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1. Introduction

The genesis of the material in this note can be found in the first author’s paper [2], where,
among other things, it was shown that weak Hadamard and Fréchet differentiability co-
incide for continuous convex functions on Asplund spaces. This was expanded upon by
the first author and M. Fabian in [3] where relationships between various forms of differ-
entiability for convex functions were connected with sequential convergence of the related
topologies in the dual space. In late 1993 whilst Simon Fitzpatrick was visiting Simon
Fraser University, he played a key role in producing the paper [5] – which among other
things connected boundedness properties of convex functions with sequential convergence
of related topologies in the dual space. A few years later, S. Simons [28] produced ex-
amples of continuous convex functions whose biconjugates are not continuous and asked

∗Research supported by NSERC and the Canada Research Chair Program.
†Research supported in part by Project BMF2002-01423 (Spain).
‡Research supported in part by the Generalitat Valenciana (Spain).

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



588 J. Borwein, V. Montesinos, J. Vanderwerff / Boundedness, Differentiability ...

which classes of Banach spaces admit such examples. The answer, as shown in [8], was
connected to sequential convergence in dual topologies and used techniques that had been
developed in [5].

Our goal is to more thoroughly understand how properties of convex functions on Ba-
nach spaces are connected to sequential convergence with respect to various topologies
in the dual space. To this end, the next two sections survey some of the key techniques
and results in this topic. In the final section of this note, we build on ideas of Simon
Fitzpatrick’s (from [5]) to develop a new characterization concerning extensions of convex
functions and use it to show that any continuous convex function on a Banach space Y
can be extended to a continuous convex function on a Banach space X for which X/Y is
separable. This answers a question implicitly found in [8, p. 1802].

We now introduce some of the notation that we will use in this article. We will work in real
Banach spaces X, whose unit ball and unit sphere are denoted by BX and SX respectively.
As in [22, p. 59] we say a bornology on X is a family of bounded sets whose union is all
of X, which is closed under reflection through the origin and under multiplication by
positive scalars, and the union of any two members of the bornology is contained in some
member of the bornology. We will denote a general bornology by β, but our attention
will focus on the following three bornologies: F the GÝateaux bornology of all finite sets;
W the weak Hadamard bornology of weakly compact sets; and B the Fréchet bornology
of all bounded sets. Given a bornology β on X, we will say a function f : X → R ∪ {∞}
is β-differentiable at x in the domain of f , if there is a φ ∈ X∗ such that for each β-set
S, the following limit exists uniformly for h ∈ S

lim
t→0

f(x+ th)− f(x)

t
= φ(h).

In particular, we say f is GÝateaux differentiable at x if β is the GÝateaux bornology.
Similarly for the weak-Hadamard and Fréchet bornologies. Also, given any bornology β on
X, by τβ we mean the topology on X∗ of uniform convergence on β-sets. In particular, τW
is the Mackey topology of uniform convergence on weakly compact sets, usually denoted
by µ(X∗, X) in the theory of locally convex spaces. Following [3], when we speak of the
Mackey topology on X∗, we will mean µ(X∗, X). Also, for ε ≥ 0, the ε-subdifferential of f
at x0 in the domain of f is defined by

∂εf(x0) := {φ ∈ X∗ : φ(x)− φ(x0) ≤ f(x)− f(x0) + ε, for all x ∈ X}.

When ε = 0 in the above, this is just the subdifferential of f at x0, and is denoted by
∂f(x0).

2. Canonical Examples

We begin with constructions of convex functions that seem to be central to connecting
their properties with linear topological properties in the dual. The following result is
essentially from [3, 5].

Proposition 2.1. Let {φn}∞n=1 ⊂ BX∗. Consider the functions from X into R ∪ {+∞}
that are defined as follows

f(x) := sup
n
{φn(x)−

1

n
, 0} g(x) := sup

n
(φn(x))

2n h(x) :=
∞
∑

n=1

(φn(x))
2n
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Then f , g and h are lower semicontinuous convex functions. Moreover

(a) f is β-differentiable at 0 if and only if φn →τβ 0 and, if this is the case, f is Lipschitz
on X.

(b) g and h are bounded on β-sets if and only if φn →τβ 0 and, if this is the case, both
functions are continuous.

Proof. It is clear that the functions are lower semicontinuous and convex as sums and
suprema of such functions. We outline the other implications.

(a) Because f(0) = 0, and f ≥ 0, the only possibility is that f ′(0) = 0 if f is differentiable
at 0. If φn 6→τβ 0, we can find a β-set W and infinitely many n such that wn ∈ W
and φn(wn) > 2. Then for such n, nf( 1

n
wn) ≥ 1 from which it follows that f is not

β-differentiable at 0.

Conversely, if φn →τβ 0, then f is Lipschitz since {φn} is bounded. Moreover, given any
ε > 0 and any β-set W , there is an n0 ∈ N such that φn(w) < ε for all n > n0 and
w ∈ W . Now for t sufficiently small, it follows that φn(tw)− 1

n
≤ 0 for all n ≤ n0 and all

w ∈ W . Hence for sufficiently small t we have f(tw)− f(0) ≤ ε|t| for all w ∈ W . Thus f
is β-differentiable at 0 with f ′(0) = 0.

(b) If φn →τβ 0, it is straightforward to check that g and h are bounded on β-sets. As
finite-valued lower semicontinuous convex functions, f and g are continuous (see e.g. [22,
Proposition 3.3]). Conversely, if φn 6→τβ 0, then we can find a β-set W such that φn(wn) >
2 for infinitely many n where wn ∈ W . Then neither g nor h is bounded on W .

We refer to the previous examples as “canonical" because they are natural constructions
that capture the essence of how convex functions can behave when comparing various
bornological notions of boundedness or differentiability. The next proposition follows
from combining results from [3, 5, 6].

Proposition 2.2. Let X be a Banach space. Then the following are equivalent.

(a) Mackey and norm convergence coincide sequentially in X∗.

(b) Every sequence of lower semicontinuous convex functions that converges to a con-
tinuous affine function uniformly on weakly compact sets converges uniformly on
bounded sets to the affine function.

(c) Every continuous convex function that is bounded on weakly compact subsets of X
is bounded on bounded subsets of X.

(d) Weak Hadamard and Fréchet differentiability agree for continuous convex functions.

Proof. (a) ⇒ (b): Suppose {fn} is a sequence of lower semicontinuous convex functions
that converges uniformly on weakly compact sets to some continuous affine function A.
By replacing fn with fn − A we may assume that A = 0. Now suppose fn does not
converge to 0 uniformly on bounded sets. Thus there are K > 0, {xk}k≥1 ⊂ KBX and
ε > 0 so that fnk

(xk) > ε for a certain subsequence {nk} of {n} (using convexity and
the fact that fnk

(0) → 0). Now let Ck := {x : fnk
(x) ≤ ε} and choose φk ∈ SX∗ such

that supCk
φk < φk(xk) ≤ K. We observe that φk do not converge to 0 in τW by (a).

Find a weakly compact set C ⊂ X so that supC φk > K for infinitely many k. We have
supC φk = φk(ck) for some ck ∈ C, and ck 6∈ Ck (so fnk

(ck) > ε) for infinitely many k,
which contradicts the uniform convergence to 0 of (fn) on C.
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Now (b) implies (d) follows because difference quotients are lower semicontinuous convex
functions, and (d) implies (a) follows from Proposition 2.1.

Finally, (c) implies (a) follows from Proposition 2.1, so we conclude by establishing (a)
implies (c). For this, we suppose (c) is not true. We can find then a continuous convex
function f that is bounded on weakly compact subsets of X and not bounded on all
bounded subsets of X. We may assume f(0) = 0 and we let {xn} be a bounded sequence
such that f(xn) > n, and let Cn := {x : f(x) ≤ n}. By the separation theorem, choose
φn ∈ SX∗ such that supCn

φn < φn(xn). Now choose K > 0 such that K > φn(xn) for all
n. If φn 6→τ W 0, then there is a weakly compact set W ⊂ X and infinitely many n such
that φn(wn) > K and wn ∈ W . In particular, wn 6∈ Cn for those n and so f is unbounded
on W . Thus (a) is not true when (c) is not true.

The Banach spaces for which (a) in the previous proposition is true are precisely those
that do not contain an isomorphic copy of `1 [3, 21]. We conclude this section with a
bornological extension of Proposition 2.2 that combines results from [3, 5, 6].

Theorem 2.3. Let X be a Banach space with bornologies β1 ⊂ β2. Then the following
are equivalent.

(a) τβ1 and τβ2 agree sequentially in X∗.

(b) Every sequence of lower semicontinuous functions on X that converge to a contin-
uous affine function uniformly on β1-sets, converges uniformly on β2-sets.

(c) Every continuous convex function on X that is bounded on β1-sets is bounded on
β2-sets.

(d) β1-differentiability agrees with β2-differentiability for continuous convex functions
on X.

(e) β1-differentiability agrees with β2-differentiability for equivalent norms on X.

Proof. The equivalence of (a) and (e) follows from [3, Theorem 1]. The equivalence
of (a), (b), (c) and (d) is proved by naturally modifying the proof of Proposition 2.2.
However, there is a subtlety in the proof of (a) ⇒ (b). While the fact that {φk} 6→ 0
in the norm topology was automatic, to show that {φk} 6→ 0 in the β2-topology one
should additionally show that eventually supCk

φk > δ > 0 for some δ > 0. For this,
let Fn := {x ∈ X : fk(±x) ≤ ε for all k ≥ n}. Since {fn} converges pointwise to 0,
⋃

n≥1 Fn = X. The Baire category theorem ensures that Fn̄ has nonempty interior for
some n̄ ∈ N , and because Fn̄ is a symmetric convex set, for some δ > 0 we have that
δBX ⊂ Fn̄. Consequently, for nk ≥ n̄, supCk

φk > δ.

In the next section we will delineate how this theorem applies in various classes of Banach
spaces. To avoid excessive redundancy, we will highlight only conditions (a), (c) and (d)
from Theorem 2.3 in our statements.

3. Characterizations of Various Classes of Spaces

In this section we provide a listing of various classifications of Banach spaces in terms
of properties of convex functions. Many of the implications follow from Theorem 2.3 or
dualization of the arguments upon which it is based. We will organize these results based
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upon when two of the following notions (GÝateaux, weak Hadamard or Fréchet) differ-
entiability coincide for continuous convex functions on a space, and then for continuous
weak∗-lower semicontinuous functions on the space.

First, we consider when GÝateaux and Fréchet differentiability coincide for continuous
convex functions.

Theorem 3.1. For a Banach space X, the following are equivalent.

(a) X is finite dimensional.

(b) Weak∗ and norm convergence coincide sequentially in X∗.

(c) Every continuous convex function on X is bounded on bounded subsets of X.

(d) GÝateaux and Fréchet differentiability coincide for continuous convex functions on
X.

Proof. The equivalence of (a) and (b) is the decidedly nontrivial Josefson-Nissenzweig
Theorem (see, for example, [11, p. 219]). The equivalence of (b) through (d) is a direct
consequence of Theorem 2.3 with the GÝateaux and Fréchet bornologies.

In particular, on every infinite dimensional Banach space there is a continuous convex
function that is unbounded on a ball and that assertion is equivalent to the Josefson-
Nissenzweig Theorem.

Next, we consider when GÝateaux and weak Hadamard differentiability coincide. As in [4],
we will say a Banach space possess the DP∗-property if weak∗ and Mackey convergence
(uniform convergence on weakly compact subsets ofX) coincide sequentially inX∗. Recall
that a Banach space is said to be a Grothendieck space if weak∗ and weak convergence
coincide sequentially in X∗. A Banach space is said to have the Dunford-Pettis property if
〈x∗

n, xn〉 → 0 whenever xn →w 0 and x∗
n →w 0. It is straightforward to verify that a Banach

space has the Dunford-Pettis property if and only if weak∗ and Mackey convergence agree
sequentially in X∗, so a space has DP∗-property if it is a Grothendieck space with the
Dunford-Pettis property. Hence the spaces `∞(Γ) for any index set Γ have the DP∗-
property as they are C(K) spaces for K Stonian and so Grothendieck (see [12, pp. 156,
179]) and they have the Dunford-Pettis property (see, for example, [13, Theorem 11.36]).
On the other hand, trivially every space with the DP∗-property has the Dunford-Pettis
property; however, there are spaces with the DP∗-property which are not Grothendieck,
such as `1 (every Grothendieck separable space is reflexive); see the remarks after Theorem
3.2.

Theorem 3.2. For a Banach space X, the following are equivalent.

(a) X has the DP∗-property.

(b) GÝateaux and weak Hadamard differentiability coincide for all continuous convex
functions on X.

(c) Every continuous convex function on X is bounded on weakly compact subsets of X.

Proof. This is a direct consequence of Theorem 2.3 using the GÝateaux and weak Hada-
mard bornologies.

Because `∞ has the DP∗-property, the previous theorem applies in spaces where the
relatively compact sets and relatively weakly compact sets form different bornologies.
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Recall that a subset L of a Banach space X is called limited if every weak∗-null sequence
in X∗ converges to 0 uniformly on L. Then RK ⊂ L ⊂ B, where RK is the collection of
the relatively compact subsets, L of the limited subsets and B of the bounded subsets. The
Josefson-Nissenzweig Theorem says that in infinite dimensional Banach spaces, L 6= B. A
Banach space is called Gelfand-Phillips if RK = L. If BX∗ is weak∗-sequentially compact,
then X is Gelfand-Phillips (for these results, see [11, p. 116, 224 and 238]), while `∞
is not Gelfand-Phillips. Moreover, for a given bornology β in X, τβ and weak∗ agree
sequentially if and only if β ⊂ L. In particular, a Banach space has property DP ∗ if and
only if W ⊂ L, where as before W denotes the bornology of weakly compact subsets of
X. If a Banach space is DP ∗ and Gelfand-Phillips (for example, the space `1) then it is
Schur, and every Schur space has the DP ∗ property.

We now turn to spaces where weak Hadamard and Fréchet differentiability coincide for
continuous convex functions. Analogous to the previous result, these are not the spaces
where the weak Hadamard and Fréchet bornologies coincide – but where the dual topolo-
gies they induce agree sequentially.

Theorem 3.3. For a Banach space X, the following are equivalent.

(a) X 6⊃ `1.

(b) Mackey and norm convergence coincide sequentially in X∗.

(c) Weak Hadamard and Fréchet differentiability coincide for continuous convex func-
tions on X.

(d) Every convex function on X bounded on weakly compact sets is bounded on bounded
sets.

Proof. See [3, Theorem 5] or [21] for the equivalence of (a) and (b). The equivalence of
(b) through (d) is in Proposition 2.2.

We now consider analogous situations for weak∗-lower semicontinuous convex functions.
Recall that a Banach space has the Schur property if its weakly convergent sequences
are norm convergent. Let us also recall that a function f is said to be supercoercive if

lim
‖x‖→∞

f(x)

‖x‖
= ∞, while f is said to be cofinite if its conjugate f ∗ is defined everywhere

on X∗; see [1, pp. 623,624]. A convex function is β-subdifferentiable if limt→0+
1
t
[f(x +

th)− f(x)] exists uniformly on h ∈ S, for every β-set S. For the bornology B of bounded
sets, this concept has been studied in, for example, [9, 14, 16].

Theorem 3.4. For a Banach space X, the following are equivalent.

(a) X has the Schur property.

(b) GÝateaux differentiability and Fréchet differentiability coincide for continuous weak∗-
lower semicontinuous convex functions on X∗.

(c) Each continuous weak∗-lower semicontinuous convex function on X∗ is bounded on
bounded subsets of X∗.

(d) Every proper lower semicontinuous cofinite convex function on X is supercoercive.

(e) GÝateaux differentiability and weak Hadamard differentiability agree for Lipschitz
functions on X.

(f) GÝateaux differentiability and weak Hadamard differentiability coincide for differences
of Lipschitz convex functions on X.
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(g) Every continuous convex function on X is weak Hadamard subdifferentiable.

Proof. The equivalence of (a) through (c) follows by dualizing the proof of Theorem 2.3
(see e.g. [4, Theorem 4.1]). See [1, Theorem 3.6] for the equivalence of the supercoercivity
assertion (e) with (c). It follows from the definitions involved that (a) implies each of (e),
(f) and (g) which also uses the local Lipschitzian property of continuous convex functions.
Also, (e) implies (f) is trivial, the more subtle results that (f) and (g) each imply (a) can
be found in [7, Proposition 8].

The conditions (e), (f) and (g) deal with concepts that are outside the main focus of
this note. However, we feel it is important to mention them, because they show the
sharpness of Theorem 2.3 in various senses. For example, it follows from Theorem 3.2
that GÝateaux and weak Hadamard differentiability agree for continuous convex functions
on `∞. However, these two notions of differentiability do not coincide even for differences
of Lipschitz convex functions on `∞ by (g) of the previous theorem. See [7] for further
results showing that continuous convex functions cannot be replaced by differences of
continuous convex functions in Theorem 2.3 and that differentiability cannot be replaced
with subdifferentiability – at least for certain important bornologies.

Theorem 3.5. For a Banach space X, the following are equivalent.

(a) X has the Dunford-Pettis Property.

(b) Weak and Mackey convergence coincide sequentially in X∗.

(c) GÝateaux differentiability and weak Hadamard differentiability coincide for continu-
ous weak∗-lower semicontinuous convex functions on X∗.

(d) Each continuous weak∗-lower semicontinuous convex function on X∗ is bounded on
weakly compact subsets of X∗.

Proof. This is a dualization of Theorem 2.3; see e.g. [4, Theorem 4.2].

Our last result regarding classes of differentiability for weak∗-lower semicontinuous func-
tions is as follows.

Theorem 3.6. For a Banach space X, the following are equivalent.

(a) Every sequence in X considered as a subset of X∗∗ that converges uniformly on
weakly compact subsets of X∗, converges in norm (i.e. Mackey convergence in X∗∗

agrees with norm convergence for sequences in X).

(b) Weak Hadamard and Fréchet differentiability coincide for continuous weak∗-lower
semicontinuous convex functions on X∗.

(c) Every weak∗-lower semicontinuous convex function on X∗ that is bounded on weakly
compact subsets of X∗ is bounded on bounded subsets of X∗.

Proof. We will sketch the proof of the equivalence of (a) and (c), because we have not
seen this theorem elsewhere in the literature. (a) ⇒ (c): Suppose that f : X∗ → R is
a convex and weak∗-lower semicontinuous function bounded on weakly compact subsets
of X∗. We may and do assume f(0) = 0. Suppose that f is unbounded on KBX∗ for
some K > 0. Let Cn := {x∗ : f(x∗) ≤ n}, a weak∗-closed subset of X∗, n ∈ N. Now
there are xn ∈ SX and x∗

n ∈ KBX∗ so that K ≥ xn(x
∗
n) > supCn

xn. From (a) it follows
that xn 6→τ W 0. Then find a weakly compact set W ⊂ X∗ such that supW xn > K for
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infinitely many n, and get that f is unbounded on W , a contradiction. To prove (c) ⇒
(a), apply Proposition 2.1 with functionals xn →τ W 0 but ‖xn‖ 6→ 0. The equivalence of
(a) and (b) follow similarly from dualization of Theorem 2.3.

Note that the previous theorem applies to spaces X such that X does not have the Schur
property and X∗ ⊃ `1: for example X = `1⊕ `2. So this provides information that cannot
be deduced from Theorem 3.4 or Theorem 3.3.

Finally, we will consider two further classes of spaces; first, Grothendieck spaces because
of their significance to the continuity of bi-conjugate functions, and second, dual spaces
with the Schur property.

Theorem 3.7. For a Banach space X, the following are equivalent.

(a) X is a Grothendieck space.

(b) For each continuous convex function f on X, every weak∗-lower semicontinuous
convex extension of f to X∗∗ is continuous.

(c) For each continuous convex function f on X, f ∗∗ is continuous on X∗∗.

(d) For each continuous convex function f on X, there is at least one weak∗-lower
semicontinuous convex extension of f to X∗∗ that is continuous.

(e) For each Fréchet differentiable convex function f on X, there is at least one weak∗-
lower semicontinuous convex extension of f to X∗∗ that is continuous.

Proof. This proof again uses many ideas from Theorem 2.3 working with weak and weak∗

topologies in X∗. The details are available in [8, Theorem 2.1].

Other characterizations of Grothendieck spaces concerning weak∗-lower semicontinuous
convex extensions that preserve points of GÝateaux differentiability are given in [15]. For
further information on Grothendieck spaces and related spaces, see [11, 12, 17].

Theorem 3.8. For a Banach space X, the following are equivalent.

(a) X∗ has the Schur property.

(b) X 6⊃ `1 and X has the Dunford-Pettis property.

(c) If f : X → R is a continuous convex function such that f ∗∗ is continuous, then f is
bounded on bounded sets.

Proof. See [11, p. 212] for the equivalence of (a) and (b). See [8, Proposition 2.4] for the
equivalence of (a) and (c) which uses Theorem 3.4 and ideas as needed in Theorem 3.7.

4. Extension of Convex Functions

We now consider the question of extending convex functions to preserve continuity:

Question 4.1. Suppose Y is a closed subspace of a Banach space X. If f : Y → R is a
continuous convex function, is there a continuous convex function f̃ : X → R such that
f̃ |Y = f? That is can f be extended to a continuous convex function on X?

First, we present an example showing that such extensions are not always possible.
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Example 4.2. Let Y = c0 or `p with 1 < p < ∞. Let f : Y → R be defined by
f(y) =

∑∞
n=1(e

∗
n(y))

2n where e∗n are the coordinate functionals. If Y is considered as a
subspace of `∞, then f cannot be extended to a continuous convex function on `∞.

Proof. Because e∗n →w∗ 0, Example 2.1 shows that f is a continuous convex function.
However, f is not bounded on the weakly compact set {2en}∞n=1 ∪{0}. Now `∞ is a space
with the DP∗-property and so Theorem 3.2 shows every continuous convex function on
`∞ is bounded on weakly compact subsets of `∞. Therefore, f cannot be extended to a
continuous convex function on `∞.

We refer the reader to [8, Theorem 2.3] for a more general formulation of Example 4.2:
such examples exist whenever we consider an extension from a Gelfand-Phillips space that
is not Schur, to a superspace with the DP∗-property. We should also point out that in
the case Y = c0, the preceding provides an example of a continuous convex function f
whose biconjugate fails to be continuous; see [28]. Before proceeding, observe that there
are natural conditions that can be imposed on f that allow it to be extended to any
superspace. For example, if f is Lipschitz (just consider an infimal convolution with an

appropriate multiple of the norm on X, i.e., ˜f(x) := inf{f(y) + (L+ 1)‖y − x‖; y ∈ Y },
where L is the Lipschitz constant of f). More generally, the extension can be done if f is
bounded on bounded sets (see for example [8, p. 1801]). However, our present goal is to
find conditions on X and/or Y for which every continuous convex function on Y can be
extended to a continuous convex function on X. A well-known natural condition where
this is true is recorded as

Remark 4.3. Suppose Y is a complemented subspace of a Banach space X. Then every
continuous convex function on Y can be extended to a continuous convex function on X.

Proof. Let f : Y → R be continuous and convex. Then f̃(x) := f(P (x)), where P :
X → Y is a continuous linear projection, is one such extension.

In light of Example 4.2, the above remark doesn’t extend to quasicomplements because
c0 is quasicomplemented in `∞; see [13, Theorem 11.42].

We were not aware of any existing result in the literature providing a positive answer to
Question 4.1 even in the case X is separable when no additional restrictions are placed on
the continuous convex function f and the closed subspace Y ; this is why we consider that
Corollary 4.10 below may have some interest. To address this, we will consider ‘generalized
canonical’ examples which will allow us to, in some respects, capture the essence of all
convex functions on the space. In this section, all nets {φn,α}α∈An,n∈N, where An are
nonempty sets, are directed by (n, α) ≤ (m,β) if and only if n ≤ m. Thus, φn,α →w∗ 0 if
for each ε > 0 and x ∈ X, there exists n0 ∈ N such that |φn,α(x)| < ε whenever α ∈ An

and n ≥ n0.

Proposition 4.4. Let {φn,α} ⊂ X∗ be a bounded net. Consider the lower semicontinuous
convex functions f : X → R ∪ {∞} that are defined as follows

f(x) := sup
n,α

{φn,α(x)− an,α, 0} and g(x) := sup
n,α

n(φn,α(x))
2n

where bn ≤ an,α ≤ cn and bn ↓ 0, cn ↓ 0. Then
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(a) f is β-differentiable at 0 if and only if φn,α →τβ 0. If this is the case, f is Lipschitz
on X.

(b) g is bounded on β-sets if and only if φn,α →τβ 0. If this is the case, g is continuous.

Proof. Follow the details of the proof of Proposition 2.1.

We include the following fact for completeness, as we will have occasion to use it in what
follows.

Lemma 4.5. Let Y be a closed subspace of a Banach space X, and let ε ≥ 0. Suppose
f : Y → R is continuous and convex, and suppose f̃ : X → R is a continuous convex
extension of f . If φ ∈ ∂εf(y0), then there is an extension φ̃ ∈ X∗ of φ such that φ̃ ∈
∂εf̃(y0).

Proof. By shifting f , we may without loss of generality assume that f(0) = −1. Let
φ ∈ ∂εf(y0) and let a := φ(y0)−f(y0)+ε. Then f(y)−f(y0)+ε ≥ φ(y−y0) for all y ∈ Y .
In particular, f(0) − f(y0) + ε ≥ −φ(y0), so a ≥ 1. Moreover, considering (φ,−1) as an
element of (Y ×R)∗ we have (φ,−1)(y, t) = φ(y)−t ≤ φ(y)−f(y) ≤ a for all (y, t) ∈ epi f .
Now define the continuous sublinear function ρ : X × R → [0,∞) by ρ := aµepi f̃ where

µepi f̃ is the Minkowski functional of the epigraph of f̃ . Then (φ,−1) ≤ ρ on Y × R.
According to the Hahn-Banach theorem, (φ,−1) extends to a continuous linear functional
(φ̃,−1) on X × R that is dominated by ρ. Therefore, (φ̃,−1)(x, t) ≤ a if (x, t) ∈ epi f̃
which implies φ̃ ∈ ∂εf̃(y0).

Corollary 4.6. Suppose Y is a closed subspace of a Banach space X. Suppose f : Y → R
and g : X → R are continuous convex functions such that f ≤ g|Y . If, for some ε ≥ 0
we have φ ∈ ∂εf(y0) then φ can be extended to a continuous linear functional φ̃ such that
f(y0) + φ̃(x− y0) ≤ g(x) + ε for all x ∈ X.

Proof. Let φ ∈ ∂εf(y0). Then φ ∈ ∂rg|Y (y0) where r := g(y0) − f(y0) + ε. Apply
Lemma 4.5 to obtain φ̃ such that

φ̃(x)− φ̃(y0) ≤ g(x)− g(y0) + g(y0)− f(y0) + ε, for all x ∈ X,

from which the conclusion is immediate.

Lemma 4.7. Let Y be a closed subspace of X, and suppose f : Y → R and g : X → R are
continuous convex functions such that f ≤ g|Y . Then f can be extended to a continuous
convex function f̃ : X → R such that f̃ ≤ g.

Proof. For each y ∈ Y , choose φy ∈ ∂f(y). Let φ̃y be an extension as given by the
Corollary 4.6. Now define f̃(x) := supy∈Y f(y) + φ̃y(x− y) for x ∈ X.

The following theorem provides a useful condition for determining when every continuous
convex function on a given subspace of a Banach space can be extended to the whole
space.

Theorem 4.8. Suppose Y is a closed subspace of a Banach space X. Then the following
are equivalent.
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(a) Every continuous convex function f : Y → R can be extended to a continuous convex
function f̃ : X → R.

(b) Every bounded net {φn,α} ⊂ Y ∗ that converges weak∗ to 0 can be extended to a
bounded net {φ̃n,α} ⊂ X∗ that converges weak∗ to 0.

Proof. (a) ⇒ (b). Suppose {φn,α} is a bounded net in Y ∗ that converges weak∗ to 0, and
without loss of generality suppose ‖φn,α‖ ≤ 1 for all n, α. Now define

f(y) := sup
n,α

(φn,α(y))
2n.

Then f : Y → R is a continuous convex function (as in Proposition 4.4), so we extend
it to a continuous convex function f̃ : X → R. Now let Cn := {x ∈ X : f̃(x) ≤ 22n}.
Observe that f̃(0) = 0, and so the continuity of f̃ at 0 implies that there is an ε > 0 so
that f̃(x) ≤ 1 for all ‖x‖ ≤ ε. Then

εBX ⊂ Cn and Cn ∩ Y ⊂ {x : φn,α(x) ≤ 2}.

Define the sublinear function pn := 2µCn . Then φn,α(y) ≤ pn(y) for all y ∈ Y . By the
Hahn-Banach theorem, extend φn,α to φ̃n,α so that φ̃n,α(x) ≤ pn(x) for all x ∈ X. Then
‖φ̃n,α‖ ≤ 2/ε. Now let us suppose that {φ̃n,α} does not converge weak∗ to 0. Then we
can find x0 ∈ X, a subsequence {nk} of {n} and a sequence (αk) such that φ̃nk,αk

(x0) > 2
for all k. Thus x0 6∈ Cn for infinitely many n, and so f̃(x0) > 22n for infinitely n. Thus
f̃(x0) = ∞ which contradicts the continuity of f̃ .

(b) ⇒ (a): Suppose f : Y → R is a continuous convex function. Without loss of generality
we may assume f(0) = 0. Now define Cn := {y ∈ Y : f(y) ≤ n}. Because f is continuous,
there is a δ > 0 such that δBY ⊂ Cn for each n ∈ N. Thus we can write

Cn =
⋂

α

{y ∈ Y : φn,α(y) ≤ 1}

where ‖φn,α‖ ≤ 1/δ for all n ∈ N and α ∈ An (An can be chosen as a set with cardinality
the density of Y ). Also, {φn,α} converges weak∗ to 0, otherwise there would be a y0 ∈
Y , a subsequence {nk} of {n} and a sequence {αk} such that φnk,αk

(y0) > 1 for all
k. Consequently, y0 6∈ Cn for infinitely many n which would yield the contradiction
f(y0) = ∞. Thus, by the hypothesis of (b), {φn,α} extends to a bounded net {φ̃n,α} ⊂ X∗

that converges weak∗ to 0. Now define

g(x) := supn(φ̃n,α(x))
2n + 1.

Then g : X → R is a continuous convex function (Proposition 4.4). Moreover, g(y) ≥ f(y)
for all y ∈ Y ; this is because g(x) ≥ 1 for all x ∈ X, and if n−1 < f(y) ≤ n where n ≥ 2,
then y 6∈ Cn−1 and so φn−1,α0(y) > 1 for some α0 which implies g(y) > (n− 1)+1 ≥ f(y).
According to Lemma 4.7, there is a continuous convex extension f̃ : X → R of f .

We now show that Theorem 4.8(b) is satisfied when X/Y is separable. This is a direct
consequence of a theorem of Rosenthal’s [26] as we now outline for completeness. Recall
that a Banach space X is said to be injective if for each superspace Z of X, there is a
continuous linear projection mapping Z onto X; in the event that there is a norm 1 linear
projection from Z onto X for each superspace Z, then X is said to be 1-injective; see
Zippin’s article [31] and [20, Section 2.f] for further information concerning this subject.
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Theorem 4.9. Let X be a Banach space, Y a closed subspace such that X/Y is separable.
Let {φn,α}α∈An,n∈N be a weak∗-null net in Y ∗ such that ‖φn,α‖ ≤ 1 for all α ∈ An, n ∈ N .
Then, for every ε > 0 there exists a weak∗-null net {φ̃n,α}α∈An,n∈N of elements in X∗ such
that ‖φ̃n,α‖ ≤ 2 + ε and φ̃n,α extends φn,α for all α ∈ An, n ∈ N.

Proof. Define a bounded linear operator T : Y → (
∑∞

n=1 `∞(An))c0 by T (y) :=
({φn,α(y)}α∈An)n; then ‖T‖ ≤ 1. Now using the following extension theorem of H.
P. Rosenthal (see [26]): Let Z1, Z2, . . . be 1-injective Banach spaces, X, Y be Banach
spaces with Y ⊂ X and X/Y separable, and set Z := (

∑∞
i=1 Zi)c0. Then for every

non-zero operator T : Y → Z and every ε > 0, there exists ÝT : X → Z extend-
ing T with ‖ ÝT‖ < (2 + ε)‖T‖. According to this result, T defined above extends to
ÝT : X → (

∑∞
n=1 `∞(An))c0 with ‖ ÝT‖ < 2 + ε. Now let e∗n,α denote the coordinate func-

tional so that e∗n,α(x) := xα for x = (xi)i∈An ∈ `∞(An). Then e∗n,α(T (y)) = φn,α(y) for

all y and φ̃n,α = e∗n,α ◦ ÝT extends φn,α. Because ÝT (x) ∈ (
∑∞

n=1 `∞(An))c0 , it follows that

φ̃n,α →w∗ 0; moreover, ‖φ̃n,α‖ ≤ 1‖ ÝT‖ < 2 + ε.

Our main application of Theorem 4.8 is

Corollary 4.10. Suppose X is a Banach space and Y is a closed subspace of X such that
X/Y is separable. Then every continuous convex function f : Y → R can be extended to
a continuous convex function f̃ : X → R.

Proof. Apply Theorem 4.8 and Theorem 4.9.

Observe that Example 4.2 shows the previous corollary can fail if X/Y is not separable,
it also shows it is not always possible to extend a continuous convex function from a
separable closed subspace of a Banach space X to a continuous convex function on the
whole space X. The following result provides a condition on X for which the latter is
always possible.

Corollary 4.11. Suppose Y is a separable closed subspace of a Banach space X, where
X has a countably norming M-basis. Then every continuous convex function on Y can
be extended to a continuous convex function on X.

Proof. There is a separable subspace Y1 of X such that Y ⊂ Y1 and Y1 is complemented
in X; see [23]. Extend the continuous convex function to Y1 by Theorem 4.10 and then
use Remark 4.3 to extend it to X.

Clearly, if Y is an injective Banach space, then any continuous convex function can be
extended to any superspace according to Remark 4.3. Another class of spaces that allow
extensions to superspaces is as follows.

Proposition 4.12. Suppose Y is a C(K) Grothendieck space. Then any continuous con-
vex function f : Y → R can be extended to a continuous convex function f : X → R where
X is any superspace of Y .

Proof. Write Y ⊂ X. Then Y ∗∗ ∼= Y ⊥⊥ ⊂ X∗∗. According to [8, Theorem 2.1] (cf.
Theorem 3.7), f can be extended to a continuous convex function on Y ∗∗. Now, Y ∗∗ as
the bidual of a C(K) space is isomorphic to a C(K) space where K is compact Stonian
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(i.e. K is extremely disconnected); see [27, p. 121]. Therefore, Y ∗∗ is injective; see [27,
Theorem 7.10, p. 110]. According to Remark 4.3 the extension of f to Y ⊥⊥ can further
be extended to X∗∗ which contains X.

Observe that the previous proposition doesn’t work for general C(K) spaces, e.g. c0 ⊂ `∞,
and doesn’t work for reflexive Grothendieck, e.g. `2 ⊂ `∞. More significantly, using some
deep results in Banach space theory one can conclude that the above proposition applies
to some cases where Y is not a complemented subset of X.

Remark 4.13. There are Grothendieck C(K) spaces that are not injective.

Proof. Let X be Haydon’s Grothendieck C(K) space that does not contain `∞ [17].
Because X 6⊃ `∞, X is not injective by a theorem of Rosenthal’s ([24], or [20, Theorem
2.f.3]).

We have focused on preserving continuity in our extensions. One could similarly ask
whether extensions exist preserving a given point of differentiability. Again, negative
examples in the same spirit of Example 4.2 have been constructed. We sketch one such
example similar to [4, Example 3.8].

Example 4.14. Let Y = c0 or `p with 1 < p < ∞. Let f : Y → R be defined by
f(y) := sup{e∗n(y) − 1

n
, 0} where e∗n are the coordinate functionals. Then there is no

continuous convex extension of f to `∞ that preserves the GÝateaux differentiability of f
at 0.

Proof. This follows because GÝateaux and weak Hadamard differentiability coincide for
continuous convex functions on `∞ (see Theorem 3.2); cf. Example 4.2.

A positive result that is analogous to Theorem 4.8 is as follows.

Theorem 4.15. Suppose Y is a closed subspace of a Banach space X. Then the following
are equivalent.

(a) Every Lipschitz convex function f : Y → R that is GÝateaux differentiable at some
y0 ∈ Y can be extended to a Lipschitz convex function f̃ : X → R that is GÝateaux
differentiable at y0.

(b) Every bounded net {φn,α} ⊂ Y ∗ that converges weak∗ to 0 can be extended to a
bounded net {φ̃n,α} ⊂ X∗ that converges weak∗ to 0.

Proof. (a) ⇒ (b): Let {φn,α} ⊂ Y ∗ be a bounded net that converges weak∗ to 0. Define
f(x) := sup{φn,α(x) − 1

n
, 0}. Then f is a Lipschitz convex function that, according to

Proposition 4.4, is GÝateaux differentiable at 0 (observe, too, that f(0) = 0 and f(y) ≥ 0 for
all y ∈ Y , so f ′(0) = 0). Then extend f to a Lipschitz convex function f̃ that is GÝateaux
differentiable at 0 with GÝateaux derivative f̃ ′(0) = φ, where φ ∈ X∗. Now φ|Y = f ′(0)
which implies φ|Y = 0. Thus f̃ −φ is a Lipschitz convex function extending f , and whose
GÝateaux derivative is 0. Replacing f̃ with f̃ − φ, we can and do assume f̃(x) ≥ 0 for all
x ∈ X and f̃ ′(0) = 0. Clearly φn,α ∈ ∂ 1

n
f(0), thus by Lemma 4.5 there is an extension

φ̃n,α ∈ X∗ of φn,α such that φ̃n,α ∈ ∂ 1
n
f̃(0). Thus ‖φ̃n,α‖ ≤ K + 1/n, where K is the

Lipschitz constant for f̃ . Moreover, f̃(x) ≥ g(x), where g(x) = supn,α{φ̃n,α(x) − 1
n
, 0}.
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The GÝateaux differentiability of f̃ at 0 now forces the GÝateaux differentiability of g at 0.
Use again Proposition 4.4 to obtain the weak∗ convergence of {φ̃n,α} to 0.

(b) ⇒ (a): By subtracting off a derivative and translating f , we need only to consider
the case where f ′(0) = 0 and f(0) = 0. For each u ∈ Y , fix φu ∈ ∂f(u), and define
ak,u := φu(u) − f(u) + 1

k
. Then, using properties of subgradients, it follows that f(y) =

sup{φk,u(y)−ak,u, 0 : u ∈ Y, k ∈ N}. Now, from the fact that f is Lipschitz (with Lipschitz
constant L) we have 1/k ≤ ak,u ≤ 2L‖u‖+ 1/k for every k ∈ N and u ∈ Y . Put

An := {(k, u) : k ∈ N, u ∈ Y, such that
1

n
≤ ak,u <

1

n− 1
}

for n = 2, 3, . . . and

A1 := {(k, u) : k ∈ N, u ∈ Y, such that 1 ≤ ak,u}.

It is plain that (n, 0) ∈ An and so An is nonempty, for every n ∈ N. Moreover,
N × Y =

⋃∞
n=1 An. To each (n, (k, u)) ∈ {n} × An we associate ψ(n,(k,u)) := φu and

b(n,(k,u)) := ak,u. Then f(y) = sup{ψ(n,(k,u))(y)− b(n,(k,u)), 0 : (n, (k, u)) ∈
⋃∞

n=1{n} × An}.
According to Proposition 4.4, ψ(n,(k,u)) →w∗ 0 because f is GÝateaux differentiable at 0.
The Lipschitz property of f guarantees that {ψ(n,(k,u))} is bounded. According to (b),

we can extend {ψ(n,(k,u))} to a bounded net {ψ̃(n,(k,u))} that converges weak∗ to 0. Then

f̃(x) = sup{ψ̃(n,(k,u))(x) − b(n,(k,u)), 0} is a convex Lipschitz function that is GÝateaux dif-

ferentiable at 0 by Proposition 4.4, and f̃ extends f .

Let us remark that in contrast to this, Zizler ([32]) has shown that extensions of GÝateaux
differentiable norms from a subspace of a separable space to a GÝateaux differentiable norm
on the whole space are not always possible.

Finally, let us conclude by stating a bornological version that combines Theorems 4.8 and
4.15.

Theorem 4.16. Suppose Y is a closed subspace of a Banach space X. Then the following
are equivalent.

(a) Every continuous convex function f : Y → R bounded on β-sets can be extended to
a continuous convex function f̃ : X → R that is bounded on β-sets in X.

(b) Every Lipschitz convex function f : Y → R that is β-differentiable at some point y0
can be extended to a Lipschitz convex function f : X → R that is β-differentiable at
y0.

(c) Every bounded net {φn,α} ⊂ Y ∗ that converges τβ to 0 can be extended to a bounded
net {φ̃n,α} ⊂ X∗ that converges τβ to 0.

Let us mention that if β is the bornology of bounded sets, then (c) is always possible
according to the Hahn-Banach theorem. Thus this recaptures the results: (i) a convex
function that is bounded on bounded sets can always be extended to a convex function
bounded on bounded sets; (ii) Lipschitz convex functions can be extended to a superspace
while preserving a point of Fréchet differentiability.
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[23] A. N. Pličko: On projective resolutions of the identity operator and Markuševič bases, Sov.
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[29] M. Valdivia: Fréchet spaces with no subspaces isomorphic to `1, Math. Jap. 38 (1993)
397–411.
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