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In this note we prove that an extended-real-valued lower semi-continuous convex function Φ defined on
a reflexive Banach space X achieves its supremum on every nonempty bounded and closed convex set of
its effective domain Dom Φ, if and only if the restriction of Φ to Dom Φ is sequentially continuous with
respect to the weak topology on the underlying space X.
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1. Introduction and notation

“The theory of the maximum of a convex function with respect to a closed and convex
set Ô as remarked by Rockafellar in [12, p. 342] “has an entirely different character from
the theory of the minimumÔ. A first significant difference between these two problems
concerns the nature of the respective optimality condition.

In order to fix the ideas, we suppose that X is a real normed space with topological dual
X∗. Given an extended-real-valued function Φ : X → R ∪ {+∞}, let us write as usual
Dom Φ for the set of all elements x ∈ X for which Φ(x) is finite, and say that Φ is proper if
DomΦ 6= ∅. Let Γ0(X) denote the set of all the convex, proper and extended-real-valued
functions defined on X and recall that the subdifferential of Φ at x is given by

∂Φ(x) = {f ∈ X∗ : Φ(y)− Φ(x) ≥ 〈f, y − x〉 ∀y ∈ X}

while the normal cone to C at x is defined by

NC(x) = {f ∈ X∗ : 〈f, y − x〉 ≤ 0 ∀y ∈ C}.

Given a closed and convex set C, it is well-known that a function Φ ∈ Γ0(X) achieves
its infimum at x ∈ C if and only if the celebrated Pshenichnyi-Rockafellar condition (see
[10])

0 ∈ ∂Φ(x) +NC(x)
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holds. When considering the maximization problem of a convex function Φ over a closed
and convex C, the specialization of the Pshenichnyi-Rockafellar condition provides a local
necessary optimality condition. This condition says that the subdifferential of Φ at every
point x ∈ C where Φ attains its maximum lies within the normal cone to C at x, i.e.,

∂Φ(x) ⊂ NC(x). (1)

However, this simple condition is only necessary, and far from being sufficient, as shown
(see [10]) by the maximization over the closed interval C = [−1, 0] of the continuous and
convex real function

f : R → R, f(x) = max{x2, x}.

The classical way of transforming this condition into a necessary and sufficient optimality
criterion is to use more general definitions for the subdifferential and the normal cone.

Due to its importance in applications, the maximization of a convex function has recently
received attention of many researchers. Without the slightest claim of being exhaustive
(we refer the reader to [5] for a complete survey of the topic), we can mention here the
work by Hiriart-Urruty ([8]), who gave a necessary and sufficient for Φ ∈ Γ0(X) to achieve
its maximum at x ∈ C:

∂εΦ(x) ⊂ NC,ε(x) ∀ε ≥ 0,

where ∂εΦ(x) represents the ε-subdifferential of Φ at x and is given by

∂εΦ(x) = {f ∈ X∗ : Φ(y)− Φ(x) ≥ 〈f, y − x〉 − ε ∀y ∈ X}

and NC,ε(x) represents the set of ε-normals of C at x given by

NC,ε(x) = {f ∈ X∗ : 〈f, y − x〉 ≤ ε ∀y ∈ C}.

The Hiriart-Urruty condition, initially stated in [8] has been extended to the class of tan-
gential convex functions in [9, Theorem 2.1], and some related sufficient local optimality
conditions were established in [4].

In the case of continuous functions, a different necessary and sufficient optimality con-
dition of the same type was achieved by using the notions of γ-subdifferential of Φ at
x,

∂γΦ(x) = {f : X → R : Φ(y)− Φ(x) ≥ f(y)− f(x) ∀y ∈ X} ,

and of γ-normal cone of C at x,

NC,γ(x) = {f : X → R : f(y) ≤ f(x) ∀y ∈ C} .

Thus, Flores-Bazan establishes (see [1]) that any continuous function Φ ∈ Γ0(X) achieves
its supremum on C at x if and only if

∂γΦ(x) ⊂ NC,γ(x).

An extension of this condition to the maximization of vector-valued functions has been
also provided in [2].

A different approach was given by Strekalovski (first published in [13]; a much more
detailed account may be found in [14]). He proved that a function Φ ∈ Γ0(X) achieves its
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supremum on C at x if and only if the condition (1) is valid at all the points y at which
Φ(y) = Φ(x). Let us remark that two more general variants of this condition have been
obtained in [9, Theorem 1.1] and [15, Theorem 1], and a similar condition was proved in
[15, Theorem 2] for piecewise-convex continuous functions.

Recently, several articles aimed to extend this analysis to nonconvex functions, by defin-
ing appropriate notions of subdifferentials. Let us particularly mention several works.
Hiriart-Urruty and Ledyaev developed a necessary and sufficient condition for global max-
imization for a class of locally Lipschitz functions which are regular in the sense of Clarke.
Let us also mention the use by Dutta ([6]) of a general nonsmooth tool introduced by
Demyanov and called convexifactors to deduce optimality conditions for the maximiza-
tion of locally Lipschitz functions, as well as Mordukhovich’s sharp analysis ([11]) of lower
and upper subdifferentials in order to obtain optimality conditions for a broad class of
nonsmooth and nonconvex functions.

The purpose of this note is to point out another noticeable difference between minimizing
and maximizing convex functions. Namely, criteria of existence of a minimum on convex
sets apply to a much broader class of convex functions than the criteria for the existence
of the maximum. Indeed, if the underlying space X is a reflexive Banach space, using
standard convex analysis techniques we know that every lower semi-continuous (lsc, for
short) function Φ ∈ Γ0(X) attains its infimum on every closed bounded and convex set
C. However, it is well-known that in every Hilbert spaces there are bounded convex sets
which do not contain any element of maximal norm. We thus conclude that the norm
of a Hilbert space, although being a convex and continuous mapping, does not achieve
its maximum on every bounded closed convex set. Consequently, in order to ensure for a
convex function the existence of a global maximum on every bounded closed and convex
set, we should impose to the function a more restrictive condition than the mere lower
semi-continuity. Namely, from the Eberlein-Smulian Theorem, it follows that in a every
reflexive Banach space, every convex function which is sequentially weakly continuous on
its domain reaches its maximum on every bounded closed and convex set. (A detailed
account of conditions under which a convex functional achieves its supremum over every
compact subset of a locally convex space is given in [7]).

The goal of this note is to prove that this restrictive condition of sequentially weak con-
tinuity on the domain of the function is in fact necessary and sufficient to ensure that
a function Φ ∈ Γ0(X) achieves its supremum on every bounded closed and convex set.
Namely, we establish (Proposition 2.1, Section 2) that, if X is a reflexive Banach space,
for every lsc function Φ ∈ Γ0(X) that is not sequentially weakly continuous on its domain,
it is possible to find a bounded closed and convex set over which Φ does not reach its
supremum.

The remaining part of this note is essentially devoted to the proof of the main result.
We begin with fixing some definitions and notation. We assume throughout that X is a
reflexive Banach space with closed closed unit ball denoted by BX . The topological dual
of X will be denoted by X∗, and for a set S ⊂ X we use the notations co(S) and co(S)
for the convex hull and the closed convex hull of S.

2. The main result

The main result of this note is the following.
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Proposition 2.1. Let Φ be a proper extended-real-valued lsc convex function defined on
a reflexive Banach space X. The map Φ achieves its supremum on every bounded, closed
and convex subset of its effective domain Dom Φ, if and only if the restriction of Φ to its
domain is sequentially continuous with respect to the weak topology on X.

As already remarked in the introduction, the Eberlein-Smulian theorem allow us to deduce
that a function Φ ∈ Γ0(X) which is sequentially continuous on its domain with respect
to the weak topology achieves its supremum on every bounded closed and convex set.
It remains to prove that if a proper extended-real-valued lsc convex function Φ fails to
be sequentially weakly continuous on its domain, then there exists a bounded closed and
convex subset C of Dom Φ such that Φ does not attain its supremum on C.

The following proposition proves that this result is valid in an arbitrary real normed space.

Proposition 2.2. Let X be a real normed space, and Φ : X → R ∪ {+∞} a proper
extended-real-valued lsc convex function which is not sequentially weakly continuous on
DomΦ. Then, there exists a bounded closed and convex subset is C of DomΦ over which
Φ does not reach its supremum.

Proof of Proposition 2.2. Pick a point x ∈ DomΦ at which Φ is not sequentially
weakly continuous. The lack of sequentially weak continuity of Φ at x ensures the existence
of a sequence (xn)n∈N∗ ⊂ DomΦ weakly converging to x, and of a positive value ζ > 0
such that

|Φ(xn)− Φ(x)| ≥ ζ ∀n ∈ N∗. (2)

Remark that, if there is a subsequence (xk)k∈N∗ of (xn)n∈N∗ such that

Φ(xk) ≤ Φ(x) (3)

for every k ∈ N∗, then, by virtue of relation (2), it follows that

lim inf
k→∞

Φ(xk) ≤ Φ(x)− ζ,

a relation which contradicts the fact that Φ is lsc.

Thus, the set of those elements xk fulfilling relation (3) is finite. Equivalently, there exists
an integer n ∈ N∗ such that

Φ(xn)− Φ(x) ≥ ζ ∀n ≥ n. (4)

For every n ≥ n, let us consider the mapping fn : [0, 1] → R, defined by fn(λ) =
Φ ((1− λ)x+ λxn). Let us remark that fn(0) = Φ(x) and fn(1) = Φ(xn) ≥ Φ(x) + ζ.
Since f is continuous (as a finite convex function defined on a real interval), it follows by
the Mean Value Theorem that there is λn ∈ [0, 1] such that

fn(λn) = Φ(x) +
n− 1

n
ζ.

Set pn = (1−λn)x+λnxn and remark that pn belongs to the line segment [x, xn] ⊂ DomΦ,
that

Φ(pn) = Φ(x) +
n− 1

n
ζ, (5)



E. Ernst, M. Théra / Global Maximum of a Convex Function 691

and that the sequence (pn)∈N∗ converges weakly to x.

Set C = co ((pn)n≥n); obviously C is closed and convex. On one hand, C is a bounded
set as it is contained in the closed convex hull of the weakly convergent sequence (xn)n≥n.
On the other, as Φ is a lsc convex function, we deduce from relation (5) that C lies within
the level set Φ−1((−∞,Φ(x) + ζ]), and thus within Dom Φ.

We claim that the function Φ does not achieve its supremum on C which is a bounded
closed and convex subset of its domain.

By contradiction, let us suppose that there is a point x̃ ∈ C such that

Φ(x) ≤ Φ(x̃) ∀x ∈ C. (6)

Substituting pn, n ≥ n to x in relation (6) we obtain that

Φ(x̃) ≥ Φ(pn) = Φ(x) +
n− 1

n
ζ ∀n ≥ n. (7)

Taking the supremum over n in (7) yields

Φ(x̃) ≥ sup
n≥n

Φ(x) +
n− 1

n
ζ = Φ(x) + ζ. (8)

As x̃ ∈ co ((pn)n≥n), x̃ is the norm-limit of a sequence (um)m∈N∗ , um ∈ C. For every
m ∈ N∗, um is thus a convex combination of a finite number of {pn : n ≥ n}:

um =
∑

n≥n

αm,npn,

for some sequence (αm,n)n≥n ⊆ [0, 1] such that
∑

n≥n αm,n = 1 (remark that for every
fixed m only a finite number among the elements of the sequence (αm,n)n≥n are non null).

Let us prove that, for every n ∈ N∗, the sequence (αm,n)m∈N∗ converges to zero.

Indeed, by the convexity of Φ we have

Φ(um) = Φ

(

∑

n≥n

αm,npn

)

(9)

≤
∑

n≥n

αm,nΦ(pn) =
∑

n≥n

αm,n

(

Φ(x) +
n− 1

n
ζ

)

.

For every q ∈ N∗, q ≥ n we may write

∑

n≥n

αm,n

(

Φ(x) +
n− 1

n
ζ

)

(10)

≤ αm,q

(

Φ(x) +
q − 1

q
ζ

)

+
∑

n≥n, n6=q

αm,n(Φ(x) + ζ)

= Φ(x) +

(

∑

n≥n

αm,n −
αm,q

q

)

ζ = Φ(x) +

(

1− αm,q

q

)

ζ.
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Combining relations (9) and (10) we obtain

Φ(um) ≤ Φ(x) +

(

1− αm,q

q

)

ζ ∀m ∈ N∗, q ≥ n.

Fixing q and taking the limit inferior over m ∈ N∗ in the previous inequality yields

lim inf
m→∞

Φ(um) ≤ lim inf
m→∞

(

Φ(x) +

(

1− αm,q

q

)

ζ

)

(11)

= Φ(x) +

(

1− lim supm→∞ αm,q

q

)

ζ ∀q ≥ n.

Now we make use of the norm-convergence of the sequence (un)n∈N∗ to x̃ and of the lower
semi-continuity of the function Φ to deduce that

Φ(x̃) ≤ lim inf
m→∞

Φ(um).

According to relation (8), the previous inequality implies that

Φ(x) + ζ ≤ lim inf
m→∞

Φ(um). (12)

Combining relations (11) and (12) gives

lim sup
m→∞

αm,q ≤ 0 ∀q ≥ n,

and as αm,n ≥ 0 for every m ∈ N∗ and n ≥ n, we obtain

lim
m→∞

αm,q = 0 ∀q ≥ n. (13)

In order to obtain the desired contradiction, we prove now that the sequence (un)n∈N∗

converges weakly to x. To this end, fix f ∈ X∗ and set M for the supremum of f on C.
Hence

| 〈f, x〉 | ≤ M and | 〈f, pn〉 | ≤ M ∀n ≥ n. (14)

As the sequence (pn)n∈N∗ converges weakly to x, it follows that for every ε > 0 there is
an integer n(ε) ≥ n such that

|〈f, pn〉 − 〈f, x〉| ≤ ε ∀n > n(ε).

As a consequence we have

∣

∣

∣

∣

∣

∣

∑

n>n(ε)

αm,n (〈f, pn〉 − 〈f, x〉)

∣

∣

∣

∣

∣

∣

(15)

≤
∑

n>n(ε)

αm,n |〈f, pn〉 − 〈f, x〉| ≤





∑

n>n(ε)

αm,n



 ε ≤ ε ∀m ∈ N∗.
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Recall (relation (13)) that for every fixed q ∈ N∗, n ≤ q ≤ n(ε), the sequence (αm,q)m∈N∗

of positive real numbers converges to zero. Consequently, there is m(ε) such that

0 ≤ αm,q ≤
ε

2Mn(ε)
∀m ≥ m(ε), n ≤ q ≤ n(ε).

Taking into account relation (14) we have

∣

∣

∣

∣

∣

∣

n=n(ε)
∑

n=n

αm,n (〈f, pn〉 − 〈f, x〉)

∣

∣

∣

∣

∣

∣

(16)

≤
n=n(ε)
∑

n=n

αm,n(| 〈f, pn〉 |+ | 〈f, x〉 |) ≤
n=n(ε)
∑

n=n

ε

n(ε)
≤ ε ∀m ≥ m(ε).

Summing up relations (15) and (16) we deduce that

| 〈f, um〉 − 〈f, x〉 | (17)

=

∣

∣

∣

∣

∣

〈

f,
∑

n≥n

αm,npn

〉

− 〈f, x〉

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

n≥n

αm,n(〈f, pn〉 − 〈f, x〉)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

n=n(ε)
∑

n=n

αm,n(〈f, pn〉 − 〈f, x〉)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

n>n(ε)

αm,n(〈f, pn〉 − 〈f, x〉)

∣

∣

∣

∣

∣

∣

≤ 2ε ∀m ≥ m(ε).

We have thus proved that the sequence (um)m∈N∗ converges weakly to x; as x̃ is the norm-
limit of the same sequence, it follows that x̃ = x. Making use of relation (8) we deduce
that

Φ(x) < Φ(x) + ζ ≤ Φ(x̃) = Φ(x),

a contradiction. Thus, the convex function Φ does not reach its supremum on C.
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