
Journal of Convex Analysis

Volume 13 (2006), No. 3+4, 739–750

The Mazur Intersection Problem

J. R. Giles
School of Mathematical and Physical Sciences,

The University of Newcastle, NSW 2305, Australia
john.giles@newcastle.edu.au

Dedicated to the memory of Simon Fitzpatrick.

Received: February 4, 2005

Bounded closed convex sets in Euclidean space can be characterised by two distinct ball separation
properties which in a general normed linear space are not equivalent. The study of these two separation
properties has led to interesting developments in classifying those Banach spaces where these different
characterisations of bounded closed convex sets hold.
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1. Introduction – The Mazur problem

A major theme in the study of Banach spaces is to determine classes of those spaces
where particular Euclidean space properties hold. But an intriguing complication in
such analysis is that different properties which we are accustomed to see as equivalent in
Euclidean space can prove to be quite distinct in more general spaces.

Mazur [7] studied the Euclidean space property that every bounded closed convex set
is an intersection of closed balls. Classes of spaces with this property were studied by
Phelps [8] and a characterisation of such spaces was given by Giles et al. [3]. Surprisingly,
Sevilla and Moreno [9] showed that spaces with this property are not necessarily Asplund.
However, recently Granero et al. [4, 5] contributed an idea which sheds considerable light
on the study by discerning two distinct separation properties involved.

In Euclidean space, a subset C is bounded closed and convex if and only if

(i) for every point x 6∈ C there exists a closed ball B such that x 6∈ B and C ⊆ B.

(ii) for every hyperplane H where d(C,H) > 0 there exists a closed ball B such that
B ∩H = ∅ and C ⊆ B.

In the earlier study of the Mazur Intersection Property, concentration was on the first
separation characterisation (i). But Granero et al. have drawn attention to the second
separation characterisation (ii) which had been given considerable attention by Chen and
Lin [2]. So then for a Banach space we can study three separate classes of subsets:

H the family of all bounded closed convex subsets,

M the family of all intersections of closed balls, and

P the family of all Mazur sets;
(

bounded closed convex subset C is a Mazur set if for
every closed hyperplane H where d(C,H) > 0 there exists a closed ball B such that
B ∩H = ∅ and C ⊆ B

)

.
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Clearly in general P ⊆ M ⊆ H. A Banach space where M = H has theMazur Intersection
Property. Granero et al. call a Banach space where P = M a Mazur space, and they give
examples of spaces where P 6= M = H and P = M 6= H, [4, p. 186].

2. Weak? denting and semi weak? denting points

We denote by S(X) the unit sphere and by B(X) the closed unit ball of a normed linear
space X. The two separation properties are associated with two extreme point properties
of B(X?) in the dual space X?. To discuss them we need the following notation

Given f ∈ S(X?) and 0 < δ < 1, the set

S` (B(X), f, δ) ≡ {x ∈ S(X) : f(x) > 1− δ}

is called a slice of B(X). A slice of B(X?) generated by an element of ̂X is called a weak?

slice of B(X?)

Given ε > 0, an element f ∈ S(X?) is said to be an ε-weak? denting point of B(X?) if
B[f ; ε] contains a weak? slice of B(X?) containing f ; the element f ∈ S(X?) is said to be
a weak? denting point of B(X?) if it is an ε-weak? denting point of B(X?) for every ε > 0.

We will see that the weak? denting points are associated with separation property (ii).

Chen and Lin [1] introduced semi weak? denting points which are associated with separa-
tion property (i). An element f ∈ S(X?) is said to be a semi weak? denting point of B(X?)
if for every ε > 0 there exists a weak? slice S` of B(X?) such that diam({f} ∪ S`) < ε.

It is clear that every weak? denting point of B(X?) is a semi weak? denting point of B(X?)
and every element in the closure of the set of weak? denting points is a semi weak? denting
point.

To develop characterisations of these two extreme point properties we need the following
theory. The first is a consequence of the Parallel Hyperplane Lemma [8, p. 978].

Lemma 2.1. In a normed linear space X, if for f, g ∈ S(X?) and 0 < ε < 2

S`
(

B(X), f, 1− ε

2

)

⊆ {x ∈ X : g(x) > 0}

then ‖f − g‖ ≤ ε.

Proof. If x ∈ B(X) and g(x) = 0 then f(x) ≤ ε

2
and |f(x)| ≤ ε

2
. By the Parallel

Hyperplane Lemma either

‖f + g‖ ≤ ε or ‖f − g‖ ≤ ε.

For any 0 < δ < 1− ε

2
there exists x ∈ S(X) such that

f(x) > 1− δ >
ε

2
and so g(x) > 0.

Then ‖f + g‖ ≥ |(f + g)(x)| > 1− δ and we conclude that ‖f − g‖ ≤ ε.
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We have the following conditions for weak? denting points and semi weak? denting points
of the dual ball.

Lemma 2.2.

(i) Given 0 < ε < 1, the element f ∈ S(X?) is an ε-weak? denting point of B(X?) if
there exists a closed ball Bε such that

S`
(

B(X), f, 1− ε

2

)

⊆ Bε ⊆ {x ∈ X : f(x) > 0}

(ii) An element f ∈ S(X?) is a semi weak? denting point of B(X?) if given 0 < ε < 1
there exists a closed ball Bε such that

S`
(

B(X), f, 1− ε

2

)

⊆ Bε and 0 6∈ Bε.

Proof. (i) If Bε ≡ B[x0; r] then r ≤ ‖x0‖ and f(x0 + ry) > 0 for all y ∈ B(X), which
implies that f(x0) > r; that is,

f ∈ S`

(

B(X?),
x0

‖x0‖
, 1− r

‖x0‖

)

.

But also if g ∈ S`

(

B(X?),
x0

‖x0‖
, 1− r

‖x0‖

)

then g(x0) > r, which implies that g(z) > 0

for all z ∈ B[x0; r]. So g(z) > 0 for all z ∈ S`
(

B(X), f, 1− ε

2

)

. If also g ∈ S(X?) then

by Lemma 2.1 we deduce that ‖f − g‖ ≤ ε and

S`

(

B(X?),
x0

‖x0‖
, 1− r

‖x0‖

)

⊆ B[f ; ε]

and we conclude that f is an ε-weak? denting point of B(X?).

(ii) Consider 0 < η <
ε

7
. There exists a closed ball Bη such that

S`
(

B(X), f, 1− η

2

)

⊆ Bη and 0 6∈ Bη.

By the Separation Theorem there exists g ∈ S(X?) such that Bη ⊆ {x ∈ X : g(x) > 0}.

So by Lemma 2.1 we have ‖f − g‖ ≤ η. If g(x) >
3

2
η then f(x) ≥ g(x)− η >

η

2
, so

S`

(

B(X), g, 1− 3

2
η

)

⊆ Bη ⊆ {x ∈ X : g(x) > 0} .

By Lemma 2.2(i), g is a 3η-weak? denting point of B(X?); that is, B[g; 3η] contains a
weak? slice S` of B(X?) containing g. So diam {{f} ∪ S`} < 7η < ε, and we conclude
that f is a semi weak? denting point of B(X?).

An element f ∈ S(X?) is said to be a weak? strongly exposed point of B(X?) if there exists
x ∈ S(X) such that f ∈ ∂‖x‖ and given 0 < ε < 1 there exists a weak? slice of B(X?)
containing f and generated by x of diameter less than ε. It is clear from Lemma 2.2(i)
that if there exists x0 ∈ S(X) and for 0 < ε < 1, Bε is a closed ball centred on λx0 for
λ > 0 then f ∈ ∂‖x0‖ and is a weak? strongly exposed point of B(X?).
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3. Approximate Fréchet differentiability

It was Sullivan [10] who employed a form of approximate Fréchet differentiability which
is useful for a discussion of our problem.

Given ε > 0, we denote by Mε(X) the set of points in S(X) such that for some δ(ε, x) > 0

sup
0<λ<δ
y∈S(X)

‖x+ λy‖+ ‖x− λy‖ − 2

λ
< ε.

The set of points in S(X) where the norm is Fréchet differentiable is precisely
⋂

ε>0

Mε(X).

Given x ∈ S(X), the subdifferential of the norm at x is the set

∂‖x‖ ≡ {f ∈ S(X?) : f(x) = 1} .

This is a nonempty convex weak? compact subset of X?. The subdifferential mapping
x 7→ ∂‖x‖ of S(X) into subsets of S(X?) is weak? upper semicontinuous; that is, given
x ∈ S(X) and weak? open subset W of X? such that ∂‖x‖ ⊆ W then there exists δ > 0
such that ∂ ‖B(x; δ) ∩ S(X)‖ ⊆ W .

The set of points of approximate Fréchet differentiability has a useful characterisation.

Lemma 3.1 [3, Lemma 2.1, p. 109]. For a normed linear space X, given 0 < ε < 1 and
x ∈ S(X), the following are equivalent

(i) x ∈ Mε(X),

(ii) x determines a slice of B(X?) of diameter less than ε,

(iii) there exists δ(ε, x) > 0 such that diam ∂ ‖B(x; δ) ∩ S(X)‖ < ε.

Proof. (i) =⇒ (ii) Suppose that for all n ∈ N, diam S`
(

B(X?), x, 1
n2

)

≥ ε. Then there
exist fn, gn ∈ S`

(

B(x?), x, 1
n2

)

such that ‖fn − gn‖ > ε− 1
n2 . For each n ∈ N there exists

yn ∈ S(X) such that (fn − gn)(yn) > ε− 1
n
. Then

‖x+ 1
n
yn‖+ ‖x− 1

n
yn‖ > fn(x+ 1

n
yn) + gn(x− 1

n
yn)

> 2− 2
n2 +

1
n
(fn − gn)(yn) > 2− 3

n2 +
ε
n
,

so

‖x+ 1
n
yn‖+ ‖x− 1

n
yn‖ − 2

1
n

> ε− 3

n
for all n ∈ N.

(ii) =⇒ (iii) Consider S` (B(X?), x, δ) such that diam S` (B(X?), x, δ) < ε. Then for all
y ∈ S(X) such that ‖x− y‖ < δ we have

|fy(x)− 1| ≤ |fy(x− y)| ≤ ‖x− y‖ < δ for all fy ∈ ∂‖y‖.

Then fy(x) > 1− δ which implies that

∂ ‖B(x; δ) ∩ S(X)‖ ⊆ S` (B(X?), x, δ) , so diam ∂ ‖B(x; δ ∩ S(X)‖ < ε.
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(iii) =⇒ (i) Now
x+ λy

‖x+ λy‖
∈ B(x; δ) ∩ S(X) for all 0 < |λ| < δ

2
and y ∈ S(X). So for

f ∈ ∂

∥

∥

∥

∥

x+ λy

‖x+ λy‖

∥

∥

∥

∥

and g ∈ ∂

∥

∥

∥

∥

x− λy

‖x− λy‖

∥

∥

∥

∥

we have ‖f − g‖ < ε.

Then
‖x+ λy‖+ ‖x− λy‖ − 2

λ
≤ (f − g)(y) ≤ ‖f − g‖ < ε for 0 < λ <

δ

2
.

It follows that, given 0 < ε < 1, the set Mε(X) is always an open subset of S(X). Clearly,
for a Banach space X if Mε(X) is dense in S(X) for all 0 < ε < 1 then by the Baire
Category Theorem, the norm of X is Fréchet differentiable at the points of a dense Gδ

subset of S(X).

4. Linkage to the separation properties

We have the following characterisation of semi weak? denting points.

Theorem 4.1. In any Banach space X, the following are equivalent:

(i) f ∈ S(X?) is a semi weak? denting point of B(X?).

(ii) for every bounded subset C of X with inf f(C) > 0 there exists a closed ball B such
that C ⊆ B and 0 6∈ B,

(iii) given 0 < ε < 1 there exists an x ∈ S(X) and δ(ε) > 0 such that
∂ ‖B(x; δ) ∩ S(X)‖ ⊆ B(f ; ε).

(iv) f ∈
⋂

ε>0

∂ ‖Mε(X)‖.

Proof. (ii) =⇒ (i) Follows immediately from Lemma 2.2(ii).

(i) =⇒ (iii) Given 0 < ε < 1, consider B(f ; ε). Since f is a semi weak? denting point of
B(X?) there exists an x ∈ S(X) and 0 < γ < 1 and weak? slice S` (B(X?), x, γ) ⊆ B(f ; ε).
Then ∂‖x‖ ⊆ S` (B(X?), x, γ) and since the subdifferential mapping x 7→ ∂‖x‖ is weak?

upper semicontinuous there exists a δ(ε) > 0 such that

∂ ‖B(x; δ) ∩ S(X)‖ ⊆ S` (B(X?), x, γ) ⊆ B(f ; ε).

(iii) =⇒ (iv) Given 0 < η <
ε

2
there exists δ(η) > 0 such that ∂ ‖B(x; δ) ∩ S(X)‖ ⊆

B(f ; η). But by Lemma 3.1 we have that x ∈ Mε(X) and so d (f, ∂ ‖Mε(X)‖) < η.

(iv) =⇒ (ii) We may assume that C ⊆ B(X). For if C ⊆ B[0;m] then
1

m
C ⊆ B(X). If

there exists a closed ball B[z; r] such that
1

m
C ⊆ B[z; r] and if inf f (B[z; r]) > 0 then

C ⊆ B[mz;mr] and inf f (B[mz;mr]) > 0. So for C ⊆ B(X) write ε ≡ 1

3
inff(C). Since

f ∈ ∂ ‖Mε(X)‖ there exists an x ∈ Mε(X) and fx ∈ ∂‖x‖ such that ‖f − fx‖ < ε. That
is, there exists 0 < δ < 1 such that

sup
y∈S(X)
0<λ<δ

‖x+ λy‖+ ‖x− λy‖ − 2

λ
< ε
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which implies that

sup
y∈B(X)

‖x+ δy‖+ ‖x− δy‖ − 2

δ
≤ ε.

Now C ⊆ B(
x

δ
;
1

δ
− ε) for if not there exists y ∈ C such that

∥

∥

∥

x

δ
− y

∥

∥

∥ >
1

δ
− ε. Then

‖x+ δy‖+ ‖x− δy‖ − 2

δ
=

‖x+ δy‖ − ‖x‖
δ

+ ‖x
δ
− y‖ − 1

δ

≥ fx(y) +
1

δ
− ε− 1

δ
≥ f(y)− ‖f − fx‖ − ε > ε

a contradiction.

We should note that the continuity property (iii) was established by Phelps [8, Lemma 4.1,
p. 979]. The characterisation (i) ⇐⇒ (ii) has been given by Chen and Lin [1, Proposition
3, p. 194]. The equivalences (ii) ⇐⇒ (iii) ⇐⇒ (iv) were given in Giles et al. [3, Lemma
2.2, p. 112]. However, this current presentation is much more concise.

We notice that the characterisation (i) ⇐⇒ (iv) tells us that the set of semi weak? denting
points is always a closed set.

It is clear from the proof of Theorem (iv) ⇐⇒ (i) and our previous observations from

Lemma 2.2(i) that f ∈
⋂

ε>0

∂ ‖Mε(X)‖ if and only if f is a weak? strongly exposed point

of B(X?).

Corollary 4.2. An element f ∈ S(X?) is a semi weak? denting point of B(X?) if and

only if for every 0 < ε < 1, S`
(

B(X), f, 1− ε
2

)

is an intersection of closed balls.

Proof. Suppose that f is a semi weak? denting point of B(X?) and given 0 < ε < 1

consider S`
(

B(X), f, 1− ε
2

)

and x0 6∈ S`
(

B(X), f, 1− ε
2

)

.

If f does not separate x0 from S`
(

B(X), f, 1− ε
2

)

then x0 6∈ B(X) so B(X) is a closed
ball containing S`

(

B(X), f, 1− ε
2

)

and not containing x0.

If f separates x0 from S`
(

B(X), f, 1− ε
2

)

then since f is a semi weak? denting point of
B(X?) it follows from Theorem 4.1(i) =⇒ (ii) that there exists a closed ball B such that

B ⊇ S`
(

B(X), f, 1− ε
2

)

and x0 6∈ B.

The converse follows immediately from Lemma 2.2(ii).

A similar result was given by Chen and Lin [1, Prop. 5, p. 197] but our proof is more
direct.

A property of Mazur spaces now follows.

Corollary 4.3. On the dual sphere S(X?) of a Mazur space X, every semi weak? denting
point is a weak? denting point.
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Proof. If f ∈ S(X?) is a semi weak? denting point of B(X?) then from Corollary 4.2, for

every 0 < ε < 1, S`
(

B(X), f, 1− ε
2

)

∈ M. But for a Mazur space P = M. So by Lemma
2.2(i) we see that f is a weak? denting point of B(X?).

This result was first given by Granero et al. [5, Cor. 2.4, p. 413] and they raised the
problem of determining whether this property characterises Mazur spaces.

The characterisation of Banach spaces with Mazur Intersection Property given in Giles
et al. [3, Lemma 2.1, p. 114] follows readily.

Theorem 4.4. A Banach space X has the Mazur Intersection Property if and only if the
set of weak? denting points of B(X?) is dense in S(X?).

Proof. If the set of weak? denting points of B(X?) is dense in S(X?) then every point
f ∈ S(X?) is a semi weak? denting point of B(X?) so from Theorem 4.1(i) =⇒ (iv) =⇒
(ii) we have that X has the Mazur Intersection Property.

Conversely, if X has the Mazur Intersection Property we have from Theorem 4.1(ii) ⇐⇒
(i) that every point f ∈ S(X?) is a semi weak? denting point of B(X?). Given 0 < ε < 1,
consider Dε the union of points in S(X?) which are in the interior of weak? slices of
B(X?) of diameter less than ε. Now Dε is open and dense in S(X?). By the Baire

Category Theorem
⋂

ε>0

Dε is dense in S(X?), but these are precisely the weak? denting

points of B(X?).

The following denting point property is due to Chen and Lin and the proof is contained
in part of [2, Theorem 1.3, p. 841].

Lemma 4.5. In any normed linear space X, if f0 ∈ S(X?) is a weak? denting point of
B(X?) then given 0 < ε < 1 there exists x ∈ S(X), γ > 0 and k ∈ N where 0 < 1

2k
< ε < 1

such that f0 ∈ S` (B(X?), x, γ) ⊆ S` (B(X?), x, 2kγ) and diam S` (B(X?), x, 2kγ) < ε.

Proof. Since f0 is a weak? denting point of B(X?) there exists x1 ∈ S(X) and 0 < α < 1
such that f0 ∈ S` (B(X?), x1, α) and diam S` (B(X?), x1, α) < ε. Write β ≡ 1 − f0(x1)
and choose β1 > 0 such that β < β1 < α. Again since f0 is a weak? denting point of
B(X?) we can choose x2 ∈ S(X), γ > 0 and k ∈ N where 2γ < 1

k
< ε < 1 such that

f0 ∈ S` (B(X?), x2, γ) and

diam S` (B(X?), x2, γ) < min

(

α− β1

2k
, β1 − β

)

.

Now for f 6∈ S` (B(X?), x1, β1),

‖f0 − f‖ ≥ f0(x1)− f(x1) ≥ 1− β − (1− β1) = β1 − β > diam S` (B(X?), x2, γ) ,

so S` (B(X?), x2, γ) ⊆ S` (B(X?), x1, β1).
Choose fx2 ∈ ∂‖x2‖. For f1 ∈ B(X?) where f1(x1) ≥ 1 − α there exists 0 < λ < 1 such
that

g = λfx2 + (1− λ)f1 and g(x2) = 1− γ.
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Then ‖fx2 − g‖ = (1− λ)‖fx2 − f1‖ and so

1− λ =
‖fx2 − g‖
‖fx2 − f1‖

≤ α− β1

2k‖fx2 − f1‖
.

But ‖fx2 − f1‖ ≥ fx2(x1)− f1(x1) > 1− β1 − (1− α) = α− β1, so 1− λ < 1
2k
.

Then f1(x2) =
(g − λfx2)(x2)

1− λ
=

g(x2)− λ

1− λ
=

1− γ − λ

1− λ
= 1− γ

1− λ
< 1− 2kγ.

We conclude that

f0 ∈ S` (B(X?), x2, γ) ⊆ S` (B(X?), x2, 2kγ) ⊆ S` (B(X?), x1, α)

so diam S` (B(X?), x2, 2kγ) < ε.

We have the following characterisation of weak? denting points.

Theorem 4.6. In any Banach space X, the following are equivalent.

(i) f ∈ S(X?) is a weak? denting point of B(X?),

(ii) for every bounded subset C of X with inf f(C) > 0 there exists a closed ball B of
X such that C ⊆ B and inf f(B) > 0.

Proof. (ii) =⇒ (i) Follows immediately from Lemma 2.2(i).

(i) =⇒ (ii) As in Theorem 4.1(iv) =⇒ (ii) we may assume that C ⊆ B(X). Again for C ⊆

B(X) write ε ≡ 1

3
inff(C). From Lemma 4.5 there exists an x ∈ S(X), γ > 0, and k ∈ N

where 2γ < 1
k
< ε < 1 such that f ∈ S` (B(X?), x, γ) and diamS` (B(X?), x, 2kγ) < ε.

Then from Lemma 3.1 we deduce that

sup
y∈B(X)

‖x+ kγy‖+ ‖x− kγy‖ − 2

kγ
≤ ε

As in Theorem 4.1(iv) =⇒ (ii) we have that C ⊆ B
(

1
kγ
x, 1

kγ
− ε

)

. But also

inf f

(

B

(

x

kγ
,
1

kγ
− ε

))

≥ f

(

x

kγ

)

−
(

1

kγ
− ε

)

>
1− γ

kγ
− 1

kγ
− ε = ε− 1

k
> 0.

It is now clear that a Banach space which is a Mazur space with the Mazur Intersection
Property has very desirable geometric properties.

Theorem 4.7 [1, Proposition 5.3, p. 196]. A Banach space X has P = H if and only if
every point of S(X?) is a weak? denting point of B(X?).

Proof. From Theorem 4.4 we have that if X has M = H then the set of weak? denting
points of B(X?) is dense in B(X?). From Corollary 4.3 we have that if X has P = M

then every semi weak? denting point of B(X?) is a weak? denting point of B(X?).
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But from Theorem 4.1(i) ⇐⇒ (iv) we have that the set of semi weak? denting points of
B(X?) is always a closed subset of S(X?).

So we conclude that X with P = H has every point of S(X?) a weak? denting point of
B(X?).

Conversely, if every point of S(X?) is a weak? denting point of B(X?), it follows from
Theorem 4.4 that M = H. But also from Theorem 4.6 it follows that P = M.

Now a Banach space X with P = H has dual X? rotund and so X smooth. So every
f ∈ S(X?) which attains its norm is not only a a weak? denting point but a weak? strongly
exposed point of B(X?). This implies that the norm ofX is Fréchet differentiable on S(X)
and so also is an Asplund space. Now it is a consequence of the Bishop-Phelps Theorem
that a Banach space X with norm Fréchet differentiable on S(X) is by Theorem 4.4 a
space with M = H. But since Fréchet differentiability of the norm on S(X) does not in
general imply that X? is rotund such a condition does not necessarily imply that the space
X has P = H. However, if X is a reflexive space and has norm Fréchet differentiable on
S(X) then X has P = H.

Further, a Banach space X with locally uniformly rotund dual X? has every point of
S(X?) a weak? denting point and so has P = H. Such a space is not necessarily reflexive
because every Banach space with separable dual can be equivalently renormed to have
locally uniformly rotund dual.

5. The dual problem

Giles el al [3, §3, p. 116] considered an appropriate intersection property for dual spaces
called the weak? Mazur Intersection Property. We can pursue a similar investigation on
the same lines as has been done above.

So then for a Banach space we denote by

1. H∗ the family of all bounded weak? closed convex subsets in the dual space,

2. M∗ the family of all intersections of closed dual balls in the dual space, which of
course is M for this space.

3. P∗ the family of all weak? Mazur sets; (a bounded weak? closed convex subset C? in
the dual space is a weak? Mazur set if for every weak? closed hyperplane H? where
d(C?, H?) > 0 there exists a closed dual ball B? such that B?∩H? = ∅ and C? ⊆ B?.

Again clearly, P∗ ⊆ M∗ ⊆ H∗. A Banach space where M∗ = H∗ has the weak? Mazur
Intersection Property. Granero et al. call a Banach space where P∗ = M∗ a weak? Mazur
space.

These intersection properties for a Banach space X are closely related to extreme point
properties of the ball B(X). An element x ∈ S(X) is said to be a denting point of B(X)
if for every ε > 0 there exists a slice B(X) containing x of diameter less than ε. Similarly,
an element of x ∈ S(X) is said to be a semi denting point of B(X) if for every ε > 0 there
exists a slice S` of B(X) such that diam{{x} ∪ S`} < ε.

Many of the results for denting and semi denting points can be deduced from those already
given for weak? denting and semi weak? denting points.

Lemma 5.1. For a Banach space X
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(i) x ∈ S(X) is a denting point (semi denting point) of B(X) if and only if Ýx ∈ S( ̂X)
is a weak? denting point (semi weak? denting point) of B(X??),

(ii) if F ∈ S(X??) is a weak? denting point (semi weak? denting point) of (B(X??) then

F ∈ S( ̂X) and is the image under the natural embedding of a denting point (semi
denting point) of B(X).

Proof. We will consider proofs for semi denting points

(i) Consider x ∈ S(X) a semi denting point of B(X) and 0 < ε < 1. Then there exists a
f ∈ S(X?) and 0 < δ < 1 such that

diam ({x} ∪ S` (B(X), f, δ)) < ε.

For any F ∈ S`
(

B(X??), Ýf, δ
)

consider any weak? neighbourhood N of F . Then

W ≡ N ∩ {F ∈ X?? : F (f) > 1− δ}

is a weak? neighbourhood of F . Since B( ̂X) is weak? dense in B(X??) then W contains

an element of B( ̂X) necessarily of S`
(

B( ̂X), Ýf, δ
)

. So

S`
(

B(X??), Ýf, δ
)

⊆ S`
(

B( ̂X), Ýf, δ
)w?

.

Now a closed ball in X?? of diameter less that 2ε contains {Ýx}∪S`
(

B( ̂X), Ýf, δ
)

and this

ball is weak? closed and so contains {Ýx} ∪ S`
(

B( ̂X), Ýf, δ
)w?

. Therefore

diam
(

{Ýx} ∪ S`
(

B(X??), Ýf, δ
))

< 2ε

and we conclude that Ýx is a semi weak? denting point of B(X??). The converse is obvious.

(ii) Consider F ∈ S(X??)\ ̂X. Then d(F, ̂X) ≡ d > 0 and B(F, d
2
) contains no points of

̂X. However since B( ̂X) is weak? dense in B(X??) every weak? slice of B(X??) contains

points of B( ̂X). Therefore B(F, d
2
) cannot contain any weak? slice of diameter less than d

2

and so F is not a semi weak? denting point of B(X??). So the semi weak? denting points

of B(X??) are contained in ̂X and clearly each one is the image of a semi denting point
of B(X) under the natural embedding.

It follows from Theorem 4.1(i) ⇐⇒ (iv) and Lemma 5.1 that the set of semi weak?

denting points of B(X??) is a closed subset of S( ̂X). So as the natural embedding is a
homeomorphism we deduce that this set of semi denting points of B(X) is a closed subset
of S(X).

We can immediately characterise semi denting and denting points.

Theorem 5.2. For a Banach space X the following are equivalent.

(i) x ∈ S(X) is a semi denting point of B(X),
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(ii) for every bounded subset C? of X? with inf Ýx(C?) > 0 there exists a closed dual ball
B? of X? such that C? ⊆ B? and 0 6∈ B?.

Theorem 5.3. For a Banach space X the following are equivalent.

(i) x ∈ S(X) is a denting point of B(X),

(ii) for every bounded subset C? of X? with inf Ýx(C?) > 0 there exists a closed dual ball
B? of X? such that C? ⊆ B? and inf Ýx(B?) > 0.

The proofs are direct from Lemma 5.1 and Theorem 4.1(i) ⇐⇒ (ii) and Theorem 4.6(i)
⇐⇒ (ii).

Theorem 5.2 enables us to establish the characterisation of Banach spaces with the weak?

Mazur Intersection Property [3, Theorem 3.1(i) ⇐⇒ (v), p. 118].

Theorem 5.4. A Banach space X has the weak? Mazur Intersection Property if and only
if the set of denting points of B(X) is dense in S(X).

Proof. If the set of denting points of B(X) is dense in S(X) then every point x ∈ S(X)
is a semi denting point of B(X) so by Theorem 5.2(i) ⇐⇒ (ii) X has the weak? Mazur
Intersection Property.

Conversely, if X has the weak? Mazur Intersection Property then by Theorem 5.2(ii) ⇐⇒
(i) every point of S(X) is a semi denting point of B(X). Then given 0 < ε < 1, consider
Dε the union of points of S(X) which are in the interior of slices of B(X) of diameter
less then ε. Now Dε is the open and dense in S(X). Since X is complete, by the Baire

Category Theorem
⋂

ε>0

Dε is dense in S(X) but these are precisely the denting points of

B(X).

Theorem 5.3 enables us to establish a property for weak? Mazur spaces which corresponds
to that for Mazur spaces given in Corollary 4.3.

Theorem 5.5. On the sphere S(X) of a weak? Mazur space X, every semi denting point
is a denting point.

Proof. If x ∈ S(X) is a semi denting point of B(X) then by Lemma 5.1 Ýx ∈ S( ̂X) is a
semi weak? denting point of B(X??). Then from Corollary 4.2, for every 0 < ε < 1

S`
(

B(X??), Ýf, 1− ε

2

)

⊆ M = M?.

But for a weak? Mazur space P? = M?, so by Lemma 2.2(i) Ýx is a weak? denting point of
B(X??) and by Lemma 5.1, x is a denting point of B(X).

We then have a result corresponding to Theorem 4.7.

Theorem 5.6. A Banach space X has P? = H? if and only if every point of S(X) is a
denting point of B(X).

Proof. From Theorem 5.4 we have that if X has M? = H? then the set of denting points
of B(X) is dense in S(X). From Theorem 5.5 we have that if X has P? = M? then every
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semi denting point of B(X) is a denting point of B(X).
But we have noticed that the set of semi denting points of B(X) is a closed subset of
S(X). So we conclude that X with P? = H? has every point of S(X) a denting point of
B(X).

Conversely, if every point of S(X) is a denting point of B(X) it follows from Theorem 5.2
that M? = H? and from Theorem 5.3 that P? = M?.

A Banach space X where every point of S(X) is a denting point of B(X), P? = H?

has been studied by Kenderov and Giles [6, Theorem 3.5, p. 472] and has been shown
to have the differentiability property that every continuous convex function on an open
convex subset of the dual possessing a weak? continuous subgradient at the points of a
dense Gδ subset of its domain, is Fréchet differentiable at the points of a dense Gδ subset
of its domain. Such a space is called a dual differentiability space and the class of such
spaces include those with the Radon Nikodym Property. Troyanski [11, p. 306] has shown
that a Banach space X where every point of S(X) is a denting point can be equivalently
renormed to be locally uniformly rotund.
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