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We show that if a Banach spaceX is weakly compactly generated and C, Cn are weak-star-closed bounded
convex nonempty subsets of the dual space X∗, then the support functionals δ∗Cn

converge to δ∗C pointwise
on X if and only if the sequence (Cn) is uniformly bounded with weak-star limit C.

Author’s note. The authors were visiting Dalhousie University in 1988 during a seventeen-day labor
dispute that left the Mathematics Department empty. During this period they occupied themselves writ-
ing the present paper, on a natural topic in variational analysis known elsewhere as “scalar convergence”
[22, 16, 4, 17, 3, 18]. Although referenced in the literature [19, 2], this work was never published. The
second author reproduces the 1988 manuscript here, essentially unedited, in tribute to the insightful and
elegant mathematical vision of Simon Fitzpatrick: it was a privilege to work with Simon.
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1. Introduction

In any normed space it is possible to define various types of convergence for sequences
of convex sets (see for example [16] for a review in the finite-dimensional case). One
particularly useful idea was introduced in [12]. A sequence of sets (Cn) converges Mosco
to a set C in a normed space E if

for each x ∈ C there exist, for large n, xn ∈ Cn,
such that xn converges in norm to x,

(1)

and
for any subsequence xnj

∈ Cnj
with

xnj
converging weakly to x, x ∈ C.

(2)

Another way of expressing this is

weak- lim supCn ⊂ C ⊂ strong- lim infCn. (3)

In [13] this notion of convergence is related to the convergence of the corresponding
support functionals,

δ∗Cn
(x∗) = sup{〈x∗, x〉 : x ∈ Cn} (x∗ ∈ E∗).
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If F is a normed space and f, fn : F → [−∞,+∞], then we say fn converges Mosco to f
if for each x ∈ F ,

lim sup fn(xn) ≤ f(x) ≤ lim inf fnj
(yj) as n, j → ∞

for some sequence xn converging to x in norm, and for any sequence yj converging weakly
to x and any subsequence (fnj

). It is shown in the above paper that if E is reflexive and
C and all Cn are closed, convex and nonempty, then Cn converges Mosco to C if and only
if δ∗Cn

converges Mosco to δ∗C .

Unfortunately δ∗Cn
can converge pointwise to δ∗C without necessarily converging Mosco.

For example, take E = l2, Cn = {en} (the nth unit vector), and C = {0}. Then
δ∗Cn

(x∗) = (x∗)n and δ∗C(x
∗) = 0 for all x∗ ∈ l2, so clearly δ∗Cn

→ δ∗C pointwise. However,
the sequence (−en) converges to 0 weakly, and δ∗Cn

(−en) = −1 for all n, so

0 = δ∗Cn
(0) > lim inf δ∗Cn

(−en) = −1,

and thus δ∗Cn
does not converge Mosco to δ∗C . It is also easy to see that Cn does not

converge Mosco to C (since en does not converge to 0 in norm). The question of when
δ∗Cn

→ δ∗C pointwise thus remains open. This type of convergence is called ∗-convergence
in [16], where it is shown that in finite dimensions, when C and all Cn are compact, convex
and nonempty, it coincides with classical Kuratowski convergence:

lim supCn ⊂ C ⊂ lim infCn.

Our purpose here is to generalize this result to the infinite-dimensional case.

It is worth remarking that convergence of support functionals is closely connected with
another type of convergence introduced in [21, 22]. We define d(x,C) = inf{‖x− c‖ : c ∈
C} (and d(x, ∅) = +∞). Then Cn converges Wijsman to C if d(·, Cn) → d(·, C) pointwise.
In [5] it is shown that Mosco and Wijsman convergence coincide for sequences of convex
sets if and only if the underlying space is reflexive with the dual norm having the Kadec
property.

Consider the conjugate of the distance function:

d∗(x∗, C) = sup
x∈E

{〈x∗, x〉 − d(x,C)} = sup
x∈E

{

〈x∗, x〉 − inf
y∈C

‖x− y‖
}

= sup
y∈C, x∈E

{〈x∗, x〉 − ‖x− y‖} = sup
y∈C, z∈E

{〈x∗, y + z〉 − ‖z‖}

= sup
y∈C

{

〈x∗, y〉+ sup
z∈E

{〈x∗, z〉 − ‖z‖}
}

.

Now it is easy to check that

sup
z∈E

{〈x∗, z〉 − ‖z‖} =

{

0 (‖x∗‖ ≤ 1)
+∞ (otherwise)

= δB∗(x∗),

the indicator function of B∗, the unit ball in E∗. Thus

d∗(x∗, C) = δ∗C(x
∗) + δB∗(x∗) (x∗ ∈ E∗).

Since δ∗C is always positively homogeneous it follows that δ∗Cn
→ δ∗C pointwise if and only

if d∗(·, Cn) → d∗(·, C) pointwise on B∗.
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2. Weak-star convergence

Throughout the remainder of this paper X will be a Banach space and C and Cn (n =
1, 2, . . .) will be weak-star-closed, bounded, nonempty, convex subsets of the dual space
X∗. We say Cn converges weak-star to C if

w∗- lim supCn ⊂ C ⊂ w∗- lim infCn,

where the weak-star semilimits are taken in the sequential sense. More precisely, we make
the following definition.

Definition 2.1. The sequence of sets Cn converges weak-star to C if

for each x∗ ∈ C there exist, for large n, x∗
n ∈ Cn,

such that x∗
n converges weak-star to x∗,

(4)

and

if, for some subsequence x∗
nj

∈ Cnj
,

x∗
nj

converges weak-star to x∗, then x∗ ∈ C.
(5)

We shall also need the following definition.

Definition 2.2. The Banach spaceX is weakly compactly generated (WCG) if there exists
a weakly compact subset of X whose linear span is dense in X.

In particular, if X is either separable or reflexive then it is WCG (see for example [7]).
We shall need the following two properties of WCG spaces.

Theorem 2.3 (Amir and Lindenstrauss [1]). If the Banach space X is a subspace of
a WCG space then the unit ball in X∗ is weak-star sequentially compact.

Theorem 2.4 (Davis, Figiel, Johnson and Pelczynski [6]). A Banach space X is
WCG if and only if there is a reflexive space Y and a one-to-one continuous linear operator
T : Y → X with T (Y ) dense in X.

We are now ready to proceed with one direction in our main result.

Theorem 2.5. Suppose that X is WCG. Suppose further that the Cn are uniformly
bounded and converge weak-star to C. Then δ∗Cn

→ δ∗C pointwise on X.

Proof. Suppose for some x ∈ X, δ∗Cn
(x) 6→ δ∗C(x). Then for some ε > 0, and for some

subsequence (ni), either

δ∗Cni
(x)− δ∗C(x) > ε for each i (6)

or

δ∗C(x)− δ∗Cni
(x) > ε for each i. (7)

Suppose first that (6) holds. Then there exist x∗
ni

∈ Cni
for each i satisfying

〈x∗
ni
, x〉 > ε+ δ∗C(x). (8)
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Now by assumption ∪iCni
is bounded, and by Theorem 2.3, any closed bounded set in

X∗ is weak-star sequentially compact. Thus there exists a subsequence x∗
nij

converging

weak-star to some x∗
∞, and by (5), x∗

∞ ∈ C. However, from (8),

〈x∗
∞, x〉 = lim

j
〈x∗

nij
, x〉 ≥ ε+ δ∗C(x),

so x∗
∞ 6∈ C, which is a contradiction.

On the other hand, suppose (7) holds. Then for some x∗ ∈ C,

〈x∗, x〉 > ε+ δ∗Cni
(x) for each i. (9)

By (4) there exists a sequence x∗
n ∈ Cn such that x∗

n converges weak-star to x∗. But then

〈x∗
ni
, x〉 ≤ δ∗Cni

(x) < 〈x∗, x〉 − ε for each i,

which gives a contradiction as i → ∞.

Notice that in fact this result will hold whenever the unit ball in X∗ is weak-star sequen-
tially compact—for example if X is a subspace of a WCG space, or is smoothly normed
or is a weak Asplund space (see [8]).

The following example shows that uniform boundedness of the Cn is necessary in Theorem
2.5.

Example 2.6. Let X = l2, C = {0}, and Cn = {λen : 0 ≤ λ ≤ n}, where en is the nth
unit vector. X is reflexive, so it is certainly WCG. We claim Cn converges weak-star (in
fact Mosco) to C.

Certainly (4) holds, since 0 ∈ Cn for each n. Suppose the sequence (λni
eni

) is weak-star
(and so weakly) convergent. It follows from the uniform boundedness principle [10, p. 135]
that the sequence is bounded in norm, and so (λni

) is a bounded sequence. Thus clearly
λni

eni
converges weak-star to 0, as required. So Cn converges weak-star to C. Clearly

δ∗C(x) = 0 for all x ∈ l2. On the other hand,

δ∗Cn
(x∗) = sup{〈x, λen〉 : 0 ≤ λ ≤ n} = max{nxn, 0}.

Thus if we define x ∈ l2 by xn = 1/n, then δ∗C(x) = 0, whereas δ∗Cn
(x) = 1, for all n. Thus

δ∗Cn
6→ δ∗C pointwise.

Theorem 2.5 can also fail if the unit ball in X∗ fails to be weak-star sequentially compact.

Example 2.7. Consider the subsets of l1 defined by C = {0}, and Cn = {λen : −1 ≤
λ ≤ 1} for each n, where en is the nth unit vector. Then C and Cn are nonempty, convex,
uniformly bounded, and both norm and weak-star closed (regarding l1 as the dual of c0).
It is easily checked that δ∗C(x) = 0 and δ∗Cn

(x) = |xn|, for all x ∈ l∞. Thus δ∗Cn
→ δ∗C

pointwise on c0 but not on l∞. It follows from Theorem 2.5 (since c0 is WCG) that Cn

converges weak-star to C in l1, and this may easily be checked directly.

Suppose some subsequence of (λnen)
∞
1 converges weakly in l1, where −1 ≤ λn ≤ 1 for

each n. Denote the subsequence by (λni
eni

), and define x ∈ l∞ by

xn =

{

(−1)isign(λni
), (n = ni)

0, (otherwise).



S. Fitzpatrick, A. S. Lewis / Weak-Star Convergence of Convex Sets 715

Then 〈x, λni
eni

〉 = (−1)i|λni
| for each i. Since this sequence is convergent, λni

→ 0, so
the subsequence converges to 0. Thus Cn → C weakly (in fact Mosco) in l1. However, as
we saw, δ∗Cn

6→ δ∗C pointwise on l∞. Thus Theorem 2.5 can fail in the weak case.

Now regard the sets C and Cn (n = 1, 2, . . .) as subsets of l∗∞. Thus they are nonempty,
convex, uniformly bounded, and weak-star closed. If any subsequence of (λnen)

∞
1 con-

verges weak-star in l∗∞, where −1 ≤ λn ≤ 1 for each n, then the same argument shows it
converges to 0. Thus Cn → C weak-star in l∗∞, and yet as we know, δ∗Cn

6→ δ∗C pointwise
on l∞. Thus Theorem 2.5 fails in this case, precisely because the unit ball in l∗∞ is not
weak-star sequentially compact.

3. The reflexive case

We now turn our attention to the converse of Theorem 2.5. The first step is an easy
application of the uniform boundedness principle.

Proposition 3.1. Suppose δ∗Cn
→ δ∗C pointwise on X. Then the Cn are uniformly

bounded.

Proof. For any x ∈ X, δ∗Cn
(x) → δ∗C(x), so (δ∗Cn

(x)) is a bounded sequence, and thus

sup{〈x∗, x〉 : x∗ ∈ ∪nCn} = sup
n

δ∗Cn
(x) < +∞.

The uniform boundedness principle then implies that ∪nCn is bounded in X∗ [10, p. 135]

Checking the second half (5) of the definition of weak-star convergence follows from the
Hahn-Banach Theorem.

Proposition 3.2. Suppose δ∗Cn
→ δ∗C pointwise on X. If, for some subsequence x∗

nj
∈

Cnj
, x∗

nj
→ x∗ weak-star, then x∗ ∈ C.

Proof. Suppose x∗ 6∈ C. Then by the Hahn-Banach Theorem [10, p. 64], we can strongly
separate x∗ from C: there exists x ∈ X and ε > 0 with 〈x∗, x〉 > δ∗C(x) + ε. However,
〈x∗

nj
, x〉 ≤ δ∗Cnj

(x) for each j, and letting j → ∞ gives 〈x∗, x〉 ≤ δ∗C(x), which is a

contradiction.

We will first prove the converse of Theorem 2.5 in the case where X is reflexive, and then
apply Theorem 2.4 to extend to the WCG case. We will need the following lemma. We
denote the closed unit ball in the normed space Y by BY , and the weak topology on Y
by σ(Y, Y ∗).

Lemma 3.3. Suppose the Banach space Y is reflexive and (yn)
∞
1 ⊂ Y . Then (BY ∩

cl span(yn), σ(Y, Y
∗)) is metrizable.

Proof. Define Z = cl span(yn). Then Z is separable, so Z∗ is weak-star separable [10,
Ex. 2.22(a)]. Furthermore Z is a closed subspace of a reflexive space, so is reflexive [10,
p. 126]. Thus Z∗ is weakly separable, so separable [10, Ex. 2.22(b)], so BZ∗∗ is weak-star
metrizable [10, p. 72], or in other words BZ is weakly metrizable. Now BZ = Z ∩BY , and
it is easy to check that σ(Z,Z∗) is exactly σ(Y, Y ∗) restricted to Z, since any element of
Z∗ has an extension to an element of Y ∗. The result follows.
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The next step is to show that the set of all weak limits of x∗
n ∈ Cn is closed.

Lemma 3.4. Suppose X is reflexive and δ∗Cn
→ δ∗C pointwise on X. Then the set

S =
{

x∗ ∈ X∗ : ∃x∗
n ∈ Cn with x∗

n → x∗ weakly
}

(10)

is closed, convex and bounded.

Proof. Since each Cn is convex, so is S, and the Cn are uniformly bounded (by K say)
by Proposition 3.1, and KBX∗ is weakly closed [10, p. 66], S ⊂ KBX∗ . It remains to
show S is norm closed.

Suppose x∗
m ∈ S (m = 1, 2, . . .) and ‖x∗

m − x∗
∞‖ → 0 as m → ∞. By definition, for

each m there exist x∗
m,n ∈ Cn (n = 1, 2, . . .) with x∗

m,n → x∗
m weakly as n → ∞. Define

Z = cl span{x∗
m,n : m,n = 1, 2, . . .}. By Lemma 3.3, (KBX∗ ∩Z, σ(X∗, X)) is metrizable,

by the metric ρ say, and note that x∗
m,n, x

∗
m and x∗

∞ lie in KBX∗ ∩ Z for each m,n.

Now x∗
m → x∗

∞ in norm as m → ∞, so certainly x∗
m → x∗

∞ weakly and thus ρ(x∗
m, x

∗
∞) → 0

as m → ∞. Thus for each j we can pick mj so that ρ(x∗
mj
, x∗

∞) < 2−j. Now pick an

increasing sequence nj (j = 1, 2, . . .) so that for all n ≥ nj, ρ(x
∗
mj ,n

, x∗
mj
) < 2−j: this is

possible because x∗
mj ,n

→ x∗
mj

weakly as n → ∞. It now follows by the triangle inequality

that ρ(x∗
mj ,n

, x∗
∞) < 2−j+1 for all n ≥ nj, and for all j. Finally, for each n define x∗

n = x∗
mj ,n

whenever nj ≤ n < nj+1. Then x∗
n ∈ Cn and ρ(x∗

n, x
∗
∞) < 2−j+1 for all n ≥ nj and all j,

so x∗
n → x∗

∞ weakly. Thus x∗
∞ ∈ S as required.

We are now ready to prove the converse of Theorem 2.5 in the reflexive case.

Theorem 3.5. Suppose X is reflexive. If δ∗Cn
→ δ∗C pointwise on X then the sequence

(Cn) is uniformly bounded with weak-star limit C.

Proof. After Propositions 3.1 and 3.2, it only remains to show that (4) holds in the
definition of weak-star convergence. If we denote by S the set in (10) again, what we need
to show is C ⊂ S. (Notice in fact Proposition 3.2 already shows S ⊂ C.)

Suppose that x∗ is an exposed point of C. In other words, for some x ∈ X, 〈x∗, x〉 = δ∗C(x),
but for any y∗ ∈ C \ {x∗}, 〈y∗, x〉 < δ∗C(x). Since δ

∗
Cn
(x) → δ∗C(x), there exists a sequence

x∗
n ∈ Cn with 〈x∗

n, x〉 → δ∗C(x) = 〈x∗, x〉. We claim x∗
n → x∗ weakly.

Suppose not. Then for some y ∈ X, some ε > 0, and some subsequence (ni), we have
〈x∗

ni
, y〉 ≤ 〈x∗, y〉 − ε, for each i. Now by Proposition 3.1, the sequence (x∗

ni
) is bounded

in the reflexive space X∗, so has a weakly convergent subsequence, x∗
nij

→ x∗
∞ weakly

as j → ∞. From the above we know therefore that 〈x∗
∞, x〉 = 〈x∗, x〉, and x∗

∞ ∈ C
by Proposition 3.2, so x∗

∞ = x∗. But we also have 〈x∗
∞, y〉 ≤ 〈x∗, y〉 − ε, which is a

contradiction.

Thus we have shown that the exposed points of C are contained in S. Since S is closed
and convex by Lemma 3.4, it follows that the closed convex hull of the exposed points of
C is contained in S. Now, using results that may be found, for example, in [9], since X is
reflexive, X∗ has the Radon-Nikodym property, and thus C is the closed convex hull of its
strongly exposed points. Since each strongly exposed point is exposed, we have C ⊂ S,
as required.
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The results in this section may be compared to those in [4], where it is shown in the
reflexive case that if δ∗Cn

→ δ∗C pointwise on X then the Cn are uniformly bounded and C
is the closed convex hull of w- lim supCn.

4. The WCG case

We have now developed the tools to prove our main result. The idea is to use the Davis-
Figiel-Johnson-Pelczynski factorization theorem (2.4) to extend Theorem 3.5 from the
reflexive case to the WCG case.

Theorem 4.1. Suppose X is WCG and C,Cn (n = 1, 2, . . .) are weak-star-closed, boun-
ded, convex, nonempty subsets of X∗. Then δ∗Cn

→ δ∗C pointwise on X if and only if the
sequence (Cn) is uniformly bounded with weak-star limit C.

Proof. One direction has already been proved in Theorem 2.5. In the other direction,
in view of Propositions 3.1 and 3.2, it only remains to show (4) holds in the definition of
weak-star convergence: given x∗ ∈ C, we need to find a sequence x∗

n ∈ Cn with x∗
n → x∗

weak-star.

By Theorem 2.4 there is a reflexive space Y and a one-to-one continuous linear operator
T : Y → X with T (Y ) dense in X. Denote the adjoint map by T ∗ : X∗ → Y ∗. Then T ∗ is
continuous, linear and one-to-one [15, p. 95]. It is easy to see that T ∗ is weak-star-to-weak
continuous: if a net x∗

α → x∗
∞ weak-star in X∗ then for any y ∈ Y ,

〈T ∗x∗
α, y〉 = 〈x∗

α, T y〉 → 〈x∗
∞, T y〉 = 〈T ∗x∗

∞, y〉,

so T ∗x∗
α → T ∗x∗

∞ weak-star in Y ∗.

Now define D,Dn (n = 1, 2, . . .) by D = T ∗C, Dn = T ∗Cn. The sets D and Dn are convex
(by the linearity of T ∗), bounded (since C and Cn are bounded and T ∗ is continuous) and
closed (since C and Cn are weak-star compact and T ∗ is weak-star-to-weak continuous,
so D and Dn are weakly closed and convex, so closed). Furthermore, by Proposition 3.1,
C ∪

⋃

nCn is bounded, so

weak-star-cl
(

C ∪
⋃

n

Cn

)

is weak-star compact by the Alaoglu-Bourbaki theorem [10, p. 70]. It now follows by, for
example, [20, 3.83], that

T ∗ : weak-star-cl
(

C ∪
⋃

n

Cn

)

→ weak-cl
(

D ∪
⋃

n

Dn

)

(11)

is a weak-star-to-weak homeomorphism. Specifically, it is one-to-one and weak-star-to-
weak continuous as above, and it is easily seen to be onto (as defined). Since its range is
further weakly compact, it is a weak-star-to-weak homeomorphism.

Now by definition, for y ∈ Y ,

δ∗D(y) = sup{〈y∗, y〉 : y∗ ∈ D} = sup{〈T ∗x∗, y〉 : x∗ ∈ C}
= sup{〈x∗, T y〉 : x∗ ∈ C} = δ∗C(Ty),

and similarly δ∗Dn
(y) = δ∗Cn

(Ty). By assumption therefore, δ∗Dn
→ δ∗D pointwise on Y .
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Since Y is reflexive we can now apply Theorem 3.5. Since T ∗x∗ ∈ D, there exists a
sequence x∗

n ∈ Cn with T ∗x∗
n → T ∗x∗ in Y ∗. Since T ∗ is a weak-star-to weak homeomor-

phism, it follows from (11) that x∗
n → x∗ weak-star in X∗, as required.

A more general question than that of this paper would seek to relate the convergence
of a sequence of functions fn to f with the convergence of f ∗

n to f ∗. In [13] it is shown
that if the underlying space X is reflexive and f, fn : X → (−∞,+∞] are closed, convex
and proper, then fn converges Mosco to f if and only if f ∗

n converges Mosco to f ∗ (see
also [11]). The question of when f ∗

n → f ∗ pointwise appears to be harder, although it is
proved in [14] that under the same conditions, if fn → f uniformly on all bounded sets
then f ∗

n(x
∗) → f ∗(x∗) for all x∗ ∈ int (dom f ∗). This condition seems difficult to check in

practice.
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