition (9) trivially holds. Moreover if we define ck := (γk

n)n≥1, k = 1, 2, ...,

γk
n :=

{

−n, if n ≤ k,
0, if n > k,

it is also evident that ck ∈ C, for all k ∈ N, and f(ck) = −k. Thus, we conclude that f is
not bounded from below on C and no minimizer exists.

[21, Exercise 2.41] provides different characterizations of the coerciveness of a proper
l.s.c. convex function defined on a normed space, but none of them directly involves the
notion of recession direction. Theorem 2.5.1 in [21] establishes that if X is a reflexive
Banach space and the function f+δA is coercive, then the set of minimizers is non-empty.

Theorem 5.4. Suppose that the set epif ∗ + epiδ∗A is weak∗-closed. Then a ∈ A is a
minimizer of (CP) if and only if there exists v ∈ ∂f(a) such that

−(v, v(a)) ∈ cl cone

(

⋃

t∈T

epif ∗
t ∪ epiδ∗C

)

.

Proof. Since (CP) can be written as inf{f(x) | x ∈ A}, we have that a ∈ A is a minimizer
if and only if

0 ∈ ∂(f + δA)(a).

Since epif ∗
t + epiδ∗A is weak∗-closed, by Lemma 2.3 the last inclusion is equivalent to

0 ∈ ∂f(a) +NA(a).

In fact this condition is also equivalent to the existence of v ∈ ∂f(a) such that v(x) ≥ v(a)
for each x ∈ A; i.e., there exists v ∈ ∂f(a) such that

ft(x) ≤ 0, ∀t ∈ T, and x ∈ C =⇒ v(x) ≥ v(a).
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By Theorem 4.1, the last implication is equivalent to

−(v, v(a)) ∈ cl cone

(

⋃

t∈T

epif ∗
t ∪ epiδ∗C

)

.

The theorem is proved.

Theorem 5.5. Suppose that epif ∗+epiδ∗A and cone
(⋃

t∈T epif ∗
t ∪ epiδ∗C

)

are weak∗-closed

sets. Then a ∈ A is a minimizer of (CP) if and only if there exist v ∈ ∂f(a) and λ ∈ R(T )
+

such that
−v ∈ ∂(

∑

t∈T

λtft + δC)(a) (17)

and
λtft(a) = 0, ∀t ∈ T. (18)

Moreover, if the functions ft, t ∈ T , are continuous at a then (17) can be replaced by

0 ∈ ∂f(a) +
∑

t∈T

λt∂ft(a) +NC(a).

Proof. It follows from Theorem 5.4 that a ∈ A is a minimizer of (CP) if and only if there
exist v ∈ ∂f(a) such that

−(v, v(a)) ∈ cone

(

⋃

t∈T

epif ∗
t ∪ epiδ∗C

)

. (19)

(Note that the cone in the right-hand side of (19) is weak∗-closed by the assumption.)

By Theorem 4.4, (19) is equivalent to the existence of λ ∈ R(T )
+ satisfying

v(x) +
∑

t∈T

λtft(x) ≥ v(a), ∀x ∈ C.

Taking x = a in the last inequality, we get λtft(a) = 0 ∀t ∈ T . It is also clear that a is a
minimizer of the problem

(P1) inf
x∈C

{

v(x) +
∑

t∈T

λtft(x)

}

,

which implies that

0 ∈ ∂(v +
∑

t∈T

λtft + δC)(a),

or equivalently,

−v ∈ ∂(
∑

t∈T

λtft + δC)(a).

The necessity is proved.
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Conversely, if (17) is satisfied then a is a solution of Problem (P1) and hence,

v(x) +
∑

t∈T

λtft(x) ≥ v(a) +
∑

t∈T

λtft(a), ∀x ∈ C.

Due to (18) one actually has

v(x) +
∑

t∈T

λtft(x) ≥ v(a), ∀x ∈ C.

Now if x ∈ C and ft(x) ≤ 0, ∀t ∈ T, then v(x) ≥ v(a). This means that v(x) ≥ v(a) for
all x ∈ A. This is, in turn, equivalent to 0 ∈ ∂f(a) + NA(a), which implies that a is a
minimizer of (CP).

Moreover, if all the functions ft, t ∈ T, are continuous at a then

∂(
∑

t∈T

λtft + δC)(a) =
∑

t∈T

λt∂ft(a) +NC(a).

(See, for instance, [16, Theorem 5.3.32]). In this way, the last assertion of the theorem
follows.

Remark 5.6. The set epif ∗ + epiδ∗A is weak∗-closed when f is linear. In fact, epif ∗ is a
vertical halfline (locally compact, as far it is finite-dimensional), δ∗A is proper and so,

(−epif ∗)∞ ∩ (epiδ∗A)
∞ = {0}.

Then the Dieudonné theorem applies ([21, Theorem 1.1.8]).

Even in the simple linear case, the assumptions of Theorem 5.5 do not entail the existence
of minimizers. This fact is illustrated in the following example.

Example 5.7. Consider the linear optimization problem, in R2,

Minimize x1

(CP) subject to − 1

t
x1 + x2 ≤ log(t)− 1, t ∈]0, 1],

x1 ≥ 0 and x2 ≤ 0.

Let f(x) = x1, ft(x) = −1
t
x1 + x2 − log(t) + 1, t ∈]0, 1], f0(x) = −x1, and f2(x) = x2,

with x = (x1, x2) ∈ R2. Let also T = ]0, 1] ∪ {0, 2}. Note that in this case, C =
R2 and all the constraints are linear inequalities. In [7, Exercise 8.8] it is stated that
cone

(⋃

t∈T epif ∗
t ∪ epiδ∗Rn

)

is weak∗-closed. It follows from Remark 5.2 that epif ∗+epiδ∗A
is also a weak∗-closed set. However, the set of minimizers is empty.

We consider finally the cone-convex problem

Minimize f(x)

(CCP) subject to g(x) ∈ −S,

x ∈ C,
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where the constraint system σ∗ satisfies condition (B). The following optimality condition
for (CCP) was established in [3, Theorem 4.1] (see also [13]) for the case where X and
Y are Banach spaces and under the conditions that the sets

⋃

v∈S+ epi(v ◦ g)∗ + epiδ∗C
and epif ∗ +

⋃

v∈S+ epi(v ◦ g)∗ + epiδ∗C are weak∗-closed. The next result relaxes these
conditions.

Corollary 5.8. Suppose that cone
(⋃

v∈S+ epi(v ◦ g)∗ ∪ epiδ∗C
)

and epif ∗ + cone(
⋃

v∈S+

epi(v ◦ g)∗ ∪ epiδ∗C) are weak∗-closed. Then a ∈ A is a minimizer of (CCP) if and only if
there exist v ∈ ∂f(a) and v ∈ S+ such that

0 ∈ ∂f(a) + ∂(v ◦ g)(a) +NC(a) and (v ◦ g)(a) = 0.

Proof. Note that the constraint g(x) ∈ −S is equivalent to gv(x) := (v ◦ g)(x) ≤ 0 for all
v ∈ S+. Moreover, by the assumption on the map g, for each v ∈ S+, gv is continuous.
On the other hand, by [13, Lemma 2.1], we have

epiδ∗A = cl

(

⋃

v∈S+

epi(v ◦ g)∗ + epiδ∗C

)

.

It follows from Lemma 2.1 and the assumptions of the corollary that

epiδ∗A = cone

(

⋃

v∈S+

epi(v ◦ g)∗ ∪ epiδ∗C

)

.

The conclusion follows by the same argument as in the proof of Theorem 5.5, using
Corollary 4.6 instead of Theorem 4.4.
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