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In this paper we consider a family of enlargements of maximal monotone operators in a reflexive Banach
space. Each enlargement, depending on a parameter ε ≥ 0, is a continuous point-to-set mapping E(ε, x)
whose graph contains the graph of the given operator T . The enlargements are also continuous in ε, and
they coincide with T for ε = 0. The family contains both a maximal and a minimal enlargement, denoted
as T e and T se respectively. We address the following questions:
a) which are the operators which are not enlarged by T e, i.e., such that T (·) = T e(ε, ·) for some ε > 0?
b) same as a) but for T se instead of T e.
c) Which operators are fully enlargeable by T e, in the sense that for all x and all ε > 0 there exists δ > 0
such that all points whose distance to T (x) is less than δ belong to T e(ε, x)?
We prove that the operators not enlarged by T e are precisely the point-to-point affine operators with
skew symmetric linear part; those not enlarged by T se are the point-to-point and affine operators, and
the operators fully enlarged by T e are those operators T whose Fitzpatrick function is continuous in its
second argument at pairs belonging to the graph of T .
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1. Introduction

LetX be a Banach space andX∗ its topological dual. A point-to-set mappingA : X ⇒ X∗

is outer semicontinuous (in the sense of Kuratowski-Painlevé), if and only if u ∈ T (x)
whenever x is the limit of a sequence {xn} ⊂ X and u is the limit of a sequence {un} ⊂ X∗,
satisfying un ∈ A(xn) for all n. Outer semicontinuity of A is equivalent to closedness of
its graph Gph(A) := {(x, v) ∈ X × X∗ : v ∈ A(x)}. A is inner semicontinuous (also in
the Kuratowski-Painlevé’s sense), if and only if whenever x ∈ X is the limit of a sequence
{xn} ⊂ X and u belongs to A(x), there exists a sequence {un} ⊂ X∗, convergent to u,
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such that un ∈ A(xn) for all large enough n. A is continuous when it is both inner and
outer semicontinuous.

It is well known that a maximal monotone point-to-set operator T : X ⇒ X∗ is always
outer semicontinuous, because maximality implies closedness of the graph. On the other
hand, maximal monotone operators fail in general to be inner semicontinuous, and hence
continuous. This fact suggests the convenience of embedding a point-to-set maximal
monotone operator T in a family of operators with larger graphs, of the formE : R+×X ⇒
X∗, such that T (x) ⊂ E(ε, x) for all x ∈ X and all ε > 0, and E(ε, ·) has better continuity
properties than T for ε > 0. Assuming that E is also continuous in its first argument,
and that E(0, x) = T (x) for all x ∈ X, E(ε, ·) will be, for ε small, a good approximation
of T , better behaved than it. Such an E is said to be an enlargement of T . A particular
choice of E, denoted as T e(ε, x) (when the operator being enlarged is itself denoted as
T ), was introduced in [2], with the following definition:

T e(ε, x) = {v ∈ X∗ : 〈x− y, v − u〉 ≥ −ε ∀ (y, u) ∈ Gph(T )}, (1)

where Gph(T ) = {(y, u) ∈ X×X∗ : u ∈ T (y)}. It follows from the maximal monotonicity
of T that T e(0, ·) = T (·). It is also immediate that T e(ε1, x) ⊂ T e(ε2, x) whenever ε1 ≤ ε2.

The enlargement T e was successfully used for developing inexact versions of the proxi-
mal point method with nonquadratic regularizations (see [2]), extensions of Korpelevich
method for solving variational inequalities with point-to-set operators (see [7]), bundle-
type methods for finding zeroes of point-to-set maximal monotone operators (see [4]),
and for introducing less demanding error criteria in classical proximal point methods (see
[11]). It has also been used for theoretical, rather than algorithmical purposes, e.g. for
defining a new concept of extended sum of monotone operators (see [9]).

The enlargement T e is indeed continuous in x for all fixed ε > 0. In fact it is jointly
continuous in ε and x in the set R++× int(D(T )), where R++ is the strictly positive
halfline and int(D(T )) denotes the interior of the domain D(T ) of T , which is itself
defined as D(T ) = {x ∈ X : T (x) 6= ∅} (see [5]).

Furthermore, a so called transportation formula holds, saying that if u belongs to T (y)
and v belongs to T (x), then, for all α ∈ [0, 1], αv+(1−α)u belongs to T e(ε, αx+(1−α)y),
with ε = 2α(1− α)〈y − x, u− v〉. This formula allows for effective construction of points
in T e(ε, x) given suitable elements in the image through T of points close to x. The
formula can be improved by starting with points in T e(δ, x) and T e(η, y) instead of T (x)
and T (y). The improved result says that, for all α ∈ [0, 1], all δ, η ≥ 0, all x, y ∈ D(T ), all
v ∈ T e(δ, x) and all u ∈ T e(η, y), the point αv+(1−α)u belongs to T e(ε, αx+(1−α)y),
with ε = αδ+ (1−α)η+2α(1−α)〈y− x, u− v〉. These results were proved in [3] for the
case of Hilbert spaces, and extended to Banach spaces in [5].

The transportation formula turns out to be a key property in several of the applications
mentioned above. This fact led to the idea of studying enlargements from a more abstract
point of view, i.e., considering all enlargements which satisfy certain selected properties.
This was done in [12], where the family of enlargements E(T ) of a maximal monotone
operator T is defined in the following way:

Definition 1.1. Given T : X ⇒ X∗, an enlargement E : R+ ×X ⇒ X∗ belongs to the
family E(T ) if and only if

i) T (x) ⊂ E(ε, x) for all ε ≥ 0 and all x ∈ X,
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ii) For all x ∈ X, E(ε1, x) ⊂ E(ε2, x) whenever ε1 ≤ ε2,

iii) The transportation formula holds, i.e., for all α ∈ [0, 1], all δ, η ≥ 0, all x, y ∈
D(T ), all v ∈ E(δ, x) and all u ∈ E(η, y), the point αv + (1 − α)y belongs to
E(ε, αx+ (1− α)y), with ε = αδ + (1− α)η + 2α(1− α)〈y − x, u− v〉.

It has been proved in [12] that the enlargement T e defined by (1) is the largest member
of the family E(T ), in the sense that Gph(E) ⊂ Gph(T e) for all E ∈ E(T ).

The enlargements in E(T ) share many of the properties of T e, including its continuity. In
fact, it has also been proved in [12] if T : X ⇒ X∗ is a maximal monotone operator and
E belongs to E(T ), then E is continuous in R++ × int(D(T )).

We will also be interested in enlargements with closed graphs. Let Ec(T ) the set of
enlargements E ∈ E(T ) such that Gph(T ) is closed. It is immediate that T e belongs
to Ec(T ), and is in fact the largest enlargement in Ec(T ). The family Ec(T ) has also a
smallest element, namely the enlargement T se defined as

T se(ε, x) = ∩E∈Ec(T )E(ε, x). (2)

From now on, B(x, ρ) will denote the closed ball with center at x and radius ρ.

In this paper we address the following questions:

a) Which are the operators which are non-enlargeable by T e, in the sense that T e(ε, x) =
T (x) for all x ∈ D(T ) and some ε > 0?

b) Which are the operators which are non-enlargeable by T se, with a meaning similar
to the one in a)?

c) Which are the operators which are fully enlargeable by T e, in the sense that for all
x ∈ D(T ) and all ε > 0 there exists δ > 0 (depending in general on x and ε), such
that T (x) +B(0, δ) ⊂ T e(ε, x)?

d) Which are the operators which are fully enlargeable by T se, with a meaning similar
to the one in c)?

The relevance of these questions is rather obvious. In connection with a) and b), if
an operator T is non-enlargeable in the announced sense, then the approximation effect
attempted by the embedding of T in T e (or T se) is not attained at all (i.e., we are
approximating T by itself, which is rather superfluous). It is true that this will happen only
when T itself is rather well behaved, but, if the algorithms based upon the enlargements
are indeed effective, one should expect that non-enlargeable operators will be simple
enough, so that problems involving them (e.g. finding their zeroes), are such that no
iterative numerical methods of the kind mentioned above are necessary for their solution.

On the other hand, fully enlargeable operators are those for which the enlargements under
consideration work better: the enlargement is such that any point close enough to the set
T (x) will belong to T e(ε, x) (or T se(ε, x)), for a suitable ε. In order for these enlargements
to be “robust" enough, it is desirable that the class of fully enlargeable operators be quite
comprehensive, containing all operators whose behavior, in some specific sense, is good
enough.

We will give rather satisfactory answers to the first three of these questions. In connection
with a), we will prove that the class of maximal monotone operators whose domain has
nonempty interior and which are non-enlargeable by T e consists precisely of those which



606 R. S. Burachik, A. N. Iusem / On Non-Enlargeable and Fully Enlargeable ...

are point-to-point in the whole space X, affine (i.e., of the form T (x) = Lx + z, for
some linear L : X → X∗ and some fixed z ∈ X∗), and skew-symmetric (i.e., such that
L + L∗ = 0, where L∗ is the adjoint operator of L). Similarly, we will answer b) by
establishing that the maximal monotone operators whose domain have nonempty interior
and which are non-enlargeable by T se are precisely the affine ones. These operators are
indeed rather simple, for the purposes considered in the previous paragraph. These results
will be presented in Section 2.

In order to announce our results related to c) above, we need some additional machinery.
We start with the Fitzpatrick function associated to a maximal monotone operator, intro-
duced in [6]. Given a maximal monotone operator T : X ⇒ X∗, the Fitzpatrick function
φT : X ×X∗ → R ∪ {∞} is defined as

φT (x, v) = 〈x, v〉+ sup
(y,u)∈Gph(T )

〈x− y, u− v〉. (3)

We also need the following definition.

Definition 1.2. A monotone operator T is said to be strictly ∞monotone (to be read
as “strictly monotone at infinity") if and only if there exists ϕ : R+ → R+ such that
liminft→∞ϕ(t)/t > 0 and 〈x− y, v − u〉 ≥ ϕ(‖x− y‖) for all (x, v), (y, u) ∈ Gph(T ).

We will answer question c) by giving a characterization of those maximal monotone op-
erators which are fully enlargeable by T e: they are precisely those operators such that
φT (x, ·) is continuous at any point v belonging to T (x), with φT as in (3). Also, we have
a characterization of those operators which are fully enlarged by T e in a uniform way, in
the sense that the radius δ such that T (x) + B(0, δ) ⊂ T e(ε, x) depends on ε but not on
x: the class of these operators coincides precisely with the class of maximal monotone
operators which are strictly ∞monotone. This class can also be characterized in terms of
some local continuity properties of the function βT (x, v) := φT (x, v)−〈x, v〉 (see Theorem
3.3 for details). Again, this class of operators is comprehensive enough so as to ensure
the robustness of the enlargement T e. These results will be presented in Section 3.

We do not have yet satisfactory answers to question d), which is left as an open problem,
deserving further study.

2. On non-enlargeable operators

We will say that a maximal monotone operator T is non-enlargeable by an enlargement
E ∈ E(T ) if there exists ε > 0 such that E(ε, x) = T (x) for all x ∈ X (we will see
later on that when T is non-enlargeable by E then the equality above holds indeed for
all ε ≥ 0). In this section we study the class of maximal monotone operators which are
non-enlargeable by either T e or T se.

We will proceed in three stages, which will be dealt with in the next three subsections:
first we will establish that affine operators with skew-symmetric linear part are non-
enlargeable by T e, then we will prove that all affine operators are non-enlargeable by T se,
and finally we will see that operators whose domain has nonempty interior and which are
non-enlargeable by any E ∈ E(T ) are affine (in all cases, it is understood that all the
operators under consideration are maximal monotone).
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2.1. Affine operators with skew-symmetric linear part are non-enlargeable
by T e

We start with some definitions. Let X be a reflexive Banach space and L : X → X∗ a
continuous linear operator. The adjoint operator L∗ : X → X∗ is defined by 〈x′, Lx〉 =
〈x, L∗x′〉 for all x, x′ ∈ X. The operator L is said to be

• positive semidefinite when 〈Lx, x〉 ≥ 0 for all x ∈ X,

• skew-symmetric when L+ L∗ ≡ 0.

We also remind that the range R(A) of a point-to-set mapping A : X ⇒ X∗ is defined as
∪x∈XA(x).

We need now a couple of introductory technical results.

Lemma 2.1. Let X be a reflexive Banach space. Consider a positive semidefinite linear
operator S : X → X∗ with closed range R(S). For a fixed u ∈ X∗, define ψ : X → R as
ψ(y) := 1/2〈Sy, y〉 − 〈u, y〉. Then
i) if u 6∈ R(S), then argminXψ = ∅ and infX ψ = −∞.

ii) If u ∈ R(S), then ∅ 6= argminXψ = S−1(u) := {x ∈ X : S(x) = u}.

Proof. i) Since u 6∈ R(S) and R(S) is closed and convex, there exists ȳ 6= 0, ȳ ∈ X∗∗ = X
such that 〈ȳ, u〉 = 1 and 〈ȳ, Sy〉 ≤ 0 for all y ∈ X. Since S is positive semidefinite, it
holds that 〈ȳ, Sȳ〉 = 0. Then ψ(λȳ) := (1/2)λ2〈Sȳ, ȳ〉 − λ〈u, ȳ〉 = −λ, which tends to
−∞ when λ ↑ ∞. Thus, argminXψ = ∅ and infX ψ = −∞.
ii) Observe that argminXψ = {z : ∇ψ(z) = 0} = {z : S(z) = u} = S−1(u). This set is
nonempty, since u ∈ R(S).

Next, we explicitly compute the enlargement T e for the case in which T is affine.

Proposition 2.2. Let X be a reflexive Banach space and T : X → X∗ a maximal mono-
tone operator of the form T (x) = Lx+z, where L is linear (and hence positive semidefinite,
by monotonicity of T ) and z ∈ X∗. Then

T e(ε, x) = {Lx+ z + (L+ L∗)w : 〈(L+ L∗)w,w〉 ≤ 2ε}. (4)

Proof. Call V (ε, x) the right hand side of (4). We prove first that

T e(ε, x) ⊂ V (ε, x). (5)

Write an element w ∈ T e(ε, x) as w = Lx+ z + u, for some u ∈ X∗. We must prove that
there exists some w̄ such that (L+ L∗)w̄ = u and 〈(L+ L∗)w̄, w̄〉 ≤ 2ε. The definition of
T e implies that for all y ∈ X, it holds that

−ε ≤ 〈w − (Ly + z), x− y〉 = 〈L(x− y), x− y〉+ 〈u, x− y〉.

Rearranging the expression above, we get that

−ε ≤ (1/2)〈(L+ L∗)(y − x), y − x〉 − 〈u, y − x〉 = ψ(y − x),

with ψ as in Lemma 2.1. Since ψ is bounded below, we get that u ∈ R(L + L∗) and
argminXψ = (L+L∗)−1u. Thus, for every x̄ ∈ x+(L+L∗)−1u we have −ε ≤ ψ(x̄−x) ≤
ψ(x′ − x) for all x′ ∈ X. In other words,

−ε ≤ (1/2)〈(L+ L∗)(x̄− x), x̄− x〉 − 〈u, x̄− x〉 = −(1/2)〈(L+ L∗)(x̄− x), x̄− x〉,
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using the fact that (L+ L∗)(x̄− x) = u. Thus, 〈(L+ L∗)(x̄− x), x̄− x〉 ≤ 2ε, and hence
there exists w̄ := (x̄ − x) such that u = (L + L∗)w̄ with 〈(L + L∗)w̄, w̄〉 ≤ 2ε. We have
proved that (5) holds. We proceed to prove the converse inclusion.

Take u = Lx + z + (L + L∗)w ∈ V (ε, x). We must prove that u belongs to T e(ε, x), i.e.,
that

−ε ≤ 〈x− y, u− T (y)〉 (6)

for all y ∈ X. Note that

〈x− y, u− T (y)〉 = 〈x− y, Lx+ z + (L+ L∗)w − (Ly + z)〉
= 〈x− y, L(x− y) + (L+ L∗)w〉

=
1

2
〈x− y, (L+ L∗)(x− y) + 〈x− y, (L+ L∗)w〉

=
1

2
〈x− y + w, (L+ L∗)(x− y + w)〉 − 1

2
〈(L+ L∗)w,w〉. (7)

It follows easily from the monotonicity of T (x) = Lx+z that the first term in the rightmost
expression in (7) is nonnegative. The second term is greater than or equal to −ε, as a
consequence of the definition of V (ε, x), since w ∈ V (ε, x). Hence, (6) holds for all y ∈ X,
i.e., u belongs to T e(ε, x). It follows that V (ε, x) ⊂ T e(ε, x), completing the proof.

An immediate consequence of Proposition 2.2 is the characterization of those linear op-
erators T which cannot be actually enlarged by T e.

Corollary 2.3. Let X be a reflexive Banach space, and T : X → X∗ a maximal monotone
operator defined as T (x) = Lx+ z, with z ∈ X∗ and L : X → X∗ linear and continuous.
Then the following statements are equivalent:

i) L is skew-symmetric.

ii) T e(ε, x) = T (x) for every ε > 0.

iii) T e(ε̄, x) = T (x) for some ε̄ > 0.

Proof. The fact that i) implies ii) follows from Proposition 2.2. Since ii) implies iii)
trivially, it suffices to prove that iii) implies i). Assume that iii) holds. The operator
S := L + L∗ is self-adjoint, and positive semidefinite by maximal monotonicity of T .
Under these circumstances, it is well known that if 〈Sx, x〉 = 0 then x = 0. We claim
that Sx = 0 for all x ∈ X. Otherwise, there exists w 6∈ Ker(S), so that 〈Sw,w〉 > 0. Let

w̄ :=
√

2ε̄
〈Sw,w〉w. Then, Sw̄ 6= 0 and

〈Sw̄, w̄〉 ≤ 2ε̄. (8)

In view of (8) and Proposition 2.2, T (x) + Sw̄ belongs to T e(ε̄, x), in contradiction with
iii), which states that the unique element of T e(ε̄, x) is T (x). It follows that L+ L∗ = 0
and i) holds.

2.2. Affine operators are non-enlargeable by T se

We will compute next T se for an affine operator T .
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Proposition 2.4. Let X be a reflexive Banach space, and T : X → X∗ be defined as
T (x) = Lx + z, with z ∈ X∗ and L : X → X∗ linear and continuous. Then T se(ε, x) =
T (x) for all ε ≥ 0.

Proof. For ε ≥ 0, consider the enlargement Ē(ε, x) defined as Ē(ε, x) = T (x) for all
x ∈ X. We claim that Ē belongs to E(T ). Items i) and ii) in Definition 1.1 are trivially
satisfied, so that it suffices to check iii). Note that in this case we have E(δ, x) = Lx+ z,
E(η, y) = Ly + z for all δ, η ≥ 0 and all x, y ∈ X, so that the statement in iii) reduces to

α(Lx+ z) + (1− α)(Ly + z) = L(αx+ (1− α)y) + z,

which follows immediately from the linearity of L. Thus, Ē belongs to Ec(T ). Since
Ē(ε, x) = T (x) ⊂ E(ε, x) for all ε ≥ 0 and all x ∈ X as a consequence of Definition 1.1 i),
we conclude that

Ē(ε, x) = ∩E∈Ec(T )E(ε, x) = T se(ε, x)

for all ε ≥ 0 and all x ∈ X, which gives the result.

2.3. Most non-enlargeable operators are affine

In order to complete our analysis of non-enlargeable operators, it remains to be proved
that if T is non-enlargeable by an arbitrary E ∈ E(T ) and int(D(T )) 6= ∅ then T is
point-to-point and affine. We start by showing that if E(ε̄, ·) = T (·) for some ε̄ > 0, then
E(ε, ·) = T (·) for all ε ≥ 0.

Lemma 2.5. Let E ∈ E(T ). If there exists ε̄ > 0 such that E(ε̄, x) = T (x) for all
x ∈ D(T ), then the same property holds for every ε > 0.

Proof. Take x ∈ D(T ) and define

ε(x) := sup{ε ≥ 0 : E(ε, x) = T (x)}.

By assumption, ε(x) ≥ ε̄ > 0. Observe that Definition 1.1 ii) implies that E(η, x) = T (x)
for all η < ε(x). The conclusion of the lemma clearly holds if ε(x) = ∞ for every x ∈ D(T ).
Suppose that there exists x ∈ D(T ) for which ε(x) < ∞. Fix ε > ε(x). By definition of
ε(x), we can find w ∈ E(ε, x) such that w 6∈ T (x). Consider v̄ :=argmin{‖v − w‖ : v ∈
T (x)} and take α ∈ (0, 1) such that 0 < αε < ε(x). By Definition 1.1 iii) we have that

v̄′ := αw + (1− α)v̄ ∈ E(αε, x) = T (x).

Note that ‖v̄′ − w‖ = (1 − α)‖v̄ − w‖ < ‖v̄ − w‖, which contradicts the definition of v̄.
Hence, ε(x) = ∞ for every x ∈ D(T ) and the lemma is proved.

In order to continue, we need several results from the theory of maximal monotone oper-
ators. First, we recall the definition of normalizing operator. Given a convex set C ⊂ X,
the normalizing operator NC : X ⇒ X∗, defined as

NC(x) =

{

{v ∈ X∗ : 〈v, y − x〉 ≤ 0 ∀y ∈ C} if x ∈ C

∅ otherwise,
(9)

is maximal monotone, because it is in fact the subdifferential of the convex function
IC : X → R ∪ {∞}, defined as IC(x) = 0 if x ∈ C, IC(x) = ∞ otherwise.

We start with the following three results, established in [10].
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Theorem 2.6. Let X be a Banach space with dual X∗, and T : X ⇒ X∗ a monotone
operator, such that int(D(T )) 6= ∅.
i) int(D(T )) is a nonempty convex set whose closure is D(T ).

ii) if D(T ) = X, then D(T ) = X.

Theorem 2.7. Let X be a Banach space with dual X∗. If T : X ⇒ X∗ is maximal
monotone, then T is locally bounded at any point x ∈ int(D(T )).

Theorem 2.8. Let X be a Banach space with dual X∗, and T : X ⇒ X∗ a monotone
operator. If T is maximal and int(D(T )) 6= ∅ then, for all z in the set D(T ) \ int(D(T )),

a) there exists a nonzero w ∈ ND(T )(z), with ND(T ) as defined in (9),

b) T (z) +ND(T )(z) ⊂ T (z),

c) T (z) is not bounded.

The following result establishes demi-outer semicontinuity of maximal monotone opera-
tors. We start with the pertinent definitions.

Definition 2.9.

a) A sequence {(xn, vn)} ⊂ X × X∗ demi-converges to (x, v) if one of the situations
below holds:
i) w-limn x

n = x and s-limn v
n = v, or

ii) s-limn x
n = x and w∗-limn v

n = v,
where s-limn, w-limn and w∗-limn refer to limits of sequences in the strong, the
weak and the weak∗ topology respectively.

b) A subset W ⊂ X × X∗ is demi-closed if it contains all limits of demi-converging
sequences {(xn, vn)} ⊂ W .

c) A point-to-set mapping A : X ⇒ X∗ is demi-outer semicontinuous if its graph is
demi-closed, i.e., whenever {xn} converges weakly (respectively strongly) to x, {vn}
converges strongly (respectively weakly∗) to v, and vn ∈ T (xn) for all n, it holds
that v ∈ T (x).

Proposition 2.10. If X is a Banach space and T : X ⇒ X∗ is a maximal monotone
operator, then T is demi-outer semicontinuous.

Proof. See Proposition 4.3 in [12].

Now, we present a result on continuity of marginal functions constructed from point-to-set
mappings.

Proposition 2.11. Let X and Y be metric spaces and F : X ⇒ Y a point-to-set map-
ping. Given f :Gph(F ) → R, define g : X → R ∪ {∞} as g(x) := supy∈F (x) f(x, y). Take
x ∈ D(F ).

a) If F is inner semicontinuous at x and f is lower semicontinuous at every (x, y) ∈
{x} × F (x), then g is lower semicontinuous at x.

b) If X is a reflexive Banach space, Y = X∗, F is outer semicontinuous with respect to
the weak∗ topology and locally bounded at x, and f is upper semicontinuous at any
(x, y) ∈ {x}×F (x) with respect to the weak∗ topology, then g is upper semicontinuous
at x.



R. S. Burachik, A. N. Iusem / On Non-Enlargeable and Fully Enlargeable ... 611

Proof. a) See Theorem 1.4.16 in [1].

b) In order to prove that g is upper semicontinuous at x, we must prove that for all
sequence {xn} converging to x, it holds that

g(x) ≥ limsupng(xn). (10)

Assume that the inequality above does not hold, and so there exists γ ∈ R such that

g(x) < γ < limsupng(xn) = inf
n
sup
k≥n

g(xk). (11)

It follows from (11) that for all n there exists kn ≥ n and xkn ∈ X such that

g(x) < γ < g(xkn). (12)

We conclude from (12) and the definition of g that for all n ∈ N there exists ykn ∈ F (xkn)
verifying

g(x) < γ < f(xkn , ykn). (13)

Since F is locally bounded at x, there exist a neighborhood V of x and a radius ρ > 0
such that F (V ) ⊂ B(0, ρ). Take n̄ ∈ N such that xn belongs to V for all n ≥ n̄. Thus, for
all n ≥ n̄, we have kn ≥ n̄, and henceforth xkn ∈ V , yielding xkn ∈ V for n ≥ n̄. Therefore
ykn ∈ B(0, ρ) for all n ≥ n̄, and invoking Bourbaki-Alaoglu’s Theorem (see e.g. [8], Vol. I,
p. 248), we can assume without loss of generality (i.e., refining {ykn} if needed) that {ykn}
is weakly∗ convergent to some y ∈ B(0, ρ). Since F is outer semicontinuous with respect
to the weak∗ topology, it follows that y ∈ F (x). Using this fact, upper semicontinuity of
f with respect to the weak∗ topology and (13), we get

f(x, y) ≤ g(x) < γ ≤ lim sup
j

f(xknj
, yknj

) ≤ f(x, y),

which is a contradiction, so that (10) holds.

We continue with a result which relates single-valuedness with inner semicontinuity, whose
proof requires the previous two propositions.

Proposition 2.12. Let T :X ⇒ X∗ be a maximal monotone operator such that int(D(T ))
6= ∅. Then

i) T is not inner semicontinuous at any boundary point of D(T ).

ii) T (x) is a singleton if and only if T is inner semicontinuous at x.

Proof. i) Let x ∈ D(T ) be a boundary point of D(T ). Theorem 2.8 a) implies that there
exists a nonzero element w ∈ ND(T )(x). Therefore,

D(T ) ⊂ {z ∈ X : 〈w, z〉 ≤ 〈w, x〉}. (14)

By Theorem 2.6 i), int(D(T )) is a nonempty convex set and, taking interiors in both sides
of (14), we get

int(D(T )) ⊂ {z ∈ X : 〈w, z〉 < 〈w, x〉}. (15)

Fix y ∈ int(D(T )). By (15), there exists α < 0 such that 〈w, y − x〉 < α. Suppose now
that T is inner semicontinuous at x and fix u ∈ T (x). Since T (x) +ND(T )(x) ⊂ T (x) by
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Theorem 2.8 b), we conclude that u + w ∈ T (x). Define now xn := (1− 1/n)x + (1/n)y.
Clearly, limn→∞ xn = x. Since x belongs to D(T ) and y belongs to int(D(T )), xn belongs
to int(D(T )) for all n (see e.g. Theorem 2.23(b) in [13]). By inner semicontinuity of T at
x, there exists a sequence {vn} such that vn ∈ T (xn) for all n and {vn} converges weakly∗

to u+ w ∈ T (x). Therefore,

0 ≤ 〈vn − u, xn − x〉 = 1

n
〈vn − u, y − x〉 = 1

n
〈vn − (u+ w), y − x〉+ 1

n
〈w, y − x〉,

so that
0 ≤ 〈vn − (u+ w), y − x〉+ 〈w, y − x〉. (16)

Taking now limits for n → ∞ in (16) and using the fact that {vn} converges weakly∗ to
u+ w, we get 0 ≤ 〈w, y − x〉 < α < 0, a contradiction, which implies that T is not inner
semicontinuous at any point x in the boundary of D(T ).

ii) Assume first that T (x) is a singleton. Note that x ∈ int(D(T )) by Theorem 2.8 c),
so that there exists ρ > 0 such that T (B(x, ρ)) is contained in a weakly∗ compact set
B∗. Let {xn} ⊂ D(T ) be a sequence converging to x. Without loss of generality, we
can assume that {xn} ⊂ B(x, ρ). Take a sequence {vn} ⊂ X∗ such that vn ∈ T (xn) for
all n. Since {xn} ⊂ B(x, ρ), it holds that {vn} ⊂ B∗. By Bourbaki-Alaoglu’s Theorem,
{vn} has weak∗ accumulation points. Since T is demi-closed by Proposition 2.10, all such
accumulation points belong to T (x). Using now the fact that T (x) is a singleton, we
conclude that {vn} has a unique weak∗ accumulation point, which must be T (x). Since
{vn} is bounded, the whole sequence is weakly convergent to T (x). This proves the
inner-semicontinuity of T .

Conversely, assume that T is inner semicontinuous at x, and suppose that there exist
v1, v2 ∈ T (x), with w := v1 − v2 6= 0. By definition of the norm in X∗, there exists
z ∈ X such that ‖z‖ = 1 and 〈w, z〉 ≥ ‖w‖/2 > 0. Define now g : D(T ) → R ∪ {∞}
as g(y) := supu∈Ty〈u, z〉. We claim that g is continuous at x. In order to prove this
claim, we wil use Proposition 2.11 a) and b), with F := T and f :Gph(T ) → R defined
as f(y, u) := 〈u, z〉. It is easy to check that f is strong-weak∗ continuous at every point
(x, v) ∈ {x}×T (x). Since T is inner semicontinuous at x, we can apply Proposition 2.11 a)
for concluding that g is lower semicontinuous at x. Now we observe that, as a consequence
of Theorem 2.7, T is locally bounded at x because, since T is inner semicontinuous at
x, by item i) of this proposition x cannot be a boundary point of D(T ), and hence
x ∈ int(D(T )). We are within the hypotheses Proposition 2.11 b), which implies upper-
semicontinuity of g. Therefore, the claim holds and g is continuous at x. Since T is locally
bounded at x, there exists ρ > 0 such that T (B(x, ρ)) is contained in a weak∗ compact
set. Take t ∈ (−ρ, ρ), so that T (x + tz) ⊂ T (B(x, ρ)). For all u ∈ T (x + tz) and all
v ∈ T (x) we have that

0 ≤ 〈u− v, (x+ tz)− x〉 = t〈u− v, z〉. (17)

Using (17) for a fixed t =: s ∈ (−ρ, 0) and v = v2 ∈ T (x), we get 〈v2, z〉 ≥ 〈u, z〉. Since
this inequality holds for every u ∈ T (x+ sz) we obtain

〈v2, z〉 ≥ g(x+ sz). (18)

Using again (17) for a fixed t =: s′ ∈ (0, ρ) and v = v1 ∈ T (x), we get

〈v1, z〉 ≤ 〈u, z〉 ≤ g(x+ s′z). (19)
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By (18), (19) and continuity of g at x, we have

0 = lim
s↑0 s′↓0

g(x+ s′z)− g(x+ sz) ≥ 〈v1, z〉 − 〈v2, z〉 = 〈w, z〉 ≥ ‖w‖
2

> 0,

a contradiction, which implies that T (x) is a singleton.

Next we prove that maximal monotone point-to-point operators T : X → X∗ have open
domains and are continuous.

Proposition 2.13. Let X be a Banach space and T : X → X∗ a point-to-point monotone
operator such that int(D(T )) 6= ∅. If T is maximal, then D(T ) is open and T is continuous
with respect to the strong topology in X and the weak∗ topology in X∗ at every point of
D(T ).

Proof. Assume that there exists a point x ∈ D(T ) which is at the boundary of D(T ).
Then T (x) is unbounded by Theorem 2.8 c), contradicting the fact that T is point-to-
point. Therefore, D(T ) ⊂ int(D(T )) and hence D(T ) is open. Fix x ∈ D(T ). Since T is
point-to-point, continuity of T at x is equivalent to inner-semicontinuity of T at x, which
follows from Proposition 2.12 ii) and the fact that T (x) is a singleton.

We continue with a technical lemma, which gives sufficient conditions for a maximal
monotone operator to be affine.

Lemma 2.14.

i) Let X and Y be vector spaces. If G : X → Y satisfies

G(αx+ (1− α)y) = αG(x) + (1− α)G(y) (20)

for all x, y ∈ X and all α ∈ [0, 1], then the same property holds for all α ∈ R. In
this case, G is affine, i.e., there exists a linear function L : X → Y and an element
ȳ ∈ Y such that G(·) = L(·) + ȳ.

ii) Let T : X → X∗ be a maximal monotone point-to-point operator such that int(D(T ))
6= ∅. If

T (αx+ (1− α)y) = αT (x) + (1− α)T (y),

for all x, y ∈ D(T ) and all α ∈ [0, 1], then T is affine and D(T ) = X.

Proof. i) is well known and easy to prove. For ii), note that Proposition 2.13 implies
that D(T ) is open. Without loss of generality, we can assume that 0 ∈ D(T ). Otherwise,
take a fixed x0 ∈ D(T ) and consider T0 := T (· + x0). The operator T0 also satisfies the
assumption on affine combinations, and its domain is the (open) set {y− x0 : y ∈ D(T )}.
It is also clear that D(T0) = X if and only if D(T ) = X. Thus, we can suppose that
0 ∈ D(T ). Since D(T ) is open, for every x ∈ X there exists λ > 0 such that λx ∈ D(T ).
Define T̃ : X → X∗ in the following way. For each x ∈ X, pick up any λ > 0 such that
λx ∈ D(T ) and then take:

T̃ (x) =
1

λ
T (λx) +

(

1− 1

λ

)

T (0). (21)

It happens to be the case that the right hand side of (21) does not depend on the specific
choice of λ. In fact, we claim that
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a) T̃ (x) is well defined and nonempty for every x ∈ X,

b) T̃ = T in D(T ),

c) T̃ is monotone.

We proceed to prove the claim. For proving a), we start by showing that the right hand
side of (21), does not depend on λ. Suppose that λ, λ′ > 0 are both such that λx, λ′x ∈
D(T ). Without loss of generality, assume that 0 < λ′ < λ. Then λ′x = λ′

λ
λx+ (1− λ′

λ
)0.

Since λ′

λ
∈ (0, 1) we can apply the hypotheses on T to get

T (λ′x) =
λ′

λ
T (λx) +

(

1− λ′

λ

)

T (0),

which implies that

1

λ
T (λx) +

(

1− 1

λ

)

T (0) =
1

λ′T (λ
′x) +

(

1− 1

λ′

)

T (0),

and hence T̃ (x) is well defined. Nonemptiness of T̃ (x) follows easily from the definition,
since λx, 0 ∈ D(T ). This gives D(T̃ ) = X. Assertion b) follows by taking λ = 1 in (21).
By a), this choice of λ does not change the value of T̃ . For proving c), we claim first that
T̃ is affine. Indeed, since D(T̃ ) = X, this fact will follow from item i) if we show that for
all λ ∈ [0, 1], it holds that

T̃ (λx+ (1− λ)y) = λT̃ (x) + (1− λ)T̃ (y)

for all x, y ∈ X. Take η > 0 small enough to ensure that ηx, ηy and η(λx + (1 − λ)y) ∈
D(T ). Then,

T̃ (λx+ (1− λ)y) = T̃

(

1

η
(ηλx+ η(1− λ)y)

)

=
1

η
T (ηλx+ η(1− λ)y) +

(

1− 1

η

)

T (0)

=
λ

η
T (ηx) +

1− λ

η
T (ηy) +

(

1− 1

η

)

T (0)

= λ

[

1

η
T (ηx) +

(

1− 1

η

)

T (0)

]

+ (1− λ)

[

1

η
T (ηy) +

(

1− 1

η

)

T (0)

]

= λT̃ (x) + (1− λ)T̃ (y),

using the definition of T̃ in the second and the last equality, and the hypothesis on T in
the third one. Thus, T̃ is affine by item ii). In this case, monotonicity of T̃ is equivalent
to positive semidefiniteness of the linear part L̃ := T̃ (·)− T (0) of T̃ . In other words, we
must prove that 〈L̃x, x〉 ≥ 0 for all x ∈ X. Take x ∈ X and λ > 0 such that λx ∈ D(T ).
Then

〈L̃x, x〉 = (1/λ2)〈L̃(λx), λx〉 = (1/λ2)〈T̃ (λx)− T (0), λx〉
= (1/λ2)〈T (λx)− T (0), λx〉 ≥ 0,

using b) in the third equality and monotonicity of T in the inequality. Hence, T̃ is
monotone and therefore T = T̃ . This implies that T is affine and D(T ) = D(T̃ ) = X.
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Now we are able to prove that if T cannot be enlarged, then it must be affine.

Theorem 2.15. Let X be a reflexive Banach space and T : X ⇒ X∗ a maximal monotone
operator such that int(D(T )) 6= ∅. If there exist E ∈ E(T ) and ε̄ > 0 such that

E(ε̄, ·) = T (·), (22)

then

a) D(T ) = X, and

b) there exists a continuous linear function L : X → X∗ and an element z ∈ X∗ such
that T (·) = L(·) + z.

Proof. We claim that (22) implies that D(T ) is open. Indeed, by Proposition 2.12 ii)
and (22), T (x) is a singleton for all x, and hence Proposition 2.13 yields the claim.

For proving a), assume for the sake of contradiction that D(T ) ( X. If (D(T )) = X, then
by Theorem 2.6 ii), it holds that D(T ) = X. Hence we can assume that (D(T )) ( X.
Take x, y ∈ D(T ) and α ∈ [0, 1]. By Definition 1.1 iii), we have

αT (x) + (1− α)T (y) ∈ E(Ýε, Ýx),

where Ýε := α(1− α)〈T (x)− T (y), x− y〉 and Ýx := αx+ (1− α)y. By Lemma 2.5, we get
that E(Ýε, Ýx) = T (Ýx), and since T is point-to-point, it holds that

αT (x) + (1− α)T (y) = T (Ýx).

We conclude from Lemma 2.14 ii) that T is affine and D(T ) = X. Continuity of L follows
from maximal monotonicity of T . This proves a) and b).

Finally, we combine the results of Theorem 2.15 with Corollary 2.3 and Proposition 2.4.

Corollary 2.16. Let T : X ⇒ X∗ be maximal monotone.

i) If T is affine with skew-symmetric linear part (i.e. T (x) = Lx + z for all x, where
L : X → X∗ is linear and skew-symmetric, and z belongs to X∗), then T is non-
enlargeable by T e.

ii) If T is affine, then T is non-enlargeable by T se.

iii) If int(D(T )) 6= ∅ and T is non-enlargeable by T e, then D(T ) = X, and T is point-
to-point and affine with skew-symmetric linear part.

iv ) If int(D(T )) 6= ∅ and T is non-enlargeable by T se then D(T ) = X, and T is point-
to-point and affine.

Proof.

i) Follows from Corollary 2.3.

ii) Follows from Proposition 2.4.

iii) Since then enlargement T e belongs to E(T ), we get from Theorem 2.15 that D(T ) =
X and that T is point-to-point and affine. Using now Corollary 2.3, we conclude
that the linear part of T is skew-symmetric.

iv ) Again, since T se ∈ E(T ), we get from Theorem 2.15 that D(T ) = X and that T is
point-to-point and affine.
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Remark. The condition int(D(T )) 6= ∅ is necessary for Theorem 2.15 to hold. Consider
the following example: X = Rn, 0 6= a ∈ Rn and T = NV , where V := {y ∈ Rn|〈a, y〉 = 0}
and NV is the normalizing operator of V , as defined by (9). It is clear that T is not affine,
since its domain is not the whole space and it is nowhere point-to-point. Namely,

T (x) =

{

V ⊥ = {λa | λ ∈ R} if x ∈ V,

∅ otherwise.

We claim that T e(ε, ·) = T (·) for all ε > 0. For x 6∈ V this equality follows from the fact
that V = D(T ) ⊂ D(T e(ε, ·)) ⊂ (D(T )) = V . In this case both mappings have empty
value at x. Suppose now that there exists x ∈ V and ε > 0 such that T e(ε, ·) 6⊂ T (·).
Then there exists b ∈ T e(ε, x) such that b 6∈ V ⊥. In this case, b = ta+ w for some t ∈ R
and 0 6= w ∈ V . Since b ∈ T e(ε, x), for y = x+ 2εw/|w|2 ∈ V we have

−ε ≤ 〈b− λa, x− y〉 = 2〈(t− λ)a+ w,−εw/|w|2〉 = −2ε,

which is a contradiction, establishing the claim.

3. On fully enlargeable operators

We start with the formal definition of full enlargeability.

Definition 3.1. Let T : X ⇒ X∗ be a maximal monotone operator and consider an
element E ∈ E(T ).

i) The enlargement E fully enlarges T at the point x ∈ D(T ) if and only if for all
ε > 0 there exists δ = δ(x, ε) such that T (x) +B(0, δ) ⊂ E(ε, x).

ii) E is a full enlargement of T when property i) holds for all x ∈ D(T ).

iii) Given a full enlargement E of T , E is a uniformly full enlargement of T when the
radius δ of the ball in i) does not depend on x, i.e., when for all ε > 0 there exists
δ = δ(ε) such that T (x) +B(0, δ) ⊂ E(ε, x) for every x ∈ D(T ).

We present next a characterization of those operators T which are fully enlarged by T e.
Define βT : X ×X∗ → R ∪ {∞} as

βT (x, v) = φT (x, v)− 〈x, v〉, (23)

with φT as defined in (3). Also, given w ∈ X∗ and U ⊂ X∗, we will denote as d(w,U) the
metric distance from w to U , i.e. d(w,U) = infu∈U ‖u− w‖.
Theorem 3.2. Let T : X ⇒ X∗ be a maximal monotone operator. Then the following
statements are equivalent.

a) T e is a full enlargement of T .

b) The Fitzpatrick function φT (x, ·) is continuous at every v ∈ T (x), uniformly in
T (x).

c) For every ε > 0 and every x ∈ D(T ) there exist ρ = ρ(ε, x) > 0 and α = α(ε, x) > 0
such that

〈v − u, x− y〉 ≥ α‖x− y‖ (24)

for all v ∈ T (x) and all (y, u) ∈ Gph(T ) such that ‖x− y‖ ≥ ρ.
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Proof. Assume that a) holds. It follows easily from the definitions of βT and T e that,
given x ∈ D(T ), w belongs to T e(ε, x) if and only if 0 ≤ βT (x,w) ≤ ε. In particular,
given x ∈ D(T ), it holds that βT (x,w

′) = 0 if and only if w′ ∈ T e(0, x) = T (x). In view
of (23), continuity of φT (x, ·) is equivalent to continuity of βT (x, ·). Thus, we proceed to
prove continuity of βT (x, ·) on the set T (x). Fix ε > 0 and consider δ > 0 as given by
Definition 3.1 i). Take w ∈ X∗ such that d(w, T (x)) < δ. The latter inequality yields the
existence of some u ∈ T (x) such that

w = u+ (w − u) ∈ T (x) +B(0, δ) ⊂ T e(ε, x),

using Definition 3.1 i) in the inclusion. Therefore, |βT (x,w)−βT (x, v)| = βT (x,w)−0 ≤ ε
for all v ∈ T (x). Since δ only depends on x and ε, b) holds.

Assume now that b) holds, and suppose that c) is not true for some ε̄ > 0 and some
x̄ ∈ D(T ). By b), βT (x̄, ·) is uniformly continuous on the set T (x̄), and hence for every
v̄ ∈ T (x̄) there exists δ̄ > 0 such that

βT (x̄, w) < ε̄, (25)

for all w ∈ X∗ such that d(w, T (x̄)) < δ̄. The assumption on ε̄ and x̄ entails that given
any pair (α, ρ) it is posible to find v ∈ T (x̄) and (y, u) in Gph(T ) such that ‖x̄− y‖ ≥ ρ
but the inequality in (24) does not hold. Taking α := δ̄/2 and ρ := n ∈ N, we conclude
that there exist vn ∈ T (x̄) and (yn, un) ∈ Gph(T ) such that ‖yn − x̄‖ ≥ n and

〈vn − un, x̄− yn〉 <
δ̄

2
‖x̄− yn‖ .

Take now zn ∈ X∗ such that ‖zn‖ = 1 and ‖x̄− yn‖−1 〈zn, x̄ − yn〉 = 1, and define
wn := vn − δ̄zn. Then d(wn, T (x̄)) < δ̄ and, by uniform continuity of βT (x̄, ·), we have
that βT (x̄, wn) ≤ ε̄. In other words, wn belongs to T e(ε̄, x̄), which gives

−ε̄ ≤ 〈wn − un, x̄− yn〉 = 〈wn − vn, x̄− yn〉+ 〈vn − un, x̄− yn〉

= −δ̄ ‖x̄− yn‖+ 〈vn − un, x̄− yn〉 < −δ̄ ‖x̄− yn‖+
δ̄

2
‖x̄− yn‖

= − δ̄

2
‖x̄− yn‖ ≤ − δ̄

2
n. (26)

Since n ∈ N can be made arbitrary large, (26) leads to contradiction, which proves c).

Assume now that c) holds. Fix ε > 0 and x ∈ D(T ), and consider ρ, α > 0 as given
by (24). We claim that T (x) + B(0, δ) ⊂ T e(ε, x) for δ := min{ε/ρ, α}. Indeed, take
w = v + z, with v ∈ T (x) and z ∈ B(0, δ). Then, for all (y, u) ∈ Gph(T ), we have

〈w − u, x− y〉 = 〈z, x− y〉+ 〈v − u, x− y〉 ≥ −‖z‖ ‖x− y‖+ 〈v − u, x− y〉. (27)

We consider now two cases.

Case 1. y ∈ B(x, ρ). We get from (27)

〈w − u, x− y〉 ≥ −‖z‖ ρ+ 〈v − u, x− y〉 ≥ −‖z‖ ρ ≥ −δ ρ ≥ −ε,

which implies that w ∈ T e(ε, x) in this case.
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Case 2. y 6∈ B(x, ρ). From (27) and assumption (c) we get

〈w − u, x− y〉 ≥ −‖z‖ ‖x− y‖+ α‖x− y‖ ≥ (α− δ)‖x− y‖ ≥ 0 ≥ −ε,

which also yields w ∈ T e(ε, x). Therefore T e is a full enlargement of T at x.

Next we characterize operators T for which T e is a uniformly full enlargement.

Theorem 3.3. Let T : X ⇒ X∗ be a maximal monotone operator. Then the following
statements are equivalent.

a) T is strictly ∞monotone, as in Definition 1.2.

b) The function β(x, ·), as defined in (23), is locally Lipschitz around T (x), with a local
Lipschitz constant which does not depend on x.

c) T e is a uniformly full enlargement of T .

Proof. Assume that a) holds. Since T is strictly ∞monotone, there exists a function ϕ as
in Definition 1.2, and hence there exist constants M > 0 and r > 0 such that ϕ(t)/t > r
for all t > M . Fix x ∈ D(T ), and take w ∈ X∗ such that d(w, T (x)) < δ := r/2. For each
v ∈ T (x) we have

|βT (x,w)− βT (x, v)| = βT (x,w) = sup
(z,u)∈Gph(T )

〈u− w, x− z〉

= sup
(z,u)∈Gph(T )

{〈u− v, x− z〉+ 〈v − w, x− z〉}

≤ sup
(z,u)∈Gph(T )

{−ϕ(‖x− z‖) + 〈v − w, x− z〉}

≤ sup
(z,u)∈Gph(T )

‖x− z‖
(〈

v − w,
x− z

‖x− z‖

〉

− ϕ(‖x− z‖)
‖x− z‖

)

≤ sup
(z,u)∈Gph(T )

‖x− z‖
(

‖v − w‖ − ϕ(‖x− z‖)
‖x− z‖

)

(28)

Using the facts that ‖v − w‖ < δ = r/2 and Im(ϕ) ⊂ R+, and the assumption on M, r,
we get that ‖v−w‖−ϕ(‖x−z‖)/‖x−z‖ < 0 when ‖x−z‖ > M . Since the supremum in
the righmost expression of (28) is nonnegative, because we can take z := x ∈ D(T ), such
supremum is attained at some z such that ‖x− z‖ ≤ M . Therefore, since Im(ϕ) ⊂ R+,

|βT (x,w)−βT (x, v)| ≤ sup
(z,u)∈Gph(T ),‖x−z‖≤M

‖x−z‖
(

‖v − w‖ − ϕ(‖x− z‖)
‖x− z‖

)

≤ M‖v−w‖,

and hence b) holds.

Assume now that b) holds. Fix x ∈ D(T ) and ε > 0. We know that there exists L, δ > 0,
with δ independent of x, such that, whenever w ∈ X∗ is such that d(w, T (x)) < δ, we
have

|βT (x,w)− βT (x, v)| = βT (x,w) ≤ L‖v − w‖, (29)

for all v ∈ T (x). Define δ̄ := min{(1/2)δ, ε/L}. We claim that Tx + B(0, δ̄) ⊂ T e(ε, x).
Indeed, take w = u+ z, with u ∈ Tx and z ∈ B(0, δ̄). Since δ̄ < δ, we can use (29) for w
and u ∈ Tx, yielding

βT (x,w) ≤ L‖u− w‖ ≤ Lδ̄ ≤ ε,
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which gives w ∈ T e(ε, x). Hence T e is a uniformly full enlargement of T and c) holds.

Assume now that T e is a uniformly full enlargement of T . Take ε = 1 and x ∈ D(T ). Then
there exists δ > 0, not depending on x, such that T (x)+B(0, δ) ⊂ T e(1, x). Take (y, u) ∈
Gph(T ) with z 6= x and let z̄ ∈ X∗ be such that ‖z̄‖ = 1 and ‖x− y‖−1 〈z̄, x − y〉 = 1.
Define also z := −δz̄. Then z ∈ B(0, δ) and hence, for all v ∈ T (x) we have

−1 ≤ 〈(v + z)− u, x− y〉 = 〈v − u, x− y〉+ 〈z, x− y〉 = 〈v − u, x− y〉 − δ‖x− y‖,

which can be rewritten as

〈v − u, x− y〉 ≥ δ‖x− y‖ − 1, (30)

for all (y, u), (x, v) ∈ Gph(T ). Define now the function ϕ : R+ → R+ as ϕ(t) :=
max{0, δ t− 1}. From (30) and monotonicity of T , we get

〈v − u, x− y〉 ≥ max{0, δ‖x− y‖ − 1} = ϕ(‖x− y‖).

Note that ϕ(t) ≥ 0 for all t and that liminft→∞ϕ(t)/t = δ > 0. We conclude that T is
strictly ∞monotone.

Corollary 3.4. If T e is a uniformly full enlargement of T , then the Fitzpatrick function
φT (x, ·) is locally Lispchitz on the set T (x) (but for φT the Lipschitz constant depends on
x, at variance with the case of βT ).

Proof. Since βT (x, ·) is locally Lipschitz on T (x) by Theorem 3.3 and φT (x, ·) = βT (x, ·)+
〈x, ·〉, we get the result, because 〈x, ·〉 is obviously Lipschitz continuous on the whole space
with constant L = ‖x‖.

When T is strictly ∞monotone, and the Fenchel conjugate ϕ∗ of ϕ is available, it is
possible to obtain a more explicit expression for the radius δ in Definition 1.2, in which
case we can effectively construct points in T e(ε, x) \T (x). We need a preliminary lemma.
We recall that, for a general f : R → R, f ∗ is defined as f ∗(s) = supt∈R{st − f(t)}.
Since we are dealing with a function ϕ whose domain is R+, it is natural to consider
ϕ∗(s) = supt∈R+

{st− ϕ(t)}.

Lemma 3.5. Take ϕ : R+ → R+ such that liminft→∞
ϕ(t)
t

> 0. Then

i) limsups→0+ϕ
∗(s) ≤ 0.

ii) If additionally ϕ(0) = 0 then lims→0+ ϕ∗(s) = ϕ∗(0) = 0.

Proof. i) Otherwise, there exists a sequence {sk} ⊂ R++ and a constant θ > 0 such that
sk ↘ 0 and ϕ∗(sk) > θ > 0 for all k. By definition of ϕ∗, the latter expression yields the
existence of a sequence {tk} ⊂ R+ such that sktk − ϕ(tk) > θ/2 for all k. We claim that
{tk} is unbounded. Otherwise, there exists t̄ such that tk ≤ t̄ for all k. Then

0 < θ/2 ≤ sktk − ϕ(tk) ≤ sktk ≤ sk t̄. (31)

Since the rightmost expression in (31) tends to zero as k → ∞, (31) entails a contradiction,
and hence {tk} is unbounded, i.e. there exists a subsequence {tik} ⊂ {tk} such that
limk→∞ tik = +∞. In view of the first two inequalities in (31),

0 < θ/2 ≤ tik

(

sik −
ϕ(tik)

tik

)

,
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implying that sik ≥ ϕ(tik)/tik ≥ 0 for all k. Combining this inequality with the fact that
limk→∞ sik = 0, we get limk→∞ ϕ(tik)/tik = 0, contradicting the fact that limsupt→∞ϕ(t)/t
> 0. Hence limsups→0+ϕ

∗(s) ≤ 0.

ii) If ϕ(0) = 0, then

ϕ∗(s) = sup
t≥0

{st− ϕ(t)} ≥ s 0− ϕ(0) = −ϕ(0) = 0, (32)

for all s ≥ 0. Using (32) and i), we get 0 ≥ limsups→0+ϕ
∗(s) ≥ 0, so that lims→0+ ϕ∗(s) =

0. On the other hand, 0 = −ϕ(0) ≤ supt≥0{−ϕ(t)} = ϕ∗(0) = supt≥0{−ϕ(t)} ≤ 0 because
ϕ(t) ≥ 0 for all t ≥ 0. We conclude that ϕ∗(0) = 0.

Now we obtain a specific expression for δ, in terms of ϕ∗.

Proposition 3.6. If T is strictly ∞monotone then T (x) + B(0, δ) ⊂ T e(ε, x) for any
δ > 0 such that ϕ∗(δ) ≤ ε.

Proof. Note that the function ϕ in the definition of strictly ∞monotone satisfies ϕ(0) = 0.
Indeed, for all (v, x) ∈ Gph(T ) we have

0 = 〈v − v, x− x〉 ≥ ϕ(‖x− x‖) = ϕ(0) ≥ 0.

Thus Lemma 3.5 ii) applies, and hence lims→0+ ϕ∗(s) = 0. Therefore, for all ε > 0 there
exists δ > 0 such that ϕ∗(δ) < ε. Take w ∈ T (x) + B(0, δ), so that w = v + z with
v ∈ T (x) and ‖z‖ ≤ δ. For all (y, u) ∈ Gph(T ) we have

〈w − u, x− y〉 = 〈v − u, x− y〉+ 〈z, x− y〉 ≥ ϕ(‖x− y‖)− ‖z‖ ‖x− y‖
≥ ϕ(‖x− y‖)− δ ‖x− y‖ = − (δ ‖x− y‖ − ϕ(‖x− y‖))
≥ − sup

t≥0
(δ t− ϕ(t)) = −ϕ∗(δ) ≥ −ε,

which yields w ∈ T e(ε, x).

We present next some examples in which δ can be explicitly computed.

Example 3.7. Let T be strictly ∞monotone with ϕ(t) = αtγ, with α > 0 and γ > 1.

Then ϕ∗(s) = (γ − 1)( s
α γ

)
γ

γ−1 , so that we can take δ = α γ( ε
γ−1

)1−
1
γ .

Example 3.8. Let T be strictly ∞monotone with ϕ(t) = αt, with α > 0. Then

ϕ∗(s) =

{

0 if s ≤ α,
∞ if s > α,

so that we can take δ = α

Next, we study conditions upon which some relevant maximal monotone operators are
strictly ∞monotone, and hence uniformly fully enlargeable.

Proposition 3.9. Let X be a Hilbert space and C ⊂ X a closed and convex set. Let
PC : X → X be the metric projection onto C, and take T : X → X defined as T (x) =
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x − PC(x). T is strictly ∞monotone if and only if C is bounded. In this situation, the
function ϕ in Definition 1.2 can be taken as

ϕ(t) =

{

0 if t ≤ 4ρ,
(1/2)t2 if t > 4ρ,

(33)

where ρ is any positive constant such that C ⊂ B(0, ρ).

Proof. If x, y ∈ D(T ) are such that ‖x− y‖ ≤ 4ρ, then

〈T (x)− T (y), x− y〉 ≥ 0 = ϕ(‖x− y‖),

by monotonicity. Assume now that ‖x − y‖ > 4ρ. Note that this inequality can be
equivalently written as ‖x − y‖2 − 2ρ ‖x − y‖ > (1/2)‖x − y‖2. Using the fact that
‖PC(x)− PC(y)‖ ≤ 2ρ we get

〈Tx− Ty, x− y〉
= ‖x− y‖2 − 〈PC(x)− PC(y), x− y〉
≥ ‖x− y‖2 − ‖PC(x)− PC(y)‖ ‖x− y‖ ≥ ‖x− y‖2 − 2ρ ‖x− y‖ > (1/2)‖x− y‖2,

and therefore we can take ϕ as in (33). It can be checked that

ϕ∗(s) =

{

4ρs if s ≤ 8ρ,
(1/2)s2 if s > 8ρ,

so that δ can be taken as

δ =

{ ε
4ρ

if ε ≤ 32ρ2,√
2ε otherwise.

In order to prove the converse statement, assume that C is unbounded. Fix x̄ ∈ C and
an unbounded sequence {zn} ⊂ C. If T were strictly ∞monotone, we would have

ϕ(‖x̄− zn‖) ≤ 〈T (x̄)− T (zn), x̄− zn〉 = ‖x̄− zn‖2 − 〈PC(x̄)− PC(zn), x̄− zn〉
= ‖x̄− zn‖2 − ‖x̄− zn‖2 = 0,

implying that liminfn→∞ϕ(‖x̄−zn‖)/‖x̄−zn‖ ≤ 0 in contradiction with liminft→∞ϕ(t)/t >
0.

Proposition 3.10. Let X be a Banach space, C ⊂ X a closed and convex set, and
NC : X ⇒ X∗ the normalizing operator of C, as in (9). NC is strictly ∞monotone if and
only if C is bounded.

Proof. Assume first that C is a bounded set. In view of Theorem 3.3, for proving that
NC is strictly ∞monotone it suffices to show that T e is a uniformly full enlargement of
T . Let ρ > 0 be such that C ⊂ B(0, ρ) and take ε > 0, x ∈ D(T ). We claim that
T (x) + B(0, δ) ⊂ T e(ε, x) with δ = ε/(2ρ). Take w = v + z, with v ∈ T (x) and ‖z‖ ≤ δ.
Then, for all y ∈ C and u ∈ NC(y) we have

〈w − u, x− y〉 = 〈v − u, x− y〉+ 〈z, x− y〉 ≥ −‖z‖ ‖x− y‖ ≥ −2δρ ≥ −ε,



622 R. S. Burachik, A. N. Iusem / On Non-Enlargeable and Fully Enlargeable ...

using the fact that ‖x− y‖ ≤ 2ρ.

Suppose now that C is unbounded. Fix x̄ ∈ C and an unbounded sequence {zn} ⊂ C. If
T were strictly ∞monotone, we would have, since 0 ∈ NC(x) for all x ∈ C, ϕ(‖x̄− zn‖) ≤
〈0 − 0, x̄ − zn〉 = 0, implying that liminfn→∞ϕ(‖x̄ − zn‖)/‖x̄ − zn‖ ≤ 0, in contradiction
with liminft→∞ϕ(t)/t > 0.

Remark. Consider T as in the previous example with C = B(0, ρ) and the operator
ÝT defined as ÝT (x) = 0 for all x ∈ C. Note that T and ÝT conicide in the interior of
B(0, ρ). However, for x ∈ B(0, ρ) we have B(0, δ) ⊂ T (x) + B(0, δ) ⊂ T e(ε, x) whenever
δ = ε/(2ρ), while ÝT e(ε, x) = {0} for all x ∈ X. Hence, knowledge of the values of T in an
arbitrarily large neighborhood of a point x is not enough for computing T e(ε, x) for any
ε > 0. In other words, the determination of T e requires a “globalÔ knowledge of T .
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