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1. Introduction

In this paper we provide an extension of some well-known results which relate an element
of the viscosity subdifferential (or subjet) of the infimal convolution (regularisation) of
a lower–semicontinuous, prox–bounded function, to an element of the original function
at a perturbed base point (see [7, Appendix A], [19], [21]). This kind of result was
pivotal to the development of general conditions for the comparison principle for fully-
nonlinear elliptic partial differential equations. It has also found application in some areas
of nonsmooth analysis where it is used to provide C1,1 smooth approximations for the class
of “prox–regularÔ functions ([24], [28], [30], [26] and [11]). We recall that a function is
C1,1 when its gradient exists and this gradient is also Lipschitz continuous. Motivated in
part by the desire to study a C1,1 approximation for a very general class of functions we
consider the Lasry-Lions double–envelope and some related constructions, instead of the
infimal convolution. It is well documented that the Lasry-Lions double–envelope produces
a C1,1–approximation of a prox–bounded function [22]. The effect this double–envelope
has on the second-order (sub–)differential information of the original function is not well
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understood. There have been some attempts to quantify this [8] but in this paper we
provide for the first time a full analysis of this problem.

There are some notable attempts to study limits of first-order (sub–)differentials provided
by a family of convergent functions. Most of these studies either consider the closed, con-
vex hull of the accumulation points provided by the first-order (sub–)derivatives of a
convergent family or restrict consideration to a special class of functions. In [13, 14] the
authors study locally Lipschitz functions on both Hilbert and Banach spaces, that are
globally minorised by a translation of a negative multiple of the norm squared (i.e. the
functions are prox-bounded). In a general Banach space the Clarke subdifferential is
shown to be generated by the weak∗ convex hull of a weak∗ upper limit of the Clarke
subdifferentials of the family of Lasry–Lions double envelopes. This work extended the
earlier work of [4, 5] which was based on an interesting geometric approach. In [6] prox-
regular, subdifferentially continuous functions on a Hilbert space are studied. A number
of results first established in finite dimensions in [24] are shown to hold in infinite di-
mensions. In the main these concern the C1,1 property of the infimal convolution of such
functions, the hypomonotonicity of the f–attentive, ε-localization of the subdifferential
and the characterisation and single-valuedness of the associated prox-mapping. The work
of [20] is most similar to that embarked on here. The upper limit of the G–subdifferential
(introduced in [16, 17]), for a uniformly convergent family of functions, is shown to contain
the G–subdifferential of the limiting function. In the context of an Asplund space this
result is used to show that the limiting Fréchet subdifferential of a lower semi–continuous,
prox–bounded function may be characterised via limits of the Fréchet subdifferentials of
its infimal convolutions. Although we restrict attention to finite dimensions we study the
most general class of functions that is possible to consider: namely the class of lower semi–
continuous, prox-bounded functions and consider the differential information provided by
their Lasry–Lions approximations. We consider the most general result that is possible in
this context, namely: the characterisation of the basic subdifferential (resp. the limiting
subhessians) via sets of accumulation points of gradients (resp. Hessians) of the family of
Lasry–Lions double envelopes. In the context of finite dimensions the work in this paper
not only extends known results concerning the characterisation of the Clarke subdiffer-
ential using the Lasry–Lions approximation, to ones involving the characterisation of the
(basic) subdifferential but also extend the analysis to the second-order level.

A convenient way to understand the presence of the C1,1 property is to invoke a result
which was probably first noted by Hiriart–Urruty and Plazanet [15]. A function f : IRn →
IR is locally para–convex around x if there exists r > 0 such that the function f(·)+ r

2
‖·‖2

is convex on some neighbourhood of x. Similarly a function is locally para–concave when
−f is locally para–convex. In [15] it is noted that a function is locally C1,1 precisely when
it is simultaneously locally para–convex and para–concave. Consider a prox–bounded
function f (i.e. a function globally minorized by some quadratic of the form α− r

2
‖y−x‖2

for some r > 0 and y ∈ IRn and where the quantity r(f) is the infimum over all such
constants r). The infimal convolution

fλ(x) := inf
y∈IRn

{f(y) + 1

2λ
‖x− y‖2}

is globally para–concave in that x 7→ fλ(x)− 1
2λ
‖x‖2 is a continuous, concave function for
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0 < λ < r−1. Similarly the supremal deconvolution

fµ(x) := sup
y∈IRn

{f(y)− 1

2µ
‖y − x‖2}

provides a para–convex function in that x 7→ fµ(x) + 1
2µ
‖x‖2 is globally finite and convex

when −f is prox–bounded and µ > 0 is sufficiently small. The combination of these two
operations results in an approximation which inherits both properties and hence becomes
C1,1. One such object is the Lasry-Lions double-envelope: for 0 < µ < λ < r̄(f)−1 (where
the quantity r̄(f) := max{0, r(f)} and r̄(f)−1 is called the prox–threshold of f , see [30])
defined as

fλ,µ(x) = sup
w

{

inf
u
{f(u) + 1

2λ
‖u− w‖2} − 1

2µ
‖w − x‖2

}

.

In this paper we find it convenient to consider a related construction. The proximal hull
hλf of a function f is given by hλf(x) = (fλ)

λ (x) and corresponds to the supremum
of all quadratics of the form x 7→ α − 1

2λ
‖x − w‖2 majorized by f . It is a proper lower

semi–continuous function when λ < r̄(f)−1. For 0 < µ and 0 < λ < r̄(f)−1 we define the
µ–proximal hull of the infimal convolution fλ by

fλ|µ := hµ(fλ).

This is well defined irrespective of the relative magnitude of the parameters λ, µ > 0. A
number of equivalent formulas exist for this object and we refer the reader to [30] for a
discussion of these. In particular we have fλ|µ = (fλ+µ)

µ = f(λ+µ),µ.

In [21], [19] and [7] versions of the following result was observed. Let ∂2,−f(x) denote the
subjet of viscosity-solution theory which consists of the collection of all (∇ϕ(x),∇2ϕ(x))
where ϕ ∈ C2(IRn) attains miny∈IRn(f(y) − ϕ(y)) at x. Under only the assumption of
f : IRn → IR being prox–bounded and lower semi–continuous we have (for 0 < λ < r̄(f)−1)
that (p,Q) ∈ ∂2,−fλ(x̄) implies

(p,Q) ∈ ∂2,−f(x̄− λp) and f(x̄− λp) = fλ(x̄)−
λ

2
‖p‖2. (1)

When considering ∂2,−fλ|µ(x) this result is still useful when applied to the inner operation
of fλ|µ = (fλ+µ)

µ. First we are faced with the problem of considering the subjet of the
supremal deconvolution of a para–concave function fλ+µ. In this paper we give an explicit
formula which relates the subjet of the deconvolution of a para–concave function to the
subjet of an underlying para–concave function. We may then use these to extend (1) to
where we use fλ|µ instead of the infimal convolution of the function. Care must be taken
when estimating the size of parameters used to obtained positive results. In particular
we require the use of matrices (1

2
Q)µ that satisfy

inf
y∈IRn

{〈1
2
Qy, y〉+ 1

2µ
‖y − x‖2} = 〈(1

2
Q)µx, x〉.

These matrices only exist when I+µQ ∈ intP(n), where P(n) denote the cone of positive–
semidefinite n × n matrices (and of course intP(n) corresponds to the positive–definite
forms).
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Amongst a number of other results we show the following: Let 0 < µ, λ where λ+µ < 1
2r̄(f)

(r̄(f) the prox–threshold of f). Then, if (p,Q) ∈ ∂2,−fλ|µ(x) such that I+µQ ∈ intP(n),
then

(

p, 2

(

1

2
Q

)

µ

)

∈ ∂2,−f(x− λp) with fλ|µ(x) = f(x− λp) +
λ

2
‖p‖2.

This enables the proof of the following two very striking expressions, the first for the
(basic) subdifferential of nonsmooth analysis [30];

∂f(x) = lim sup
{

∇fλ|µ(x
′) | x′ → x, fλ|µ(x

′) → f(x) and (λ, µ) ↓ (0, 0), λ,µ > 0
}

and the second for the limiting subjet of viscosity-solution theory [7] and nonsmooth
analysis [23], [18] and [9];

∂2f(x) = lim sup
{

(∇fλ|µ(x
′), Q) | x′ ∈ S2(fλ|µ), x

′ → x, fλ|µ(x
′) → f(x);

Q ≤P(n) ∇2fλ|µ(x
′) and (λ, µ) ↓ (0, 0), λ,µ > 0

}

,

where Q ≤P(n) A means A − Q ∈ P(n) and S2(fλ|µ) denotes the points of second-order
differentiability of fλ|µ (which according to a classical result of Aleksandrov is a set of full
Lebesgue measure).

2. Preliminaries

In this section we provide the relevant concepts and notation taken from variational and
nonsmooth analysis [30] that we require in this paper. Readers familiar with the book [30]
and the concept of viscosity subdifferentials [7], [18] and [23] may skip this section only
to return to consult definitions for relevant notation. As usual we denote the gradient of
a smooth function ϕ : IRn → IR at a point x̄ by ∇f(x̄) and its Hessian at x̄ by ∇2f(x̄).
When ∇f(x) exists for x ∈ Ω and x 7→ ∇f(x) is Lipschitz continuous we will say f is C1,1

on the set Ω (or f ∈ C1,1(Ω)). Endow IRn with a norm ‖ · ‖ and denote the open ball at x̄
of radius δ > 0 by Bδ(x̄) := {y ∈ IRn | ‖x− x̄‖ < δ}. We deal exclusively with extended–
real–valued functions f : IRn → IR := IR∪{+∞} on a space of finite dimension n. Denote
the vector space of all real symmetric matrices of dimension n × n by S(n) and endow
it with the Frobenius inner product 〈Q,M〉 := traceM tQ for any Q,M ∈ S(n). We
call matrices of the form xxt ∈ S(n) rank–1 matrices and conveniently 〈Q, xxt〉 = xtQx
which we refer to as quadratic forms. A matrix is positive–semidefinite when xtQx ≥ 0
for all x and we denote this conic subset of S(n) by P(n). Clearly intP(n) corresponds
to all positive–definite matrices. We will often have the need to consider certain special
convex subsets of S(n). Given a convex subset A ⊆ S(n) with A− P(n) ⊆ A we denote
the (symmetric) rank–1 support by q(A)(u) := sup{〈Q, uut〉 | Q ∈ A}. The subset A
is a called a rank–1 representer when A = {Q ∈ P(n) | 〈Q, uut〉 ≤ q(A)(u) for all u}.
There now exists an extensive literature regarding the properties of these sets [9], [10],
[11] and [12]. The class of functions q : IRn → IRn that are generated as rank–1 supports
as just described are characterized by the four properties (see [9]): properness (i.e. not
identically +∞ and never −∞), lower semi–continuity, evenness (i.e. q(u) = q(−u)) and
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positive homogeneity degree 2 (i.e. q(tu) = t2q(u) for t > 0). When these properties
hold there exists a rank–1 representer A ⊆ S(n) such that q(u) = q(A)(u) for all u.
Any regularization operation that preserves these four properties (such as the infimal
convolution) can consequently be viewed as mapping rank–1 representers onto rank–1
representers. This fact is used frequently in this paper.

Definition 2.1. For a function f : IRn → IR, we say x ∈ S2(f) if f(x) is finite and ∃δ > 0
such that for all y ∈ Bδ(x)

f(y) = f(x) + 〈∇f(x), y − x〉+ 1

2
〈∇2f(x)(y − x), y − x〉+ o(‖y − x‖2)

where o(·) is the usual small–order notation.

As is usual for f : IRn → IR := IR ∪ {+∞} we have epif := {(x, α) | f(x) ≤ α}. By
xv →f x we mean xv → x along with f(xv) → f(x).

Definition 2.2. Let Ω be an open subset of IRn.

1. A function f : Ω → IR is said to be twice sub-differentiable (or possess a subjet) at
x if f(x) is finite and

∂2,−f(x) = {(∇ϕ(x),∇2ϕ(x)) : f − ϕ has a local minimum at x

with ϕ ∈ C2(IRn)} 6= ∅.

We call the collection ∂2,−f(x, p) := {Q ∈ S(n) | (p,Q) ∈ ∂2,−f(x)} the subhessians
of f at (x, p).
Similarly f is said to be twice super-differentiable (or possess a superjet) at x if
f(x) is finite and

∂2,+f(x) = {(Dϕ(x), D2ϕ(x)) : f − ϕ has a local maximum at x

with ϕ ∈ C2(IRn)} 6= ∅.

We call the collection ∂2,+f(x, p) := {Q ∈ S(n) | (p,Q) ∈ ∂2,+f(x)} the super-
hessians of f at (x, p).

2. The limiting subjet (superjet) of f at x is defined to be respectively;

∂2f(x) = lim sup
u→fx

∂2,−f(u) and ∂
2
f(x) = lim sup

u→fx

∂2,+f(u).

Denote by ∂2f(x, p) = {Q ∈ S(n) | (p,Q) ∈ ∂2f(x)} the limiting subhessians of f

and ∂
2
f(x, p) = {Q ∈ S(n) | (p,Q) ∈ ∂

2
f(x)} are called limiting superhessians of

f .

3.

D
2
f(x̄, p) = {Q ∈ S(n) | Q = lim

n→∞
∇2f(xn) where {xn} ⊆ S2(f), xn →f x̄

and ∇f(xn) → p}.

The connection that the limiting subhessians have to limiting Hessians is important. The
classical Aleksandrov theorem plays an important role in that it connects the existence of
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the limiting Hessian to convexity/concavity properties (and hence to generalized convex-
ity). We state this theorem in the form provided by Rockafellar and Wets in [30, Theorem
13.51], (where we have used the equivalence between the so–called lower C2 functions and
locally para–convex functions). Recall that a function is locally para–convex around x̄
if there exists a neighbourhood Bδ(x̄) and a constant λ > 0 such that f(·) + 1

2λ
‖ · ‖2 is

convex relative to Bδ(x̄).

Theorem 2.3. Any locally para–convex function f on an open set O is twice differentiable
almost everywhere in the sense that there exists a set N of measure zero and at all x̄ ∈
O ∩N c we have f differentiable at x̄ and ∇f is differentiable at x̄ relative to the domain
S1(f) of existence of ∇f and there is a square symmetric matrix, denoted by ∇2f(x̄),
such that

∇f(x) = ∇f(x̄) +∇2f(x̄)(x− x̄) + o(‖x− x̄‖2) for x ∈ S1(f).

Aleksandrov’s theorem was originally stated in terms of finite convex functions and the
existence of a quadratic (Taylor) expansion almost everywhere. This form is a consequence
of [30, Corollary 13.42] which, for completeness, we stated next in a form sufficient for our
purposes (recall that locally para–convex functions are examples of the so-called “prox–
regularÔ functions).

Proposition 2.4. If f : IRn → IR is differentiable at x̄ and locally para–convex around
x̄, then the following properties are equivalent:

1. f is twice differentiable at x̄ in the sense that there is a square symmetric matrix,
denoted by ∇2f(x̄), such that

∇f(x) = ∇f(x̄) +∇2f(x̄)(x− x̄) + o(‖x− x̄‖2) for all x ∈ S1(f);

2. f has a quadratic (Taylor) expansion at x̄, in the sense that there exists a square
symmetric matrix, denoted by ∇2f(x̄), such that

f(x) = f(x̄) + 〈∇f(x̄), x− x̄〉+ 1

2
〈x− x̄,∇2f(x̄)(x− x̄)〉+ o(‖x− x̄‖2).

We now define some fundamental notions of first–order sub–differentiability used in non-
smooth analysis.

Definition 2.5.

1. A vector y ∈ IRn is called a proximal sub-gradient to f at x if f(x̄) is finite and for
some c > 0

f(x) ≥ f(x) + 〈y, x− x〉 − c

2
‖x− x‖2

in a neighbourhood of x. The set of all proximal sub-gradients to f at x is denoted
∂pf(x).

2. The limiting subdifferential is given by

∂f(x) = lim sup
x′→fx

∂pf(x
′) := { lim

v→∞
zv | zv ∈ ∂pf(xv), xv →f x}.

Denote by Sp(f) = {x ∈ IRn | ∂2,−f(x) 6= ∅}.
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Definition 2.6. Let {f, f v : IRn → IR, v ∈ W} be a family of proper extended-real-
valued functions, where W is a neighbourhood of w (in some topological space). Then
the lower epi-limit e-liv→wf

v is the function having as its epi-graph the outer limit of the
sequence of sets epi f v:

epi (e-liv→wf
v) := lim sup

v→w
(epif v).

The upper epi-limit e-lsv→wf
v is the function having as its epigraph the inner limit of sets

epif v:
epi (e-lsv→wf

v) := lim inf
v→w

(epi f v).

When these two functions are equal, the epi-limit function e-limv→w f v is said to exist. In
this case the sequence f v is said to epi-converge to f .

Clearly as e-liv→wf
v(x) ≤ e-lsv→wf

v(x) we have epi-convergence of f v to f occuring when
e-lsv→wf

v(x) ≤ f(x) and f(x) ≤ e-liv→wf
v(x) for all x. The upper and lower epi-limits of

the sequence f v may also be defined via composite limits (see [30]). In particular

e-lsv→wf
v(x) = sup

δ>0
lim sup

v→w
inf

x′∈Bδ(x)
f v(x′) := lim sup

v→w
inf
x′→x

f v(x′)

and e-liv→wf
v(x) = sup

δ>0
lim inf
v→w

inf
x′∈Bδ(x)

f v(x′) := lim inf
v→w

inf
x′→x

f v(x′)

≡ lim inf
v→w
x′→x

f v(x′)

Remark 2.7. In [9] it is shown that the subhessian is a rank–1 representer and rank–1
support to the subhessian could be characterized as a directional derivative i.e.

q(∂2,−f(x̄, p))(u) = lim inf
t→0
u′→u

∆2f(x̄, t, p, u
′) := f ′′

s (x̄, p, u), (2)

where ∆2f(x̄, t, p, u) :=
2
t2
(f(x̄+tu)−f(x̄)−t〈p, u〉). It also shown in [9] that f ′′

s (x̄, p, u) =
min{f ′′

−(x̄, p, u), f
′′
−(x̄, p,−u)}, where

f ′′
−(x̄, p, u) := lim inf

t↓0
u′→u

∆2f(x̄, t, p, u
′).

We say {f v} is epi–lower semi–continuous at x with respect to f if e-liv→wf
v(x) ≥ f(x)

and epi–upper semi–continuous at x with respect to f if e-lsv→wf
v(x) ≤ f(x). For a

family of indicator functions {ψCv}v∈W we have epi–lower (epi–upper) semi–continuity at
all x if and only if lim supv→w Cv ⊆ C (lim infv→w Cv ⊇ C).

Remark 2.8. We may also define hypo f : = {(x, α) : α ≤ f(x)} and

hypo (h-liv→wf
v) := lim inf

v→w
(hypo f v)

hypo (h-lsv→wf
v) := lim sup

v→w
(hypo f v) etc.

Clearly

h-lsv→wf
v = − (e-liv→w(−f v))

and h-liv→wf
v = − (e-lsv→w(−f v)).
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The next result may be found in [18] and will be used latter.

Proposition 2.9 ([18]). If f : IRn → IR is proper and lower semi–continuous then we
have

D
2
f(x̄, p)− P(n) ⊆ ∂2f(x̄, p). (3)

If we assume in addition that f is continuous and para–concave around x̄ then equality
holds in (3).

3. Some Basic Properties of the Infimal Convolutions

In this section we survey some basic properties of the infimal convolution which are used
repeatedly in the paper. A number of these properties are discussed in [30] to which we
refer the reader for proofs when it is possible to do so. Proofs are provided when a suitable
prior reference is lacking.

Definition 3.1. For any function f : IRn → IR, the function f ∗ : IRn → IR defined by

f ∗(u) := sup
x
{〈u, x〉 − f(x)}

is conjugate to f , while the function f ∗∗ = (f ∗)∗ defined by

f ∗∗(x) := sup
u
{〈u, x〉 − f ∗(u)}.

Denote the infimal convolution (or regularization) of f by

fλ(x) := inf
u∈IRn

(

f(u) +
1

2λ
‖x− u‖2

)

=
1

2λ
‖x‖2 −

(

f(·) + 1

2λ
‖ · ‖2

)∗

(
x

λ
),

where ‖x‖ denotes the Euclidean norm on IRn. Also define

Pλ(x) = argmin

{

f(·) + 1

2λ
‖x− ·‖2

}

.

We will drive λ → 0 to approximate f , unlike other studies which use a kernel λ
2
‖x− u‖2

while driving λ → ∞. In recent years the infimal convolution has been applied to the
study of the differentiability of convex and nonconvex functions. This may be found in
the work of Poliquin and Rockafellar [24], [25], Penot [23], Eberhard, Nyblom and Ralph,
[9], [10] and many other authors.

In [30] the concept of “prox–boundedÔ is used which is equivalent to f + r
2
‖ · ‖2 being

bounded below. This is clearly the same as the assumption of f being quadratically
minorized (by a quadratic of the form α− r

2
‖·‖2). Thus a sufficient condition for fλ > −∞

is λ < (max{0, r})−1 (and hence Pλ(x) 6= ∅). The infimal of all such r is denoted by r(f).
It is possible for r(f) < 0 and so we place r̄(f) := max{r(f), 0} interpreting 1/0 = +∞
and λf := (r̄(f))−1 is called the proximal threshold for f . Thus when r(f) < 0 we have
fλ > −∞ for all λ > 0.

We say a sequence {f v}v∈N of functions on IRn is eventually prox–bounded if there exists
λ > 0 such that liminfvf

v
λ(x) > −∞ for some x. We can define the threshold of eventual
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prox–boundedness as λfv where λfv is the supremum of all λ such that liminfvf
v
λ(x) > −∞

for some x. Similarly we may place r̄({f v}) = (λfv)−1.

In [7] the following was observed. Under only the assumption of f : IRn → IR being
quadratically minorized and lower semi–continuous (see [9] for this version of the result)
we have (for 0 < λ < 1

r̄(f)
= λf the prox–threshold of f)

(p,Q) ∈ ∂2,−fλ(x̄) implies both (p,Q) ∈ ∂2,−f(x̄− λp)

and f(x̄− λp) = fλ(x̄)−
λ

2
‖p‖2. (4)

We now consider the effect of adding a linear and a quadratic function before taking the
infimal convolution. We provide a proof as we are lacking a prior reference.

Lemma 3.2. For any function

(f − 〈p, ·〉)λ (x) = fλ(x+ λp)− 〈p, x〉 − λ

2
‖p‖2 . (5)

Thus f(x̄) + (λ/2)‖p̄‖2 = fλ(x̄ + λp̄) implies (f − 〈p̄, ·〉)λ (x̄) = f(x̄) − 〈p̄, x̄〉, in turn
implying (p̄,− 1

λ
I) ∈ ∂2,−f(x̄). In particular we have p̄ ∈ ∂pf(x̄).

Proof. By direct calculation

(f − 〈p, ·〉)λ (x) = inf
w

{

f(w)− 〈p, w〉+ 1

2λ
‖w − x‖2

}

= inf
w

{

f(w) +
1

2λ

(

‖λp‖2 − 2〈λp, w − x〉+ ‖w − x‖2
)

}

−〈p, x〉 − λ ‖p‖2

2

= inf
w

{

f(w) +
1

2λ
‖w − (x+ λp)‖2

}

− 〈p, x〉 − λ ‖p‖2

2

= fλ(x+ λp)− 〈p, x〉 − λ

2
‖p‖2 .

Now suppose f(x̄) + (λ/2)‖p̄‖2 = fλ(x̄+ λp̄). We deduce from (5) that

fλ(x̄+ λp̄) = (f − 〈p̄, ·〉)λ (x̄) + 〈p̄, x̄〉+ λ

2
‖p̄‖2

= f(x̄) + (λ/2)‖p̄‖2

and so (f − 〈p̄, ·〉)λ (x̄) = f(x̄) − 〈p̄, x̄〉. By the definition of the infimal convolution we
have then

f(x̄)− 〈p̄, x̄〉 ≤ f(w)− 〈p̄, w〉+ 1

2λ
‖x̄− w‖2

or f(w) ≥ f(x̄) + 〈p̄, w − x̄〉 − 1

2λ
‖x̄− w‖2

and so p̄ ∈ ∂pf(x̄).
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We now consider the effect of adding a quadratic. We provide a proof as we are lacking
a prior reference.

Proposition 3.3. Suppose f : IRn → IR be lower semi–continuous and prox–bounded
with prox–threshold (r(f))−1.

1. If r > r(f) then hr(x) := f(x) + r
2
‖x− x̄‖2 has r(hr) ≤ 0, hr(x̄) = f(x̄) and

Q ∈ ∂2,−f(x̄, 0) implies Q+ rI ∈ ∂2,−(f +
r

2
‖ · −x̄‖2)(x̄, 0).

2. We have
(

f(·) + r

2
‖ · −x̄‖2

)

λ
(x)

= f λ
1+λr

(

x+ λrx̄

1 + λr

)

− 1

2λ

(

1

1 + λr
‖x+ λrx̄‖2 − ‖x‖2

)

+
r

2
‖x̄‖2.

(6)

3. If r(f) > 0 we may take r = r(f) in part 1.

Proof. First take r > r(f) and 0 < ε < r − r(f). As r − ε > r(f) there exists β such

that f(x) ≥ β − r−ε
2
‖x‖2 for all x. Let α := β +

(

r
2
− 2r2

ε

)

‖x̄‖2 then consider

α− r

2
‖x− x̄‖2 = α− r

2
‖x̄‖2 − r − ε

2
‖x‖2 + r〈x, x̄〉 − ε

2
‖x‖2

≤
(

α− r

2
‖x̄‖2

)

− r − ε

2
‖x‖2 + ‖x‖

(

r‖x̄‖ − ε

2
‖x‖

)

. (7)

If 2r
ε
‖x̄‖ < ‖x‖ then

(

r‖x̄‖ − ε
2
‖x‖

)

< 0 and we may drop the last term in (7). When

‖x‖ ≤ 2r
ε
‖x̄‖ we have ‖x‖

(

r‖x̄‖ − ε
2
‖x‖

)

≤ 2r2

ε
‖x̄‖2. Thus

α− r

2
‖x− x̄‖2 ≤

(

α− r

2
‖x̄‖2 + 2r2

ε
‖x̄‖2

)

− r − ε

2
‖x‖2 = β − r − ε

2
‖x‖2 ≤ f(x)

for all x. Then it follows that

hr(x) := f(x) +
r

2
‖x− x̄‖2 ≥ α.

Thus for all r > r(f) we have (hr)λ > −∞ for all λ > 0. Thus r(hr) ≤ 0. The other
statements in 1 follow easily from definitions.

Consider
(

f(·) + r

2
‖ · −x̄‖2 + 1

2λ
‖ · ‖2

)∗ (x

λ

)

= sup
w

{〈w, x
λ
〉+ 〈w, rx̄〉 − f(w)− 1

2
(r +

1

λ
)‖w‖2} − r

2
‖x̄‖2

= sup
w

{〈w, x
λ
+ rx̄〉 −

(

1

2
(
1 + rλ

λ
)‖w‖2 + f(w))

)

} − r

2
‖x̄‖2

= sup
w

{〈w, x+ λrx̄

λ
〉 −

(

1

2
(

1
λ

1+rλ

)‖w‖2 + f(w))

)

} − r

2
‖x̄‖2

=

(

1

2
(

1
λ

1+rλ

)‖ · ‖2 + f(·)

)∗( x+λrx̄
1+λr
λ

1+λr

)

− r

2
‖x̄‖2. (8)
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Thus we have

f( λ
1+λr

)

(

x+ λrx̄

1 + λr

)

=
1

2( λ
1+λr

)
‖x+ λrx̄

1 + λr
‖2 −

(

f(·) + 1

2( λ
1+λr

)
‖ · ‖2

)∗(
x+ λrx̄

1 + λr

)

=
1

2λ

(

1

1 + λr
‖x+ λrx̄‖2 − ‖x‖2

)

+
1

2λ
‖x‖2 −

(

f(·) + r

2
‖ · −x̄‖2 + 1

2λ
‖ · ‖2

)∗ (x

λ

)

− r

2
‖x̄‖2

=
1

2λ

(

1

1 + λr
‖x+ λrx̄‖2 − ‖x‖2

)

− r

2
‖x̄‖2

+(f(·) + r

2
‖ · −x̄‖2)λ(x). (9)

From (9) we see that (f(·) + r(f)
2
‖ · −x̄‖2)λ(x) > −∞ whenever f( λ

1+λr
)

(

x+λrx̄
1+λr

)

> −∞

which only occurs when λ
1+λr(f)

< r̄(f)−1. But when r(f) = r̄(f) > 0 this is equivalently

expressed as 1
1
λ
+r(f)

< 1
r(f)

which holds for all λ > 0 thus r(hr(f)) ≤ 0 and hr(f) is well

defined.

The supremal deconvolution is defined by

fλ(x) = sup
w

{

f(w)− 1

2λ
‖w − x‖2

}

=

(

1

2λ
‖ · ‖2 − f

)∗

(λ−1x)− 1

2λ
‖x‖2. (10)

The proximal hull hλf of a function f is given by hλf(x) = (fλ)
λ (x) and corresponds to

the supremum of all quadratics of the form x 7→ α − 1
2λ
‖x− w‖2 majorized by f . It is a

proper lower semi–continuous function when λ < λ̄ := r̄(f)−1.

Definition 3.4.

1. The Lasry–Lions double–envelope for 0 < µ < λ < λ̄ = r̄(f)−1 (the prox–threshold
of f) is defined by

fλ,µ(x) := sup
w

{

fλ(w)−
1

2µ
‖x− w‖2

}

= sup
w

{

inf
u
{f(u) + 1

2λ
‖u− w‖2} − 1

2µ
‖w − x‖2

}

2. For 0 < µ and 0 < λ < λ̄ = r̄(f)−1 the µ–proximal hull hµ(fλ) of the infimal
convolution fλ is denoted by fλ|µ.

We now turn our attention to the epi-convergence of the Lasry–Lions double envelope.

Proposition 3.5 ([30]). Let f : IRn → IR be proper, lower–semicontinuous and prox–
bounded with threshold λ̄ := r̄(f)−1. Then for every λ ∈ (0, λ̄) the set Pλf(x) is nonempty
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and compact, while the value fλ(x) is finite and depends continuously on (λ, x), with

fλ(x) ↑ f(x) for all x as λ ↓ 0.

In fact, fλν (xν) → f(x̄) whenever xν → x̄ and λν ↓ 0 in (0, λ̄) in such a way that the
sequence {‖xν − x̄‖/λν}ν∈N is bounded.

Furthermore, if wν ∈ Pλνf(xν) , xν → x̄ and λν → λ ∈ (0, λ̄), then the sequence {wν}ν∈N
is bounded and all its cluster points lie in Pλf(x̄).

The following results show the connection between the Lasry–Lions double envelope and
the infimal convolution of proximal hull and the intermediacy property of the Lasry–Lions
double envelope.

Proposition 3.6 ([30]). Let f : IRn → IR be proper, lower semi–continuous and prox–
bounded with 0 < µ < λ < λ̄ = r̄(f)−1. Then

1. fλ,µ = (hλf)λ−µ = hµ (fλ−µ) = f(λ−µ)|µ
2. fλ ≤ fλ,µ ≤ fλ−µ ≤ f

The following epi-limit property appears as Proposition 7.4 in [30].

Proposition 3.7. Let f : IRn → IR be lower semicontinuous and proper. The following
property holds for any sequence {f ν}ν∈N of functions on IRn. If f ν

1 ≤ f ν ≤ f ν
2 with

f ν
1 →e f and f ν

2 →e f , then f ν →e f .

The Lasry-Lions double–envelopes then have fλ,µ →e f as λ ↓ 0 and µ ↓ 0 with 0 < µ < λ,
because of the sandwiching fλ ≤ fλ,µ ≤ fλ−µ that was recalled in Propositions 3.6 and
3.7.

Lemma 3.8. Suppose f v : IRn → IR is eventually prox–bounded and epi–converges to f
as v → w and µ < λ < r̄({f v})−1 (the eventual uniform prox-threshold for the f v). Then
the family {f v

λ,µ} converges continuously to fλ,µ (i.e. f v
λ,µ(x

v) → fλ,µ(x) for all xv → x ).

Proof. First note that by Theorem 7.37 of [30] we have f v
λ → fλ uniformly on bounded

sets for λ < r̄({f v})−1. Let µ < µ̄ < λ < r̄({f v})−1. Take β and b such that f v
λ,µ̄(b) ≤ β

for all v and hence for all y

f v
λ(y) ≤ β +

1

2µ̄
‖b− w‖2.

Let xv → x (and so {‖xv‖}v is uniformly bounded) and choose ρ so that ρ ≥ maxv ‖b−xv‖.
Now as f v

λ − 1
2λ
‖ · ‖2 is concave and we may bound above

f v
λ(y)−

1

2µ
‖xv − y‖2 ≤ β +

1

2µ̄
‖b− y‖2 − 1

2µ
‖xv − y‖2

≤ β − 1

2

(

µ̄− µ

µ̄µ

)

‖y − b‖2 + 1

2µ
‖xv − b‖ (‖y − b‖+ ‖xv − y‖)

≤ β − 1

2

(

µ̄− µ

µ̄µ

)

‖y − b‖2 + ρ

2µ
(2‖y − b‖+ ρ) := h(y).
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As h has bounded upper level–sets we have argmax(f v
λ(·) − 1

2µ
‖xv − ·‖2) 6= ∅ for all

v and as both f v
λ and − 1

2µ
‖xv − ·‖2 uniformly converge on bounded sets we have that

f v
λ(·)− 1

2µ
‖xv − ·‖2 hypo-converges to fλ(·)− 1

2µ
‖x− ·‖2 as v → w, since xv → x. Hence

max
y

{f v
λ(y)−

1

2µ
‖xv − y‖2} = f v

λ,µ(x
v) → fλ,µ(x),

verifying continuous convergence.

4. Subhessians of the Infimal Convolution

In recent years the infimal convolution has been applied to the study of the differentiability
of convex and nonconvex functions. This may be found in the work of Poliquin and
Rockafellar [24], [25], Penot [23], Eberhard, Nyblom and Ralph, [9], [10] and many other
authors. One of the main motivations for their work stems from the following observation
which was probably first observed by Hiriart–Urruty and Plazanet in [15] (an alternative
proof of this result is provided in [11]).

Lemma 4.1. A function f : IRn → IR is locally C1,1 around x̄ if and only if it is simul-
taneously locally para-convex and para-concave around x̄, and finite valued.

The infimal convolution produces a para–concave function and the supremal deconvolution
results in a para–convex function. The Lasry–Lions double-envelope combines both in a
way that is designed to produce a C1,1(IRn) function.

Definition 4.2. Suppose that f : IRn → IR is a lower semi-continuous function.

1. Let qλ(A)(u) = infw∈IRn{q(A)(w) + 1
2λ
‖w − u‖2} and

Aλ := {Q ∈ S(n) | 〈Q, uut〉 ≤ 2qλ(
1

2
A)(u) for all u ∈ IRn}, (11)

where q(A)(w) := supQ∈A〈w,Qw〉.
2. Denote ∂2,−

λ f(x, p) := (∂2,−f(x, p))λ.

Such smoothing may be alternatively viewed in terms of infimal convolution smoothings
of the associated quadratic forms rather than the smoothing of the rank-1 support. This
follows from the observation that the form qQ(u) := 〈Q, uut〉 has an infimal convolution
characterised as follows (the star denotes the convex conjugate)

(qQ)λ (h) =
1

2λ
‖h‖2 − λq∗I+2λQ(h) where (12)

q∗I+2λQ(h) =















−∞ if I + 2λQ /∈ P(n)
q(I+2λQ)+(h) if I + 2λQ ∈ P(n)\ (intP(n)) , h ∈ Im (I + 2λQ)
q(I+2λQ)−1(h) if I + 2λQ ∈ intP(n)
+∞ if h /∈ Im (I + 2λQ)

and Im (I + 2λQ) denotes the image or range and (I+2λQ)+ the Moore-Penrose inverse.
For λ > 0 sufficiently small the minimum in minη{〈Qη, η〉+ 1

2λ
‖h− η‖2} is achieved at a
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unique point η and is the solution to the equation 2Qη + 1
λ
(η − h) = 0. That is a unique

minimum occurs at η = (I + 2λQ)−1h if and only if I + 2λQ is invertible which occurs if
and only if I +2λQ ∈ intP(n). Thus I +2λQ ∈ intP(n) is also a sufficient condition for
(qQ)λ = qQλ

. When this occurs we will (loosely) say that Qλ is a quadratic form.

The next result first appeared in a looser form in [9, Proposition 8] (i.e. the result does
not state how small λ must be to obtain the inclusions). As we require explicit bounds
on how small λ must be taken in order to obtain certain results we provide a proof in an
appendix.

Proposition 4.3. Suppose that f : IRn → IR is a lower semi-continuous function which
has a global minimum at x̄.

1. Suppose I + λQ ∈ intP(n). If (0, Q) ∈ ∂2,−f(x̄) then there exists ϕ ∈ C2(IRn) with
ϕ(·) ≤ f(·) in a neighbourhood of x̄ and with ϕ(x̄) = f(x̄). In addition (0, Q) =
(∇ϕ(x̄),∇2ϕ(x̄)) and (0, 2(1

2
Q)λ) = (∇ϕλ(x̄),∇2ϕλ(x̄)).

2. Also we may write for all h ∈ IRn and λ > 0 with I + λQ ∈ intP(n)

〈∇2ϕλ(x̄)h, h〉 = 〈Qλ, hh
t〉

:= 2 inf
η
{〈1
2
Qη, η〉+ 1

2λ
‖h− η‖2} = 2〈1

2
Q, hht〉λ ≤ 〈Q, hht〉

which monotonically decreases as λ increases.

3. Also, for λ > 0 with I+λQ ∈ intP(n) we have 2(1
2
Q)λ ∈ ∂2,−fλ(x, 0) ⊆ ∂2,−f(x, 0).

Addition of a quadratic may be made to simplify the proof since we may relate the subjet
of the resultant function to that for the original function.

Proposition 4.4. Suppose f : IRn → IR be lower semi–continuous and prox–bounded
with prox–threshold (r̄(f))−1. For r ≥ r̄(f) and 0 < µ < 1

r
place λ = µ

1−rµ
. Then

2
(

1
2
(Q+ rI)

)

λ
is a quadratic form if and only if 2(1

2
Q)µ is a quadratic form. Then

2(
1

2
(Q+ rI))λ ∈ ∂2,−

(

f(·) + r

2
‖ · −x̄‖2

)

λ
(x̄, 0) ⇔ 2(

1

2
Q)µ ∈ ∂2,−fµ(x̄, 0). (13)

Proof. First note that λ = µ
1−rµ

if and only if µ = λ
1+rλ

. We have 2
(

1
2
(Q+ rI)

)

λ
a

quadratic form if and only if I + λ(Q+ rI) ∈ intP(n) which is equivalent to I + µr
1−rµ

I +
µ

1−rµ
Q = 1

1−rµ
(I + µQ) ∈ intP(n) or (I + µQ) ∈ intP(n), a condition necessary and

sufficient for I + µQ to be as quadratic form. Note next that

x+ λrx̄

1 + λr
= (1− µr)x+ µrx̄.

Applying (6) we find

(

f(·) + r

2
‖ · −x̄‖2

)

λ
(x)

= fµ ((1− µr)x+ rµx̄)− 1− rµ

2µ

(

(
1

1− µr
)‖(1− µr)x+ rµx̄‖2 − ‖x‖2

)

= fµ ((1− µr)x+ rµx̄)− 1

2µ

(

‖(1− µr)x+ rµx̄‖2 − (1− µr)‖x‖2
)

.
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Now observe that

∇x

{

1

2µ

(

‖(1− µr)x+ rµx̄‖2 − (1− µr)‖x‖2
)

}

= −r(1− rµ)(x− x̄)

(which is zero at x̄) and so

∇2
x

{

1

2µ

(

‖(1− µr)x+ rµx̄‖2 − (1− µr)‖x‖2
)

}

= −r(1− rµ)I.

Place h(x) := fµ ((1− µr)x+ rµx̄) and note that (1− rµ)2M ∈ ∂2,−h(x̄, 0) when

h(x)− h(x̄) ≥ 1

2
〈(1− rµ)2M(x− x̄), (x− x̄)〉+ o(‖x− x̄‖2)

which may be rewritten with y := (1− rµ)x+ rµx̄ (or y − x̄ = (1− rµ)(x− x̄)) as

fµ(y)− fµ(x̄) ≥
1

2
〈M(y − x̄), (y − x̄)〉+ o(‖y − x̄‖2).

Thus it follows that (1− rµ)2M ∈ ∂2,−h(x̄, 0) if and only if M ∈ ∂2,−fµ(x̄, 0) and hence

∂2,−
(

f(·) + r

2
‖ · −x̄‖2

)

λ
(x̄, 0) = (1− µr)2∂2,−fµ(x̄, 0) + r(1− rµ)I. (14)

Next note that 2(1
2
(Q + rI))λ corresponds to the quadratic form 2(〈1

2
Q, xxt〉 + r

2
‖x‖2)λ

and so we may apply (6) with x̄ = 0 to obtain

〈2(1
2
(Q+ rI))λ, xx

t〉

= 2

(

〈1
2
Q, ((1− rµ)x)((1− rµ)x)t〉µ −

1

2µ
(‖(1− rµ)x‖2 − (1− rµ)‖x‖2)

)

= 2

(

(1− rµ)2〈1
2
Q, xxt〉µ −

(1− rµ)

2µ
((1− rµ)‖x‖2 − ‖x‖2)

)

= 2〈1
2
Q, xxt〉µ(1− rµ)2 + r(1− rµ)‖x‖2

= 〈2(1
2
Q)µ(1− rµ)2 + r(1− rµ)I, xxt〉.

As this holds for all x we have

2(
1

2
(Q+ rI))λ = 2(

1

2
Q)µ(1− rµ)2 + r(1− rµ)I. (15)

On comparing (14) and (15) find that 2(1
2
(Q + rI))λ ∈ ∂2,− (

f + 1
2
‖ · −x̄‖2

)

(x̄, 0) if and
only if 2(1

2
Q)µ ∈ ∂2,−fµ(x̄, 0).

We may now remove the assumption that f take a global minimum at x when obtaining
a result similar to Proposition 4.3.
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Corollary 4.5. Suppose that f : IRn → IR is lower semi-continuous and prox–bounded
with a prox–threshold of (r̄(f))−1. Let Q ∈ ∂2,−f(x̄, 0) 6= ∅. Then
1. there exists an r ≥ r̄(f) such that

f(x) ≥ f(x̄)− r

2
‖x− x̄‖2 for all x and (16)

2. for µ > 0 with I + µQ ∈ intP(n) and 0 < µ < 1
r
we have 2(1

2
Q)µ ∈ ∂2,−fµ(x̄, 0).

Proof. By a translation we may place x̄ = 0. Take a fixed X ∈ ∂2,−f(0, 0) 6= ∅ then by [9,
Proposition 6] for all M,γ > 0 there exists a function ε : IR+ → IR such that limt↓0 ε(t) =
0 = ε(0) and a function ρ : y 7→ ε(‖y‖)‖y‖2 ∈ C2(IRn) satisfying (∇ρ(0),∇2ρ(0)) = (0, 0)
along with ε(‖y‖) = c := r̄(f) + max{max{0,−k} | k is an eigenvalue of X} for all
y /∈ BM(0) and

f(y)− f(0) ≥ 1

2
〈X − γI, yyt〉 − ε(‖y‖)‖y‖2.

Thus we may take

r := max{max{0,−k} | k is an eigenvalue of X}+ 2max{c, sup{ε(y) | y ∈ BM(0)}}+ γ.

Take r to be the smallest such positive number that satisfies (16). Define the function

hr(x) := f(x) +
r

2
‖x− x̄‖2.

Note that hr has a global minimum at x̄ and so r̄(hr) = 0 and (hr)λ is defined for all λ > 0.
Take Q ∈ ∂2,−f(x̄, 0) and so by Proposition 3.3 we have Q + rI ∈ ∂2,−(hr)(x̄, 0). Now
apply Proposition 4.3 assuming I+λ(Q+rI) ∈ intP(n) and deduce that 2(1

2
(Q+rI))λ ∈

∂2,−(hr)λ(x̄, 0). Now apply Proposition 4.4 to obtain that 2(1
2
Q)µ ∈ ∂2,−fµ(x̄, 0), where

µ = λ
1+rλ

. Next note that

I + λ(Q+ rI) ∈ intP(n) ⇔ I + µQ ∈ intP(n)

since I + µQ = I+λ(Q+rI)
1+λr

. As λ > 0 the only restriction on µ is that implied by λ =
µ

1−rµ
> 0 which gives 0 < µ < 1

r
.

Remark 4.6. Having established that a value of r for which (16) holds we could take
the smallest r and denote this number by r̄(f, x̄) ( ≥ r̄(f) by definition). This number is
a property of the function f at x̄ and not dependent on the choice of Q.

The following result is very useful in subsequent proofs (see [9, Proposition 12]). Note that
the condition I + λQ ∈ P(n) is necessary and sufficient to ensure 2(1

2
Q)λ is a quadratic

form. Once again minor changes are required to that in [9, Proposition 12] so we provide
a proof in the appendix.

Proposition 4.7. Suppose that A is a rank–one representer with −P(n) ⊆ 0+A. Then
for λ > 0 such that Aλ 6= ∅ we have

Aλ = cl {2(1
2
Q)λ | Q ∈ A and 2(

1

2
Q)λ is a quadratic form} − P(n).



A. Eberhard, R. Sivakumaran, R. Wenczel / On the Variational Behaviour of the ... 663

The following result shows that the infimal smoothing of a function corresponds exactly
to an infimal convolution smoothing of its subjets.

Proposition 4.8 ([9]). Suppose that f : IRn → IR is lower semi-continuous and prox–
bounded.

1. Then for all λ > 0 such that λ < r̄(f, x)−1.

∂2,−fλ(x, 0) = ∂2,−
λ f(x, 0).

2. For the limiting subhessians

∂2f(x, p) = lim sup
λ↓0

∂2(f − 〈p, ·〉)λ(x, 0)

= lim sup
λ↓0

∂2
λf(x, p) = lim sup

λ↓0
∂2fλ(x+ λp, p). (17)

Proof. We prove 1. only as it is a slight variation of [9, Corollary 3] but contains a
quantitative bound for the size of λ required. The inequality

2(
1

2
f ′′
s (x, 0, ·))λ(h) ≥ (fλ)

′′
s(x, 0, h)

is proved in [9, Corollary 3] for all λ > 0. As this holds for all h we have by the properties
of rank–1 support functions that

∂2,−fλ(x, 0) ⊆ ∂2,−
λ f(x, 0).

Now take H ∈ ∂2,−
λ f(x, 0) and hence by Proposition 4.7 we have the existence of a

sequence {Qk}k∈N such that 2(1
2
Qk)λ → P + H where P ∈ P(n), 2(1

2
Qk)λ ∈ ∂2,−

λ f(x, 0)
for all k and Qk ∈ ∂2,−f(x, 0). In particular since 2(1

2
Qk)λ is a quadratic form we have

I + λQk ∈ intP(n) for all k. Applying Corollary 4.5 we have 2(1
2
Qk)λ ∈ ∂2,−fλ(x, 0) for

all k. As ∂2,−fλ(x, 0) is closed we have H + P ∈ ∂2,−fλ(x, 0) implying H = H + P − P ∈
∂2,−fλ(x, 0).

The assumption that p = 0 is finally removed. First note that r ≥ r̄(f − 〈p, ·〉, x) if and
only if r ≥ 0 and for all y we have

f(y) ≥ f(x)− 〈p, y − x〉+ r

2
‖y − x‖2.

Denote the smallest of these positive constants by r̄(f, x, p) := r̄(f − 〈p, ·〉, x).
Lemma 4.9. Suppose f : IRn → IR is lower semi–continuous, prox–bounded and (p,Q) ∈
∂2,−f(x). Then for all λ > 0 such that λ < r̄(f, x, p)−1 and I + λQ ∈ intP(n) we have

(p,Q) ∈ ∂2,−f(x) ⇒ (p, 2(
1

2
Q)λ) ∈ ∂2,−fλ(x+ λp)

and (f − 〈p, ·〉)λ (x) = f(x)− 〈p, x〉.
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Proof. First note that (0, Q) ∈ ∂2,−(f − 〈p, ·〉)(x). Using Proposition 4.8 we have

∂2,− (f − 〈p, ·〉)λ (x, 0) = ∂2,−
λ (f − 〈p, ·〉) (x, 0)

and so for λ such that I + λQ ∈ intP(n) we have 2(1
2
Q)λ ∈ ∂2,−

λ (f − 〈p, ·〉) (x, 0) and so
2(1

2
Q)λ ∈ ∂2,− (f − 〈p, ·〉)λ (x, 0). Now we use Lemma 3.2 which establishes that for any

y we have (f − 〈p, ·〉)λ (y) = fλ(y + λp)− 〈p, y〉 − λ
2
‖p‖2. This yields

(0, 2(
1

2
Q)λ) ∈ ∂2,−

(

fλ(·+ λp)− 〈p, ·〉 − λ

2
‖p‖2

)

(x)

= ∂2,−fλ(x+ λp)− (p, 0)

and so (p, 2(
1

2
Q)λ) ∈ ∂2,−fλ(x+ λp).

To prove the final part we note that there exists a ϕ ∈ C2(IRn) such that ∇ϕ(x) = 0 and
∇2ϕ(x) = 2(1

2
Q)λ with

(f − 〈p, ·〉)λ (y)− ϕ(y) ≥ (f − 〈p, ·〉)λ (x)− ϕ(x)

for all y. This implies

fλ(y + λp)− 〈p, y〉 − λ

2
‖p‖2 − ϕ(y) ≥ fλ(x+ λp)− 〈p, x〉 − λ

2
‖p‖2 − ϕ(x)

or fλ(y + λp)− (ϕ(y) + 〈p, y〉) ≥ fλ(x+ λp)− (ϕ(x) + 〈p, x〉)

where ∇ (ϕ(·) + 〈p, ·〉) (x) = p and ∇2 (ϕ(·) + 〈p, ·〉) (x) = 2(1
2
Q)λ.

Finally apply (4) to (p, 2(1
2
Q)λ) ∈ ∂2,−fλ(x+ λp) to get (p, 2(1

2
Q)λ) ∈ ∂2,−f(x) and

f(x) = f(x+ λp− λp) = fλ(x+ λp)− λ

2
‖p‖2

and so

(f − 〈p, ·〉)λ (x) = fλ(x+ λp)− 〈p, x〉 − λ

2
‖p‖2

= f(x)− 〈p, x〉.

5. The Subhessian of the Supremal Deconvolution

In this section we discuss the problem of relating the subhessians of the supremal de-
convolution of a function to the elements of the subhessian of the function. A complete
comparison is only possible when we are dealing with para–concave functions. Fortu-
nately this is the situation that arises naturally in the analysis of the Lasry–Lions double
envelope which is the subject of the next section.

From time to time we will use the Hilbert identity

c1
2
‖w − y1‖2 +

c2
2
‖w − y2‖2

=
c1c2

2 (c1 + c2)
‖y1 − y2‖2 +

(c1 + c2
2

)

∥

∥

∥

∥

w − 1

c1 + c2
(c1y1 + c2y2)

∥

∥

∥

∥

2

. (18)
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For future use we also note that (18) gives

(fλ)η (x) = inf
w

{

inf
v

{

f(v) +
1

2λ
‖w − v‖2 + 1

2η
‖w − x‖2

}}

= inf
w,v

{

f(v) +
1

2 (λ+ η)
‖v − x‖2 + λ+ η

2λη

∥

∥

∥

∥

w − 1

λ+ η
(λv + ηx)

∥

∥

∥

∥

2
}

= inf
v

{

f(v) +
1

2 (λ+ η)
‖v − x‖2

}

= fλ+η(x).

We shall require the following result which due to Penot [23]. It motivates the desire to
study the sub/super–jet of the convex conjugate of certain functions.

Proposition 5.1. Let f : IRn → IR ∪ {+∞} with f(x̄) < +∞.

1. Suppose A is a positive semi–definite superjet of f at (x̄, x̄∗). If A is invertible and
f ∗(x̄∗) < +∞ then A−1 is a subjet of f ∗ at (x̄∗, x̄).

2. Suppose we assume f is proper, lower semi–continuous, convex and suppose that
for some x̄∗ ∈ ∂f(x̄) we have A a positive semi–definite subjet at (x̄, x̄∗). If A is
invertible then A−1 is a superjet of f ∗ at (x̄∗, x̄).

We are going to connect this result to the subhessians of a general class of functions.

Lemma 5.2. Let f : IRn → IR. Assume I − λB ∈ P(n). Then

1. B ∈ ∂2,−f(x, 0) if and only if A := 1
λ
I −B ∈ ∂2,+

(

1
2λ
‖ · ‖2 − f

)

(x, λ−1x) and

2. A−1 =
(

1
λ
I −B

)−1 ∈ ∂2,− (

1
2λ
‖ · ‖2 − f

)∗
(λ−1x, x) if and only if B+λB2 (I − λB)−1

∈ ∂2,−fλ(x, 0)

Proof. First note that when A ∈ ∂2,+
(

1
2λ
‖ · ‖2 − f

)

(x, λ−1x) then by definition we have
for all y that

1

2λ
‖y‖2 − f(y) ≤ 1

2λ
‖x‖2 − f(x) + 〈λ−1x, y − x〉+ 1

2
〈A(y − x), y − x〉+ o(‖y − x‖2)

which is equivalent to

f(y) ≥ f(x) +
1

2λ
‖y‖2 − 1

2λ
‖x‖2 − 〈λ−1x, y − x〉 − 1

2
〈A(y − x), y − x〉+ o(‖y − x‖2)

= f(x) +
1

2λ
‖y − x‖2 − 1

2
〈A(y − x), y − x〉+ o(‖y − x‖2)

= f(x) +
1

2
〈
(

1

λ
I − A

)

(y − x), y − x〉+ o(‖y − x‖2)

which in turn is equivalent to B := 1
λ
I − A ∈ ∂2,−f(x, 0). This establishes the first part.

Next consider A−1 ∈ ∂2,− (

1
2λ
‖ · ‖2 − f

)∗
(λ−1x, x) then by definition this means

(

1
2λ
‖ · ‖2

−f)∗ (λ−1x) finite, and for all y that
(

1

2λ
‖ · ‖2 − f

)∗

(λ−1y) ≥
(

1

2λ
‖ · ‖2 − f

)∗

(λ−1x) + 〈x, λ−1(y − x)〉

+
1

2
〈A−1λ−1(y − x), λ−1(y − x)〉+ o(‖λ−1y − λ−1x‖2)
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which becomes on the use of (10)

fλ(y) ≥ fλ(x) + 〈λ−1x, y − x〉+ 1

2λ2
〈A−1(y − x), (y − x)〉+ o(λ−2‖y − x‖2)

−
(

1

2λ
‖y‖2 − 1

2λ
‖x‖2

)

= fλ(x) +
1

2λ2
〈A−1(y − x), (y − x)〉 − 1

2λ
‖y − x‖2 + o(‖y − x‖2)

= fλ(x) +
1

2
〈
(

1

λ2
A−1 − 1

λ
I

)

(y − x), (y − x)〉+ o(‖y − x‖2)

which is equivalent to (0, 1
λ2A

−1 − 1
λ
I) ∈ ∂2,−fλ(x).

Now using the fact A = 1
λ
I −B we will show

1

λ2
A−1 − 1

λ
I = B + λB2 (I − λB)−1 when (I − λB)−1 exists.

Indeed, I = I can be written as

I = I − λB + λB − λ2B2 + λ2B2

= (I + λB)(I − λB) + λ2B2

= (I + λB)(I − λB) + λ2B2(I − λB)−1(I − λB)

= (I + λB + λ2B2(I − λB)−1)(I − λB)

which implies that
(I − λB)−1 = I + λB + λ2B2(I − λB)−1

and so we get
1

λ2
A−1 − 1

λ
I = B + λB2(I − λB)−1.

This completes the proof.

The next result exploits the ability to rewrite the supremal deconvolution as a formula
involving the convex conjugate of the function 1

2λ
‖ · ‖2 − f .

Theorem 5.3. Let f : IRn → IR be prox–bounded and proper.

1. Then B ∈ ∂2,−f(x, 0) implies B+λB2 (I − λB)−1 ∈ ∂2,−fλ(x, 0) if 0 < λ < 1
r̄(f)

(the

prox–threshold for f) is such that λ−1I−B is positive definite (or I−λB ∈ intP(n))
and if fλ(x) < +∞.

2. Assume further that f is para–concave and λ < 1
r̄(f)

(the prox–threshold for f)

is such that both I − λB is positive definite and f − 1
2λ
‖ · ‖2 is concave. Then

B + λB2 (I − λB)−1 ∈ ∂2,−fλ(x, 0) implies B ∈ ∂2,−f(x, 0). Also, we have fλ(x) =
f(x).

Proof. Part 1. Clearly if B ∈ ∂2,−f(x, 0) then f is finite at x. Now by Lemma 5.2
we have A := 1

λ
I − B ∈ ∂2,+

(

1
2λ
‖ · ‖2 − f

)

(x, λ−1x) and when A is positive definite



A. Eberhard, R. Sivakumaran, R. Wenczel / On the Variational Behaviour of the ... 667

by Proposition 5.1 (part 1.) we have (since
(

1
2λ
‖ · ‖2 − f

)∗
(x
λ
) < +∞ as follows from

fλ(x) < +∞ by using (10))

(

1

λ
I −B

)−1

∈ ∂2,−
(

1

2λ
‖ · ‖2 − f

)∗

(λ−1x, x). (19)

On applying Lemma 5.2 we arrive at B + λB2 (I − λB)−1 ∈ ∂2,−fλ(x, 0) as desired.

Part 2. Assume now that λ > 0 such that I − λB > 0, f − 1
2λ
‖ · ‖2 concave, and that

B + λB2 (I − λB)−1 ∈ ∂2,−fλ(x, 0) (so fλ(x) < +∞ by definition). Then

A−1 = (
1

λ
I −B)−1 ∈ ∂2,−(

1

2λ
‖ · ‖2 − f)∗(

x

λ
, x) by Lemma 5.2 (part 2.)

with ( 1
2λ
‖ · ‖2 − f)∗(x

λ
) finite.

Place ψ := ( 1
2λ
‖ · ‖2 − f)∗. It is convex and lower semi–continuous. Also ψ(x

λ
) finite, and

ψ(x∗) > −∞ for all x∗ from the prox–bound on f (indeed, 1
2λ
‖ · ‖2− f ≤ ( 1

2λ
+ c)‖ · ‖2−α

for some c > 0, α ∈ IR, so ψ(x∗) = ( 1
2λ
‖ · ‖2 − f)∗(x∗) ≥ (( 1

2λ
+ c)‖ · ‖2)∗(x∗) + α > −∞).

Hence ψ is also proper, and we may apply Proposition 5.1 (part 2.) to ψ. Now A−1 =
( 1
λ
I − B)−1 ∈ ∂2,−ψ(x

λ
, x) and A−1 > 0 (since I

λ
− B > 0 so ( I

λ
− B)−1 > 0 also). By the

subjet property,

ψ(y) ≥ ψ(
x

λ
) + 〈y − x

λ
, x〉+ 1

2
〈(y − x

λ
), A−1(y − x

λ
)〉+ o(‖y − x

λ
‖2)

locally near x
λ
. By positive–definiteness of A−1, there is ζ > 0 such that 〈(y− x

λ
), A−1(y−

x
λ
)〉 ≥ ζ‖y− x

λ
‖2 for all y and so, in a small neighbourhood of x

λ
, ψ(y) ≥ ψ(x

λ
)+〈x, y− x

λ
〉 for

all y near x
λ
(and hence globally, since ψ convex). Thus x ∈ ∂ψ(x

λ
) (convex subdifferential),

and Proposition 5.1 (part 2.) yields A ∈ ∂2,+ψ∗(x, x
λ
). Note that ψ∗ = ( 1

2λ
‖ · ‖2 − f)∗∗

is also proper convex, lower semi–continuous and so ψ∗ = cl( 1
2λ
‖ · ‖2 − f). From the

prox–bound on f , we know that 1
2λ
‖ · ‖2 − f(·) < +∞ always. From the finiteness of

ψ(x
λ
) and the Fenchel inequality, (−∞ 6=) 〈x

λ
, x∗〉 − ψ(x

λ
) ≤ ψ∗(x∗) ≤ 1

2λ
‖x∗‖2 − f(x∗)

for all x∗ and so 1
2λ
‖ · ‖2 − f is finite–valued, implying continuity (since convex). Thus

ψ∗ = cl( 1
2λ
‖ · ‖2 − f) = 1

2λ
‖ · ‖2 − f . Hence A ∈ ∂2,+( 1

2λ
‖ · ‖2 − f)(x, x

λ
), and finally, from

Lemma 5.2 (part 1.) B ∈ ∂2,−f(x, 0).

For the claim that fλ(x) = f(x), note that we have (19) holding. Now when f − 1
2λ
‖ · ‖2

is concave by (19) we have x ∈ ∂
(

1
2λ
‖ · ‖2 − f

)∗
(λ−1x) 6= ∅ and via the Fenchel equality

that
(

1

2λ
‖ · ‖2 − f

)

(x) +

(

1

2λ
‖ · ‖2 − f

)∗

(λ−1x) = 〈λ−1x, x〉 = 1

λ
‖x‖2

or

(

1

2λ
‖ · ‖2 − f

)∗

(λ−1x)− 1

2λ
‖x‖2 = f(x).

Applying (10) we have fλ(x) = f(x).

Next lemma allows the assumption that p = 0 to be removed.



668 A. Eberhard, R. Sivakumaran, R. Wenczel / On the Variational Behaviour of the ...

Lemma 5.4. Let f : IRn → IR. Then for any x and p̄ we have

(f − 〈p̄, ·〉)λ (x) = fλ(x− λp̄)− 〈p̄, x〉+ λ

2
‖p̄‖2. (20)

In particular when (f − 〈p̄, ·〉)λ (x) = f(x)− 〈p̄, x〉 we have fλ(x− λp̄) + λ
2
‖p̄‖2 = f(x).

Proof. By definition

(f − 〈p̄, ·〉)λ (x) =

(

1

2λ
‖ · ‖2 − (f − 〈p̄, ·〉)

)∗

(λ−1x)− 1

2λ
‖x‖2

= sup
w

(

〈λ−1x,w〉 − 〈p̄, w〉 −
(

1

2λ
‖w‖2 − f(w)

))

− 1

2λ
‖x‖2

= sup
w

(

〈λ−1x− p̄, w〉 −
(

1

2λ
‖w‖2 − f(w)

))

− 1

2λ
‖x‖2

=

(

1

2λ
‖ · ‖2 − f

)∗

(λ−1(x− λp̄))− 1

2λ
‖x− λp̄‖2 − 〈p̄, x〉+ λ

2
‖p̄‖2

= fλ(x− λp̄)− 〈p̄, x〉+ λ

2
‖p̄‖2.

The last statement follows immediately.

The previous results may be extended using the fact that

∂2,−f(x̄, p̄) = ∂2,− (f − 〈p̄, ·〉) (x̄, 0).

Corollary 5.5. Let f : IRn → IR be prox–bounded and proper.

1. Then B ∈ ∂2,−f(x̄, p̄) implies B+λB2 (I − λB)−1 ∈ ∂2,−fλ(x̄−λp̄, p̄) whenever λ is
chosen such that 0 < λ < 1

r(f)
, (λ−1I−B) is positive definite and fλ(x̄−λp̄) < +∞.

In particular we have that p̄ ∈ ∂pf(x̄) implies p̄ ∈ ∂pf
λ(x̄− λp̄).

2. Assume further that f is para–concave and λ is such that both I − λB is positive
definite and f − 1

2λ
‖ · ‖2 is concave. Then B + λB2 (I − λB)−1 ∈ ∂2,−fλ(x̄− λp̄, p̄)

implies B ∈ ∂2,−f(x̄, p̄) and fλ(x− λp̄) + λ
2
‖p̄‖2 = f(x). In particular we have that

p̄ ∈ ∂pf
λ(x̄− λp̄) implies p̄ ∈ ∂pf(x̄).

Proof. The proof is immediate from Theorem 5.3 and Lemma 5.4.

The expression for the matrices may be expressed in a more compact form by using the
next result.

Proposition 5.6. Given Q∈ S(n) denote by qQ(h) = 〈Qh, h〉 and (qQ)λ(h)= supη{〈Qη, η〉
− 1

2λ
‖h− η‖2} for all h ∈ IRn.

1. Let λ > 0 be such that I − 2λQ ∈ intP(n) then (qQ)
λ is a quadratic form. More

precisely (qQ)
λ = qQλ with

Qλ = Q(I − 2λQ)−1 = (I − 2λQ)−1Q =
1

2λ
((I − 2λQ)−1 − I).
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2. Given P ∈ S(n) then when I + 2λP ∈ intP(n) we have

Pλ = P (I + 2λP )−1 = (I + 2λP )−1P ∈ S(n)

if and only if (Pλ)
λ = P .

Indeed I−2λQ ∈ intP(n) is a necessary and sufficient condition for (qQ)
λ to be the

quadratic form qQλ(h) = 〈Qλh, h〉 .

Proof. Note that when I − 2λQ ∈ intP(n) then the maxη{〈Qη, η〉 − 1
2λ

‖h− η‖2} has
a unique solution at η which satisfies the equation 2Qη − λ−1(η − h) = 0. That is
η = (I − 2λQ)−1h. Thus

〈Q, hht〉λ = 〈Q, (I − 2λQ)−1hht(I − 2λQ)−1〉 − 1

2λ
‖(I − (I − 2λQ)−1)h‖2

= 〈(I − 2λQ)−1Q(I − 2λQ)−1 − 1

2λ
(I − (I − 2λQ)−1)2, hht〉 = 〈Qλ, hht〉.

Next we verify the other identities. Noting that (I − (I − 2λQ)−1) = 2λQ(I − 2λQ)−1 we
find that

Qλ = (I − 2λQ)−1Q(I − 2λQ)−1 − 2λ(I − 2λQ)−1Q2(I − 2λQ)−1

= (I − 2λQ)−1(I − 2λQ)Q(I − 2λQ)−1 = Q(I − 2λQ)−1.

The last identity Qλ = (I−2λQ)−1Q follows from the symmetry of Q. Clearly if I−2λQ /∈
intP(n) we cannot find (I − 2λQ)−1.

One can verify that Q = P (I + 2λP )−1 solves the equation P = Qλ for any λ i.e.

P = Q(I − 2λQ)−1

implies

Q = (I − 2λQ)P

and so P = 2λQP +Q = Q (I + 2λP )

or Q = P (I + 2λP )−1 .

The identity P (I + 2λP )−1 = (I + 2λP )−1P follows from symmetry again.

The following related result was proved in [9].

Proposition 5.7 ([9]). Given Q ∈ S(n) denote by qQ(η) the quadratic form 〈Qη, η〉 and
by (qQ)λ(h) the form infη{〈Qη, η〉+ 1

2λ
‖h− η‖2}.

1. Let λ > 0. The condition that I + 2λQ ∈ intP(n) is necessary and sufficient for
(qQ)λ to be a quadratic form. More precisely (qQ)λ = qQλ

with

Qλ :=
1

2λ

(

I − (I + 2λQ)−1) = Q(I + 2λQ)−1 = (I + 2λQ)−1Q.

2. If for a given P ∈ S(n) we have Qλ = P , then I − 2λP ∈ intP(n) and Q = P λ

where P λ := 1
2λ
((I − 2λP )−1 − I) = P (I − 2λP )−1 ∈ S(n).
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Remark 5.8. Assume I − 2λP is invertible. I = I may be written as

I = I − 2λP + 2λP − 4λ2P 2 + 4λ2P 2

= (I + 2λP )(I − 2λP ) + 4λ2P 2

= (I + 2λP )(I − 2λP ) + 4λ2P 2(I − 2λP )−1(I − 2λP )

= [I + 2λP + 4λ2P 2(I − 2λP )−1](I − 2λP )

This implies that

(I − 2λP )−1 = I + 2λP + 4λ2P 2(I − 2λP )−1.

and so we get

P + 2λP 2(I − 2λP )−1 =
1

2λ
[(I − 2λP )−1 − I] = P λ (by Proposition 5.7)

and so

(

1

2
B

)λ

=
1

2

(

B + λB2 (I − λB)−1)

and so 2

(

1

2
B

)λ

=
(

B + λB2 (I − λB)−1) ∈ ∂2,−fλ(x̄− λp̄, p̄)

for all λ sufficiently small so that I − λB ∈ intP(n) (under the conditions of Corollary
5.5).

Rewording Corollary 5.5 we obtain the main result of this section.

Theorem 5.9. Let f : IRn → IR be prox–bounded and para–concave, and suppose λ < 1
r̄(f)

(the prox–threshold for f) is such that both λ−1I −B is positive definite and f − 1
2λ
‖ · ‖2

is concave. Then (whenever fλ(x̄− λp̄) < +∞)

2

(

1

2
B

)λ

∈ ∂2,−fλ(x̄− λp̄, p̄) if and only if B ∈ ∂2,−f(x̄, p̄)

in which case we have fλ(x̄ − λp̄) + λ
2
‖p̄‖2 = f(x̄). In particular we have p̄ ∈ ∂pf(x̄) if

and only if p̄ ∈ ∂pf
λ(x̄− λp̄).

6. Subhessians of the Lasry–Lions Double Envelope

In this section we will provide a full analysis of the subjet and the associated subhessians
of the Lasry–Lions double envelope. The following Lemma will be used in the proof of
the next main theorem of the paper.

Lemma 6.1. Let f be prox–bounded with prox–threshold r̄(f)−1.

1. For any positive λ such that λ < 1
2r̄(f)

, we have fλ prox–bounded, with λ < 1
r̄(fλ)

(the

prox–threshold of fλ). That is 2r̄(f) ≥ r̄(fλ) for all 0 < λ < 1
2r̄(f)

.

2. If 0 < λ < 1
2r̄(f,x̄,p)

then 0 < λ < 1
r̄(fλ,x̄+λp,p)

(i.e. 2r̄(f, x̄, p) ≥ r̄(fλ, x̄+ λp, p) for all

0 < λ < 1
2r̄(f,x̄,p)

).
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Proof. Let λ < 1
2r̄(f,x̄,p)

so there is r > 2r̄(f, x̄, p) such that λ < 1
r
< 1

2r̄(f,x̄,p)
. Assume

f(y) ≥ f(x̄) + 〈p, y − x̄〉 − r

2
‖y − x̄‖2 as r > 2r̄(f, x̄, p).

This implies

fλ(x) = inf
y
{f(y) + 1

2λ
‖x− y‖2}

≥ f(x̄) + inf
y
{ 1

2λ
‖x− y‖2 + 〈p, y − x̄〉 − r

2
‖y − x̄‖2} (21)

In (21), the minimum occurs when 1
λ
(y− x)− r(y− x̄) = −p and simple calculations give

y = x−λ(rx̄+p)
1−λr

. We have

1

2λ

∥

∥

∥x− x− λ (rx̄+ p)

1− λr

∥

∥

∥

2

+ 〈p, x− λ (rx̄+ p)

1− λr
− x̄〉 − r

2

∥

∥

∥

x− λ (rx̄+ p)

1− λr
− x̄

∥

∥

∥

2

=
1

2λ
‖ (x− x̄)− 1

1− λr
(x− (x̄+ λp)) ‖2

+

(

1

1− λr

)

〈p, x− (x̄+ λp)〉 − r

2

(

1

1− λr

)2

‖x− (x̄+ λp) ‖2

=
1

2λ
‖λp− (x− (x̄+ λp))

(

λr

1− λr

)

‖2

+

(

1

1− λr

)

〈p, x− (x̄+ λp)〉 − r

2

(

1

1− λr

)2

‖x− (x̄+ λp) ‖2

=
λ

2
‖p‖2 −

(

λr

1− λr

)

〈p, (x− (x̄+ λp)) 〉

+

(

1

1− λr

)

〈p, x− (x̄+ λp)〉+
((

1

2λ

)

(λr)2 − r

2

)(

1

1− λr

)2

‖x− (x̄+ λp) ‖2

=
λ

2
‖p‖2 + 〈p, x− (x̄+ λp)〉 − r

2

(

1

1− λr

)

‖x− (x̄+ λp) ‖2.

Noting that by Lemma 3.2 and the fact that λ < 1
r
< 1

2r̄(f,x̄,p)
implies (p,− 1

λ
I) ∈ ∂2,−f(x̄)

we have

fλ(x̄+ λp) = f(x̄) +
λ

2
‖p‖2.

Thus

fλ(x) ≥
(

f(x̄) +
λ

2
‖p‖2

)

+ 〈p, x− (x̄+ λp)〉 − r

2

(

1

1− λr

)

‖x− (x̄+ λp) ‖2

= fλ(x̄+ λp) + 〈p, x− (x̄+ λp)〉 − r

2

(

1

1− λr

)

‖x− (x̄+ λp) ‖2

≥ fλ(x̄+ λp) + 〈p, x− (x̄+ λp)〉 − r‖x− (x̄+ λp) ‖2

(since λ <
1

2r
and hence

(

1

1− λr

)

< 2)
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for all x whence r̄(fλ) ≤ r
1−λr

. Since we may allow r → r̄, we obtain r̄(fλ) ≤ r̄
1−λr̄

. If

r̄ = 0, then r̄(fλ, x̄, p) = 0 also (for all λ > 0). So trivially, λ < 1
r̄(fλ,x̄,p)

for all λ > 0. If

r̄ > 0, observe that a sufficient condition for λ < 1
r̄(fλ,x̄,p)

is that λ < 1−λr̄
r̄

, which requires

2λr̄ < 1 or λ < 1
2r̄
. Thus, for λ < 1

2r̄
, get λ < 1−λr̄

r̄
≤ 1

r̄(fλ,x̄,p)
. The first assertion follows

by the same argument with β replacing f(x̄) and p = 0.

Remark 6.2. Since fλ|µ(x) = (fλ+µ)
µ(x) ≥ fλ+µ(x) we find that if 0 < λ + µ < 1

2r̄(f)

then 0 < λ+ µ < 1
r̄(fλ|µ)

etc.

Theorem 6.3. Suppose f : IRn → IR is a lower semi–continuous, prox–bounded and
proper function and 0 < λ < λ̄ = (r̄(f))−1 (the prox threshold of f). Then hλf + 1

2λ
‖ · ‖2

is proper, convex and for all η > 0 the following function is also convex and finite–valued:

(

hλf +
1

2λ
‖ · ‖2

)

η

(x) = (hλf)( 1
λ
+ 1

η )
−1 (

λx

λ+ η
) +

1

2 (λ+ η)
‖x‖2.

In particular we have (hλf)( 1
λ
+ 1

η )
−1 para–convex and hence C1,1 for all η > 0. Hence fλ,µ

for all 0 < µ < λ and fλ|µ for all 0 < µ, λ, are C1,1 (IRn) along with

fλ+µ ≤ fλ|µ := hµ (fλ) = (hλ+µf)λ = (fλ+µ)
µ ≤ fλ ≤ f . (22)

In particular
{

fλ|µ
}

0<µ<λ
epiconverges (monotonically upwards) to fλ as µ ↓ 0. The

following hold:

1. Let 0 < µ, λ where λ + µ < 1
2r̄(f,x,p)

and (p,Q) ∈ ∂2,−f(x). If also I + (λ + µ)Q ∈
intP(n), then

(

p, 2

(

1

2
Q

)

λ

)

∈ ∂2,−fλ|µ(x+ λp) and fλ|µ(x+ λp) = f(x) +
λ

2
‖p‖2.

2. Let 0 < µ, λ where λ + µ < 1
2r̄(f)

(r̄(f) the prox–threshold of f). Then, if (p,Q) ∈
∂2,−fλ|µ(x) such that I + µQ ∈ intP(n), then

(

p, 2

(

1

2
Q

)

µ

)

∈ ∂2,−f(x− λp)

with fλ|µ(x) = f(x− λp) +
λ

2
‖p‖2.

3. Let 0 < µ, λ with λ+µ < 1
2r̄(f)

. Then, if (p,Q) ∈ ∂2fλ|µ(x) with I +µQ ∈ intP(n),
then

(

p, 2

(

1

2
Q

)

µ

)

∈ ∂2f(x− λp)

with fλ|µ(x) = f(x− λp) +
λ

2
‖p‖2.
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4.

∂f(x) = lim sup
{

∇fλ|µ(x
′) | x′ → x, fλ|µ(x

′) → f(x) and

(λ, µ) ↓ (0, 0), λ,µ > 0
}

and ∂2f(x) = lim sup
{

(∇fλ|µ(x
′), Q) | x′ ∈ S2(fλ|µ), x

′ → x, fλ|µ(x
′) → f(x);

Q ≤P(n) ∇2fλ|µ(x
′) and (λ, µ) ↓ (0, 0), λ,µ > 0

}

.

Proof. Note that (hλf+
1
2λ
‖·‖2)η is uniformly bounded below by infλ(hλf+

1
2λ
‖·‖2) > −∞

for all η, and never takes the value +∞ from properness of hλf ≤ f 6≡ +∞ so that
(hλf + 1

2λ
‖ · ‖2)η(x) is finite for all x and all η > 0. It is well known that (see page 495 of

[30])

hλf(x) =

(

f +
1

2λ
‖ · ‖2

)∗∗

(x)− 1

2λ
‖x‖2.

Thus hλf(x)+
1
2λ
‖x‖2 is convex being equal to the second convex conjugate of f+ 1

2λ
‖·‖2.

Therefore it is bounded below, since f+ 1
2λ
‖ ·‖2 bounded below from the assumption of f .

It is well known that the infimal convolution of a proper, convex function is also proper
convex and finite as 0 < λ < λ̄ = r̄(f)−1 (r̄(f) is the prox–threshold of f). Let us now
explicitly calculate this infimal convolution with parameter η , utilizing (18) with c1 =

1
λ
,

c2 =
1
η
and y1 = 0, y2 = x,

(

hλf +
1

2λ
‖ · ‖2

)

η

(x) = inf
w

{

hλf(w) +
1

2λ
‖w‖2 + 1

2η
‖x− w‖2

}

= inf
w











hλf(w) +
1

2
(

1
λ
+ 1

η

)−1‖w −
(

λ

λ+ η

)

x‖2











+
1

2 (λ+ η)
‖x‖2

= (hλf)( 1
λ
+ 1

η )
−1 (

λx

λ+ η
) +

1

2 (λ+ η)
‖x‖2.

As
(

hλf + 1
2λ
‖ · ‖2

)

η
is convex it follows that x 7→ (hλf)( 1

λ
+ 1

η )
−1 (x) is para–convex and

hence simultaneously para–convex and para–concave as well as finite–valued. By Lemma

4.1 it must be C1,1. We may place
(

1
λ
+ 1

η

)−1

= λ−µ and solve to obtain η = λ(λ−µ)
µ

> 0

for all µ < λ. In this case we have (hλf)λ−µ = fλ,µ being C1,1. Indeed this is true if we
replace λ by λ+ µ and obtain

fλ+µ ≤ (fλ+µ)
µ = (hλ+µf)λ = hµ (fλ) ≤ fλ ≤ f

and so (22) follows as hµ (fλ) := fλ|µ.

Part 1. For any ξ < 1
r̄
= 1

r̄(f,x,p)
, recall that (f−〈p, ·〉)ξ is para–concave (with (f−〈p, ·〉)ξ−

1
2ξ
‖ · ‖2 concave), prox–bounded and finite–valued. Now use Lemma 3.2 which establishes
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that for any y we have (f − 〈p, ·〉)ξ (y) = fξ(y+ξp)−〈p, y〉− ξ
2
‖p‖2. Consequently we have

ξ < 1
r̄(fξ,x+ξp,p)

for all ξ < 1
2r̄

(as observed in Lemma 6.1) along with fξ(· + ξp) − 1
2ξ
‖ · ‖2

concave, prox–bounded and finite–valued.

Let λ, µ > 0 such that λ + µ < 1
2r̄
. If (p,Q) ∈ ∂2,−f(x) and I + (λ + µ)Q > 0 then

I + λQ > 0 and there follows from Lemma 4.9 that

B := 2(
1

2
Q)λ+µ ∈ ∂2,−fλ+µ(x+ (λ+ µ)p, p)

with (f − 〈p, ·〉)λ+µ(x) = f(x)− 〈p, x〉 (23)

We seek now to apply Theorem 5.9 to the function x 7→ fλ+µ(x + (λ + µ)p) using a
“parameterÔ µ. Note that

fλ+µ(·+ (λ+ µ)p)− 1

2µ
‖ · ‖2 =

{

fλ+µ(·+ (λ+ µ)p)− 1

2(λ+ µ)
‖ · ‖2

}

− λ

2µ(λ+ µ)
‖ · ‖2

and hence is concave. Also (fλ+µ)
µ = fλ|µ has already been shown to be finite-valued.

Further,

I − µB = I − 2µ

(

1

2
Q

)

λ+µ

= I − µQ (I + (λ+ µ)Q)−1

= (I + (λ+ µ)Q− µQ) (I + (λ+ µ)Q)−1 = (I + λQ) (I + (λ+ µ)Q)−1 .

So, I − µB > 0 since I + λQ > 0 and (I + (λ+ µ)Q)−1 > 0. Also, from Lemma 6.1,
µ < µ+ λ < 1

r̄(fλ+µ,x+(λ+µ)p,p)
. Thus, the conditions of Theorem 5.9 are satisfied, giving

2

(

1

2
Q

)

λ

= 2(
1

2
B)µ ∈ ∂2,− (fλ+µ)

µ (x+ (λ+ µ)p− µp, p)

= ∂2,−fλ|µ(x+ λp, p)

along with

fλ|µ(x+ λp) = fλ+µ(x+ (λ+ µ)p)− µ

2
‖p‖2

= fλ+µ(x+ (λ+ µ)p)− λ+ µ

2
‖p‖2 + λ

2
‖p‖2

= (f − 〈p, ·〉)λ+µ (x) + 〈p, x〉+ λ

2
‖p‖2 from Lemma 3.2

= f(x) +
λ

2
‖p‖2 from (23) above.

Part 2. Place B := 2
(

1
2
Q
)

µ
so 2

(

1
2
B
)µ

= Q as may be easily shown. Then 2
(

1
2
B
)µ ∈

∂2,− (fλ+µ)
µ (x). Noting that I − µB = (I + µQ)−1 > 0, we may, as we did for part 1,

apply Theorem 5.9 to fλ+µ and parameter µ, to obtain

2

(

1

2
Q

)

µ

= B ∈ ∂2,−fλ+µ(x+ µp, p)

with fλ|µ(x) +
µ

2
‖p‖2 = fλ+µ(x+ µp) .
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From (4) applied to f (and parameter λ + µ) which is permitted since λ + µ < 1
r̄(f)

, we
obtain

B ∈ ∂2,−f(x+ µp− (λ+ µ)p, p) = ∂2,−f(x− λp, p)

with f(x− λp) = fλ+µ(x+ µp)− λ+ µ

2
‖p‖2,

yielding

(

p, 2

(

1

2
Q

)

µ

)

∈ ∂2,−f(x− λp)

and fλ|µ(x) = fλ+µ(x+ µp)− µ

2
‖p‖2

= f(x− λp) +
λ

2
‖p‖2 .

Part 3. ∃(pm, Qm) → (p,Q) with (pm, Qm) ∈ ∂2,−fλ|µ(xm), xm → x (and fλ|µ(xm) →
fλ|µ(x)). As I + µQ > 0, have I + µQm > 0 for all large m, so by Part 2,

(

pm, 2

(

1

2
Qm

)

µ

)

∈ ∂2,−f(xm − λpm)

and fλ|µ(xm) = f(xm − λpm) +
λ

2
‖pm‖2 (24)

By continuity of the inversion operation A 7→ A−1 in intP(n), we have 2
(

1
2
Qm

)

µ
→

2
(

1
2
Q
)

µ
as m → ∞. Since xm − λpm → x− λp, we may let m → ∞ in (24) to obtain

fλ|µ(x) = lim
m→∞

f(xm − λpm) +
λ

2
‖pm‖2 (25)

≥ f(x− λp) +
λ

2
‖p‖2 as f is l.s.c.

However,

fλ|µ(x) = (fλ+µ)
µ (x) =

(

(fλ)µ

)µ

(x) = hµ(fλ)(x) ≤ fλ(x)

= inf
w

(

f(w) +
1

2λ
‖x− w‖2

)

≤ f(x− λp) +
1

2λ
‖x− (x− λp)‖2

= f(x− λp) +
λ

2
‖p‖2.

Combining with the inequality in (25) gives f(x−λp)+λ
2
‖p‖2 = fλ|µ(x) and limm→∞ f(xm−

λpm) = f(x− λp). Thus

(

p, 2

(

1

2
Q

)

µ

)

= lim
m

(

pm, 2

(

1

2
Qm

)

m

)

∈ lim x′→x−λp
f(x′)→f(x−λp)

∂2,−f(x′) = ∂2f(x− λp).
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Part 4. For (p,Q) ∈ ∂2,−f(x), observe that as λ ↓ 0 with λ, µ > 0 we obtain from Part 1
that

fλ|µ(x+ λp) = f(x) +
λ

2
‖p‖2

and (p, 2(1
2
Q)λ) → (p,Q) when λ ↓ 0 with λ > µ > 0. Thus

lim sup
{

∂2,−fλ|µ(x
′) | x′ → x, fλ|µ(x

′) → f(x) and (λ, µ) ↓ (0, 0), λ,µ > 0
}

⊇ ∂2,−f(x).
(26)

We may also use Proposition 2.9 (as fλ|µ is continuous and para–concave) to deduce that

D
2
fλ|µ(x

′,∇fλ|µ(x
′))− P(n) = ∂2fλ|µ(x

′,∇fλ|µ(x
′)) ⊇ ∂2,−fλ|µ(x

′,∇fλ|µ(x
′)). (27)

Thus it follows from (26) and (27) via a sequence diagonalization argument that

lim sup
{

(∇fλ|µ(x
′), Q) | x′ ∈ S2(fλ|µ), x

′ → x, fλ|µ(x
′) → f(x);

Q ≤P(n) ∇2fλ|µ(x
′) and (λ, µ) ↓ (0, 0), λ,µ > 0

}

⊇ ∂2,−f(x).

As the left hand side of this containment is invariant with respect to upper limits in
x

′ →f x we conclude that it also contains ∂2f(x).

We now show the reverse containment. Suppose there exists a sequence xn ∈ S2(fλn|µn)
with xn → x, fλn|µn(xn) → f(x) as λn ↓ 0 and λn > µn > 0 along with (pn, Qn) :=
(∇fλn|µn(xn),∇2fλn|µn(xn)) → (p,Q). Since

(fλn+µn)
µn =

(

(fλn)µn

)µn

= hµn (fλn) = fλn|µn ,

(pn, Qn) ∈ ∂2,−fλn|µn(xn) = ∂2,− (fλn+µn)
µn (xn) and fλn+µn is para–concave we may apply

Theorem 5.9 to deduce that

(fλn+µn)
µn ((xn + µnpn)− µnpn) +

µn

2
‖pn‖2 = fλn+µn(xn + µnpn) (28)

and

2

(

1

2
Qn

)

µn

∈ ∂2,−fλn+µn(xn + µnpn, pn). (29)

Theorem 5.9 is applicable provided that 2
(

(

1
2
Qn

)

µn

)µn

= Qn, I−2µn

(

1
2
Qn

)

µn
∈ intP(n)

and fλn+µn − 1
2µn

‖ · ‖2 is concave. The last of these conditions is always satisfied for

λn + µn < (r̄(f))−1 the prox–threshold of f since fλn+µn − 1
2(µn+λn)

‖ · ‖2 is concave and
thus so is

fλn+µn − 1

2µn

‖ · ‖2 =
{

fλn+µn − 1

2(µn + λn)
‖ · ‖2

}

− λn

2(λn + µn)µn

‖ · ‖2.

Also, fλn+µn is prox–bounded if λn + µn < 1
2r

(by Lemma 6.1) and is continuous. The
first two conditions are satisfied as follows. Place Bn := 2

(

1
2
Qn

)

µn
= Qn(1+µnQn)

−1 the

last equality following for all large n since I + µnQn → I as n → ∞ from boundedness
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of the Qn. Note also that (I + µnQn)
−1 → I by continuity of the mapping A 7→ A−1 on

intP(n). We have Qn = 2
(

1
2
Bn

)µn
and to apply Theorem 5.9, we need to check that

I − µnBn > 0 eventually — indeed, I − µnBn = I − µnQn(I − µnQn)
−1 → I as µn → 0.

Having established (29) we may now couple it with (4) (for n so large that λn + µn < 1
r
)

to obtain

(

pn, 2

(

1

2
Qn

)

µn

)

∈ ∂2,−f(xn + µnpn − (λn + µn)pn)

= ∂2,−f(xn − λnpn) (30)

and f(xn − λnpn) = fλn+µn(xn + µnpn)−
(λn + µn)

2
‖pn‖2.

Using (28) we have

f(xn − λnpn) = fλn|µn(xn) +
µn

2
‖pn‖2 −

(λn + µn)

2
‖pn‖2

= fλn|µn(xn)−
λn

2
‖pn‖2. (31)

It follows that when fλn|µn(xn) → f(x) as (λn, µn) ↓ (0, 0), λn, µn > 0 and (pn, Qn) →
(p,Q) we have f(xn − λnpn) → f(x) and hence (since 2

(

1
2
Qn

)

µn
→ Q)

(p,Q) ∈ lim sup
{

∂2,−f(x′) | x′ → x, f(x′) → f(x)
}

⊆ ∂2f(x).

This has shown that

lim sup
{

(∇fλ|µ(x
′),∇2fλ|µ(x

′)) | x′ ∈ S2(fλ|µ), x
′ → x,

fλ|µ(x
′) → f(x); (λ, µ) ↓ (0, 0), λ,µ > 0

}

⊆ ∂2f(x).

This implies

lim sup
{

(∇fλ|µ(x
′),∇2fλ|µ(x

′)) | x′ ∈ S2(fλ|µ), x
′ → x, fλ|µ(x

′) → f(x); (λ, µ) ↓ (0, 0);

λ,µ > 0
}

− 0× P(n) ⊆ ∂2f(x) as − (0× P(n)) ⊆ rec ∂2f(x),

for all x.

Now fix x̄ and take limits x → x̄, f(x) → f(x̄) and note that

lim sup
x→f x̄

∂2f(x) = ∂2f(x̄).

Then

lim sup
x→f x̄

{

lim sup
{

(∇fλ|µ(x
′),∇2fλ|µ(x

′)) | x′ ∈ S2(fλ|µ), x
′ → x,

fλ|µ(x
′) → f(x); (λ, µ) ↓ (0, 0); λ, µ > 0

}

− 0× P(n)
}

⊆ ∂2f(x̄). (32)
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Now the left hand side of (32) contains all sequences of the form

(

∇fλn|µn(xn), Qn

)

with Qn ≤P(n) ∇2fλn|µn(xn)

for xn ∈ S2(fλn|µn), xn → x̄, fλn|µn(xn) → f(x̄) as (λn, µn) ↓ (0, 0) with λn, µn > 0 and
hence all accumulation points of such sequences. This implies equality in (32).

As is usual we will require the characterization of superjets and so define

fλ|µ(x) = − (−f)λ|µ .

As ∂2,+f(x) = −∂2,−(−f)(x) the following is immediate from Theorem 6.3.

Theorem 6.4. Suppose f : IRn → IR is an upper semi–continuous proper function (i.e. f
is nowhere +∞ and not identically −∞) and 0 < λ < λ̄ = (r̄(−f))−1 (r̄(−f)−1 is the
prox–threshold of −f). Then fλ|µ are C1,1 (IRn) for all 0 < µ < λ along with

fλ+µ ≥ fλ|µ =
(

fλ+µ
)

µ
≥ fλ ≥ f . (33)

In particular
{

fλ|µ}

0<µ<λ
hypoconverges (monotonically) to fλ as µ ↓ 0. The following

hold:

1. Let 0 < µ, λ where λ + µ < 1
2r̄(−f,x)

. Let (p,Q) ∈ ∂2,+f(x). If also I − (λ + µ)Q ∈
intP(n), Then

(p, 2(
1

2
Q)λ) ∈ ∂2,+fλ|µ(x− λp) and fλ|µ(x− λp) = f(x)− λ

2
‖p‖2.

2. Let 0 < µ, λ where λ + µ < 1
2r̄(−f)

(where (r̄(−f))−1 is the prox–threshold of −f).

Then, if (p,Q) ∈ ∂2,+fλ|µ(x) such that I − µQ ∈ intP(n), then

(

p, 2

(

1

2
Q

)µ)

∈ ∂2,+f(x+ λp)

with fλ|µ(x) = f(x+ λp)− λ

2
‖p‖2.

3. Let 0 < µ, λ : λ+ µ < 1
2r̄(−f)

(where (r̄(−f))−1 prox–threshold of −f). Then

(p,Q) ∈ ∂
2
fλ|µ(x) and I − µQ > 0 =⇒

(

p, 2

(

1

2
Q

)µ)

∈ ∂
2
f(x+ λp)

and f(x+ λp) = fλ|µ(x) +
λ

2
‖p‖2.

4.

∂
2
f(x) = lim sup

{

(∇fλ|µ(x′), Q) | x′ ∈ S2(f
λ|µ), x′ → x,

fλ|µ(x′) → f(x); Q ≥P(n) ∇2fλ|µ(x′) and (λ, µ) ↓ (0, 0); λ, µ > 0
}

.
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We conclude this section with a definition of a quantity which is suggested by these
formula but we will leave its analysis to a later paper. The motivation for defining this
quantity is to remove some of the negative semi–definite recession directions that occur
in the limiting subhessian.

Definition 6.5. Suppose f : IRn → IR is a lower semi–continuous, prox–bounded and
proper function.

1. The generalized subhessians of f at x for p ∈ ∂f(x) are denoted by:

∂2f(x, p) = lim sup
{

∇2fλ|µ(x
′) | x′ ∈ S2(fλ|µ), x

′ → x, fλ|µ(x
′) → f(x);

∇fλ|µ(x
′) → p and (λ, µ) ↓ (0, 0), λ,µ > 0

}

.

2. The singular generalized subhessians of f at x for p ∈ ∂f(x) are denoted by:

∂2,∞f(x, p) = lim sup
{

γ∇2fλ|µ(x
′) | x′ ∈ S2(fλ|µ), x

′ → x, fλ|µ(x
′) → f(x);

∇fλ|µ(x
′) → p; 0 < γ ≤ max{λ, µ} and (λ, µ) ↓ (0, 0), λ,µ > 0

}

.

Of course a generalized super–hessian could be defined along similar lines.

7. Appendix

The proof of Proposition 4.3 is provided in this appendix. It is modeled on that given
in [9, Proposition 8]. Throughout the proof it is assumed that r̄(f) = 0 (as f has a
global minimum at x̄) and for a given Q ∈ ∂2,−f(x̄, 0) we have chosen λ > 0 to satisfy
I + λQ ∈ intP(n).

Proof of Proposition 4.3. Without loss of generality we may assume that x̄ = 0 and
f(0) = 0 since (f(· − x̄)− f(0))λ(x) = fλ(x− x̄)− f(0). Now take any (0, Q) ∈ ∂2,−f(0).
As f ≥ f(0) has a global minimum at 0, by Lemma 4.1 of [12] there exists a function
Ýε : IR+ → IR such that limt↓0 Ýε(t) = 0 = Ýε(0) and a function r : y 7→ Ýε(‖y‖)‖y‖2 ∈ C2(IRn)
satisfying (∇r(0),∇2r(0)) = (0, 0) and

f(y) ≥ 1

2
〈Q, yyt〉 − Ýε(‖y‖)‖y‖2. (34)

Next note that

0 < 1 + λmin{µ | µ is an eigenvalue of Q} ⇔ I + λQ ∈ intP(n) .

Now fix λ > 0 such that I + λQ ∈ intP(n). Place

max
η∈Bδ(0)

Ýε(‖η‖) = G(δ) < ∞

which is finite as r 7→ Ýε(r) is continuous and G(δ) → 0 as δ → 0. If necessary reduce δ so
that

0 < 1 + λ(min{µ | µ is an eigenvalue of Q} − 2G(δ)). (35)
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Let b(·) be a C2–smooth bump function with b(x) = 1 for x ∈ B δ
2
(0) and b(x) = 0 for

x /∈ Bδ(0). Place

ε(x) = b(x)Ýε(x) + (1− b(x))G(δ)

and ϕ(y) :=
1

2
〈Q, yyt〉 − ε(‖y‖)‖y‖2.

Then clearly ϕ ∈ C2(IRn), f(y) ≥ ϕ(y) for y ∈ Bδ(0) and f − ϕ takes a minimum over
Bδ(0) at x̄ = 0 with ϕ(0) = f(0) = 0, ∇ϕ(0) = 0 and ∇2ϕ(0) = Q.

Let us now recall that by the results of [2] the infimal convolution is locally Lipschitz in
that

fλ(y)− fλ(x) ≤ λ−1κx‖y − x‖
where an explicit expression for κx is given by

κx =

(

‖y − x‖+
[

1 + 4α0λ

1− 4α0λ
‖x‖2 + 2λ

1− 4α0λ
α1

] 1
2

)

when f(·) + α0‖ · ‖2 + α1 ≥ 0 and 0 < λ < 1
4α0

. In our case we may take α0 = 0,
α1 = f(0) = 0, x = 0 and so write κ0 = ‖y‖ to obtain

fλ(y)− fλ(0) ≤ λ−1‖y‖2, (36)

for all λ > 0. Now consider η ∈ Pλ(y). Then we have since x = 0 is a global minimum
we have fλ(0) = f(0) and

fλ(y) = f(η) +
1

2λ
‖y − η‖2 ≥ f(0) +

1

2λ
‖y − η‖2

implying
√

2λ(fλ(y)− fλ(0)) ≥ ‖y − η‖.

Using (36) we obtain the bound for η ∈ Pλ(y) to be
√
2‖y‖ ≥ ‖η−y‖ and so for y ∈ B δ

2
√

2
(0)

we have ‖η − y‖ ≤ δ
2
and hence η ∈ Bδ(0).

This implies (as ϕ ≤ f on Bδ(0))

f(η) +
1

2λ
‖y − η‖2 ≥ ϕ(η) +

1

2λ
‖y − η‖2 for all η ∈ Pλ(y) ⊆ Bδ(0)

giving fλ(y) ≥ ϕλ(y) for all y ∈ B δ
2
√
2
(0).

In order for ϕλ to be finite valued we require λ < r̄(ϕ)−1. It is easily seen that r̄(ϕ) =
max{−µ | µ is an eigenvalue of Q}+2G(δ), since 1

2
〈Q−(2G(δ)+γ)I, yyt〉 locally minorizes

ϕ for all γ > 0. In particular λ < r̄(ϕ)−1 is equivalent to demanding (35). Thus 0 =
f(0) ≥ fλ(0) = ϕλ(0) = infη{ϕ(η) + 1

2λ
‖η‖2} > −∞. We now show that we have

ϕλ(0) = 0. Now

ϕ(x) =
1

2
〈Qx, x〉 − ε(‖x‖) ‖x‖2 (37)

implying ϕλ(x) = inf
η
{1
2
〈Qη, η〉 − ε(‖η‖) ‖η‖2 + 1

2λ
‖x− η‖2}.
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We claim that η 7→ 1
2
〈Qη, η〉 − ε(‖η‖) ‖η‖2 + λ

2
‖η‖2 has a minimum at η = 0 implying

ϕλ(0) ≥ 0.

By the definition of ε on Bδ(0) we have ϕ minorized by

p̄(η) :=
1

2
〈Qη, η〉+ (

1

2λ
−G(δ)) ‖η‖2

which by (35) is a positive, positive–definite form. Outside Bδ(0) we have p̄ = ϕ. Thus
1
2
〈Qη, η〉−ε(‖η‖) ‖η‖2+ 1

2λ
‖η‖2 is bounded below by a positive function p̄ with a minimum

of 0 at η = 0. Thus ϕλ(0) = fλ(0) = 0 and so fλ − ϕλ has a local minimum (over B δ
2
√

2
)

at 0. Thus (∇ϕλ(0),∇2ϕλ(0)) ∈ ∂2,−fλ(0). Also (using the variable substitution tη for η)

ϕλ(th)

t
=

(

1

t

)

inf
η
{ϕ(η) + 1

2λ
‖th− η‖2}

= inf
η
{ϕ(tη)

t
+

t2

2tλ
‖h− η‖2} = inf

η
{ϕ(tη)

t
+

t

2λ
‖h− η‖2}

and using

ϕ(tη) = ϕ(0) + 〈∇ϕ(0), tη〉+ 1

2
〈∇2ϕ(0)(tη), tη〉+ ε(t ‖η‖)t2 ‖η‖2

= t2(
1

2
〈Qη, η〉+ ε(t ‖η‖) ‖η‖2)

we get
ϕλ(th)

t
= t inf

η
{1
2
〈Qη, η〉+ ε(t ‖η‖) ‖η‖2 + 1

2λ
‖h− η‖2}. (38)

Thus for the given λ we have

lim
t↓0

2
ϕλ(th)

t2
= 2 lim

t↓0

(

1

t2

)

inf
η
{ϕ(η) + 1

2λ
‖th− η‖2}

= 2 lim
t↓0

(

1

t2

)

inf
η
{1
2
〈Q(tη), (tη)〉+ ε(t ‖η‖) ‖tη‖2 + t2

2λ
‖h− η‖2}

= 2 lim
t↓0

(

inf
η
{1
2
〈Qη, η〉+ ε(t ‖η‖) ‖η‖2 + 1

2λ
‖h− η‖2}

)

. (39)

There is a compact set C = BK(0) such that for all t > 0 sufficiently small we have
infη∈C gt(η) = infη gt(η) where gt(η) = {1

2
〈Qη, η〉 + ε(t ‖η‖) ‖η‖2 + 1

2λ
‖h− η‖2}. To see

this note that
max

η∈B
( δ

t )
(0)

ε(‖tη‖) = max
η∈Bδ(0)

ε(‖η‖) = G(δ)

as before. OutsideB( δ
t )
(0) the function ε(‖tη‖) is constant and so we have ε(‖tη‖) = G(δ).

Thus

1

2
〈Qη, η〉+ ε(t ‖η‖) ‖η‖2 + 1

2λ
‖h− η‖2 ≥ 1

2
〈Qη, η〉+ ε(t ‖η‖) ‖η‖2 + 1

2λ

(

‖η‖2 − 〈h, η〉
)

≥ p̄(η)− 1

2λ
〈h, η〉 := k̄(η).
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As k̄(η) = p̄(η)− 1
2λ
〈h, η〉 we have k̄ coercive. Thus levαgt := {gt ≤ α} ⊆ levαk̄ ⊆ B ÝK(0)

for all t > 0 sufficiently small and some fixed ÝK > 0.

Now as t ↓ 0 we have gt(η) converging to g(η) = 1
2
〈Qη, η〉 + 1

2λ
‖h− η‖2 uniformly on

bounded sets. It follows that {gt(·)}t>0 epi-converges to g(·). Using Proposition 3.36 of
[29] we have the marginal mapping t 7→ infη gt(η) continuous at t = 0.

From this we are first able to deduce by (38) that ∇ϕλ(0) = 0. Using the continuity of
the marginal mapping t 7→ infη gt(η) at t = 0 we have

〈∇2ϕλ(0)h, h〉 = 2 lim
t↓0

ϕλ(th)

t2
= 2 lim

t↓0
inf
η
gt(η) = inf

η
g(η)

= 2 inf
η
{〈1
2
Qη, η〉+ 1

2λ
‖h− η‖2} = 〈2(1

2
Q)λ, hh

t〉

implying 〈∇2ϕλ(0)h, h〉 = inf
η
{〈Qη, η〉+ 1

λ
‖h− η‖2} ≤ 〈Q, hht〉.

Since this is true for all h it follows that ∇2ϕλ(0) = Qλ. Finally we see that if λ1 ≤
λ2 we have {〈Qη, η〉 + 1

λ1
‖h− η‖2} ≥ {〈Qη, η〉 + 1

λ2
‖h− η‖2} implying 〈Q, hht〉λ1 ≥

〈Q, hht〉λ2 .

We will now provide a proof of Proposition 4.7 but require the following results in the
proof. Once again for completeness we provide a proof that gives an explicit bound on
λ > 0. Let E(A, u) := {Q ∈ A | 〈1

2
Qu, u〉 = q(1

2
A)(u)}.

Proposition 7.1 ([12, Proposition 3.2]). Suppose A is a non–empty rank-1 represen-
ter. If Q ∈ E(A, u) then when I + λQ ∈ intP(n) we have Qλ ∈ E(Aλ, hλ) where
hλ = (I + λQ)u → u as λ → 0 and q(Aλ)(hλ) = q(A)(u) + λ‖Qu‖2.

Proof. When I + λQ ∈ intP(n) we have Qλ well defined. Since 〈1
2
Q, hht〉 ≤ q(1

2
A)(h)

for all h, application of the infimal convolution to both sides of this inequality provides
〈2(1

2
Q)λ, uu

t〉 ≤ 2q((1
2
A)λ)(u) for all u. Thus Qλ ∈ Aλ. The matrix 〈1

2
Q, ηηt〉+(2λ)−1‖η‖2

is positive definite and so the problem infη
{

〈1
2
Q, ηηt〉+ 1

2λ
‖h− η‖2

}

has a unique solution

at η = (I + λQ)−1 h. In particular, for any fixed h ∈ IRn, we have hλ := (I + λQ)h has
h = (I + λQ)−1 hλ. Thus

〈2(1
2
Q)λ, hλh

t
λ〉 = 2

(

〈1
2
Q, hht〉+ 1

2λ
‖hλ − h‖2

)

= 〈Q, hht〉+ 1

λ
‖ (I − (I + λQ))h‖2 = 〈Q, hht〉+ λ‖Qh‖2.

When Q ∈ E(A, h) we have q(A)(h) = 〈Q, hht〉 and so

〈Qλ, hλh
t
λ〉 = 〈Q, hht〉+ λ‖Qh‖2

= 2

(

q(
1

2
A)(h) +

1

2λ
‖hλ − h‖2

)

≥ q(Aλ)(hλ),

which implies Qλ ∈ E(Aλ, hλ).
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We may now provide a proof of Proposition 4.7. Recall that when −P(n) ⊆ 0+ A we
must have int A 6= ∅.

Proof of Proposition 4.7. When 〈Q, hht〉λ = 〈Qλ, hh
t〉 is a quadratic form using

〈Q, uut〉 ≤ q(A)(u) for all u we have

2〈(1
2
Q)λ, hh

t〉 = 2〈1
2
Q, hht〉λ ≤ 2qλ(

1

2
A)(h) = q(Aλ)(h)

implying 2(1
2
Q)λ ∈ Aλ and so 2(1

2
Q)λ − P(n) ⊆ Aλ. We thus arrive at

Aλ = (Aλ)
1 ⊇

(

{2(1
2
Q)λ | Q ∈ A and 2(

1

2
Q)λ is a quadratic form} − P(n)

)1

⊇ cl {2(1
2
Q)λ | Q ∈ A and 2(

1

2
Q)λ is a quadratic form} − P(n)

as Aλ is closed.

Now suppose there exists a P ∈ Aλ such that 2(1
2
A)λ = P for some A and P /∈ {2(1

2
Q)λ |

Q ∈ A and 2(1
2
Q)λ is a quadratic form}. Then by definition A /∈ A. That is there exists

a u such that 〈A, uut〉 > q(A)(u). Place h = (I + λA)u then

〈2(1
2
A)λ, hh

t〉 = 2

(

〈1
2
A, uut〉+ 1

2λ
‖h− u‖2

)

> q(A)(u) +
1

λ
‖h− u‖2

= 2

(

q(
1

2
A)(u) +

1

2λ
‖h− u‖2

)

≥ 2qλ(
1

2
A)(h) = q(Aλ)(h)

implying the contradiction 2(1
2
A)λ = P /∈ Aλ. Hence when P ∈ Aλ is such that 2(1

2
A)λ =

P for some A we have A ∈ A.

Finally we note that if P ∈ intAλ then 〈P, uut〉− (2λ)−1‖u‖2 < 2qλ(
1
2
A)(u)− (2λ)−1‖u‖2

:= h(u) where the dominating function h is concave. As h(0) = 0 we have 〈P, uut〉 −
(2λ)−1‖u‖2 < h(u) ≤ 0 for all u and so P <P(n) λ

−1I (in that I − λP ∈ intP(n)). Thus
we have A = 2(1

2
P )λ such that 2(1

2
A)λ = P and so A = 2(1

2
P )λ ∈ A by the previous

argument. Then

intAλ ⊆ {2(1
2
Q)λ | Q ∈ A and 2(

1

2
Q)λ is a quadratic form} − P(n) (40)

implying Aλ = (intAλ)
1 ⊆

(

{2(1
2
Q)λ | Q ∈ A and 2(

1

2
Q)λ is a quadratic form}− P(n)

)1

and as cl intAλ = Aλ by convexity and the fact that

cl {2(1
2
Q)λ | Q ∈ A and 2(

1

2
Q)λ is a quadratic form} − P(n)

is closed (since 0+ cl {2(1
2
Q)λ | Q ∈ A and 2(1

2
Q)λ is a quadratic form}∩P(n) = {0}) the

second equality follows.
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