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We survey a large bunch of results on metric regularity of multifunctions that appeared during the last
25 years. The tools used for this survey rely on a new variational method introduced in [9]1 and further
developped in [10] and independently in [35, 36] which provides a characterization of metric regularity. It
allows us to give a unified point of view both for primal results (based on some notion of tangent cones)
and dual ones (based on some notion of normal cones). For most known results on metric regularity, a
simple proof is given along with some slight improvements for some of them.

1. Introduction

The theory of metric regularity, whose origin dates back to [44] and [28], for mappings
and further for multimappings is one of the cornerstones of nonsmooth analysis. A de-
cisive step has been done in this theory by the systematic use of Ekeland’s variational
principle. However, there are some cases such as the Ursescu-Robinson Theorem and
the finite dimensional case in which one can give metric regularity results without using
the variational principle. We refer to [36] for its accurate bibliographical and historical
comments. The first time in which these kinds of techniques has been used for metric
regularity of mappings and multimappings seems to be [31] and [1]. Another important
contribution is [33] in which the use of the Ekeland principle leads to sufficient conditions
for metric regularity based both on tangent and normal cones. Recently, the use in [9] of
the so-called strong slope of De Giorgi, Marino and Tosques opened the way to a unified
theory of metric regularity involving both criteria invoking tangent and normal cones.
This unified theory which is purely metric was developped in [10] and independently in
the deep and complete survey [36]. The powerfullness of this unifying theory lies in the
fact that it provides a purely metric characterization of metric regularity which allows
Ioffe to write in [36] Ô. . . the theory of metric regularity and the parallel Lipschitz the-
ory of set-valued maps do not need anything like subdifferentials, directional derivatives,
coderivatives and tangent conesÔ. The common feeling of mathematicians is that the met-
ric regularity problem is linked to the error bounds one. In fact these two problems are
equivalent (see [9, 10]) and the obtained characterization of metric regularity is a con-
sequence of the characterizations of local and global error bounds obtained for the first
time in [9, Remark 3.2] and in [8, Theorem 2.4]. The paper is organized as follows. After
recalling in Sections 2 and 3 the characterization of metric regularity in complete metric

1The paper [9] appeared in 2002 but the corresponding preprint dates back to 1998-99 and was quoted
and used in [35, 36].
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spaces, we review in Section 4 a large sample of results on metric regularity among those
which appeared during the last 25 years.

Let us begin with some notations that will be used throughout this paper. We let X
be a metric space endowed with the metric d, and f : X → R ∪ {+∞} be a lower
semicontinuous function. For U ⊂ X and r ∈ (0,+∞] (resp., r ∈ (0,+∞[), we denote by
Br(U) (resp., B̄r(U)) the open (resp., closed) r-neighborhood of U :

Br(U) := {x ∈ X : d(x, U) < r} , B̄r(U) := {x ∈ X : d(x, U) ≤ r} ,

where
d(x, U) := inf{d(x, y) : y ∈ U} ,

with the convention that d(x, ∅) = +∞ (according to the general convention inf ∅ = +∞).
If U = {x}, we simply write Br(x), B̄r(x) and BX = B1(0), B̄X = B̄1(0). For α ∈ R and
β ∈ R ∪ {+∞}, we let

[f≤α] := {x ∈ X : f(x) ≤ α} , [f<β] := {x ∈ X : f(x) < β}

denote respectively the closed and open sublevel sets of f , and if α < β, we further let

[α<f<β] := [f<β] \ [f≤α]

denote the “sliceÔ between α and β. If β = +∞, we shall rather write:

[f>α] := [α<f<+∞] , dom f := [f<+∞] ,

and say, as usual, that f is proper if dom f 6= ∅. Given a subset C of a metric space
(X, d), we further denote by dC(x) or d(x,C) the distance from x to C that is dC(x) =
infz∈C d(x, z) and by e(C,D) the Hausdorff-Pompeiu excess of C into D defined by
e(C,D) = supx∈C d(x,D) with the conventions e(∅, D) = 0 and e(C, ∅) = +∞ when-
ever C 6= ∅. We shall further denote by iS the indicatior function of a subset S ⊂ X

defined by iS(x) =

{

0 if x ∈ S

+∞ if x /∈ S.

2. The strong slope

In this section we shall give a characterization of metric regularity of multifunctions in
the complete metric space setting. This characteristic conditions will be given in terms
of the strong slope of De Giorgi, Marino and Tosques introduced in [20]. The first issue
in which strong slope is used aimed at error bounds and metric regularity results seems
do be [9]. The method initated in the quoted paper was further used and developped in
[35, 36, 10]. We stress the fact that the strong slope allows a complete characterization
of metric regularity. As we recall in this section, the strong slope can be estimated both
in terms of suitable abstract subdifferential or directional derivatives. When applied to
metric regularity, we shall also check in Section 4 that our abstract results encompass
most of the results on this topic.

2.1. The strong slope

The notion of strong slope was introduced by De Giorgi, Marino, and Tosques in [20]
aimed at finding solutions of abstract evolution equations in metric spaces.
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2.1.1. Defining the slope

Definition 2.1. Let f : X → R ∪ {+∞} be a lower semicontinuous function, and let
x ∈ dom f . Set:

|∇f |(x) :=















0 if x is a local minimum of f,

lim sup
y

6=−→x

f(x)− f(y)

d(x, y)
otherwise.

For x /∈ dom f , let |∇f |(x) := +∞. The nonnegative extended real number |∇f |(x) is
called the strong slope of f at x.

The main tool which is needed for our purposes is, of course, Ekeland’s variational princi-
ple [24], of which we now recall an appropriate version, as well as an essential consequence
in terms of the strong slope.

Theorem 2.2. Let X be complete, f : X → R ∪ {+∞} be a (proper) lower semicontin-
uous function, and let x̄ ∈ X, σ > 0, and r > 0, be such that:

f(x̄) ≤ inf
X

f + σr .

Then, there exists x ∈ B̄r(x̄) such that f(x) ≤ f(x̄) and

f(x) < f(y) + σd(x, y) for every y ∈ X \ {x} . (1)

Corollary 2.3. Let X be complete, f : X → R ∪ {+∞} be a lower semicontinuous
function, and let x̄ ∈ X, σ > 0, and r > 0, be such that:

f(x̄) < inf
B̄r(x̄)

f + σr .

Then, there exists x ∈ Br(x̄) such that f(x) ≤ f(x̄) and |∇f |(x) < σ.

Proof. Let 0 < σ′ < σ and 0 < r′ < r be such that

f(x̄) ≤ inf
B̄r(x̄)

f + σ′r′ .

Applying Theorem 2.2 with X := B̄r(x̄), we find x ∈ B̄r′(x̄) ⊂ Br(x̄) with f(x) ≤ f(x̄)
and |∇f|B̄r(x̄)|(x) = |∇f |(x) ≤ σ′ < σ, as follows from (1) and the definition of the strong
slope.

The next simple proposition illustrates the role played by the strong slope in existence
results.

Proposition 2.4. Let X be complete, f : X → R ∪ {+∞} be a lower semicontinuous
function, U be a subset of X, α ∈ R, and σ, ρ > 0. Assume that U ∩ [f<α+ σρ] 6= ∅ and
that:

inf
Bρ(U)∩[α<f<α+σρ]

|∇f | ≥ σ .

Then, [f≤α] 6= ∅.
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Proof. Assume, for a contradiction, that [f≤α] = ∅, and let x̄ ∈ U ∩ [α<f<α+σρ]. We
have:

f(x̄) < α+ σρ ≤ inf
X

f + σρ ,

and, according to Corollary 2.3, we find x ∈ Bρ(x̄) ⊂ Bρ(U) with α < f(x) ≤ f(x̄) <
α+ σρ and |∇f |(x) < σ, contradicting our assumption.

2.1.2. Computing the slope

In this subsection, we consider a Banach space X endowed with a norm ‖·‖, with topolog-
ical dual X∗, d∗ denoting the metric associated with the norm of X∗. In the case where
the function f is Fréchet differentiable at x, it is readily seen that

|∇f |(x) = ‖Df(x)‖∗ (2)

We further consider an “abstractÔ subdifferential operator ∂, which associates to any lower
semicontinuous function f : X → R∪{+∞}, and any point x ∈ X, a subset ∂f(x) of the
(topological) dual X∗ of X, in such a way that ∂f(x) = ∅ if x /∈ dom f , and the following
two properties are satisfied:

(P1) if f is convex, then

∂f(x) ⊂ {ξ ∈ X∗ : f(y) ≥ f(x) + 〈ξ, y − x〉 for all y ∈ X}; (3)

(P2) whenever x̄ ∈ dom f is a local minimum point of f + g + h where f is lower semi-
continuous and g, h are Lipschitz continuous near x̄ with h convex then, for every
ε > 0 there exist x, y, z ∈ X, ξ ∈ ∂f(x), and ζ ∈ ∂g(y), χ ∈ ∂h(z) such that

‖x− x̄‖ ≤ ε , ‖y − x̄‖ ≤ ε , ‖z − x̄‖ ≤ ε , f(x) ≤ f(x̄) + ε , and ‖ξ + ζ + χ‖∗ ≤ ε .

It follows that if the subdifferential satisisfies (P1) and if the Banach space X is ∂-
trustworthy in the sense of Ioffe, then (P2) is satisfied on X.

Given a subdifferential ∂, one is also interested in the associated limiting subdifferen-
tial ∂̄f(x) defined as the set of ξ ∈ X∗ for which there exist sequences (xn)n∈N with
((xn, f(xn)) → (x, f(x)) and (ξn)n∈N ⊂ X∗ ∗-weakly converging to ξ such that ξn ∈ ∂f(xn)
for all n ∈ N. It is clear that ∂̄ satisfies (P2) on X whenever it is the case for ∂.

Example 2.5. Let us list some basic subdifferential. Each of them clearly satisfies (P1).

1. The Clarke-Rockafellar subdifferential satisfies (P2) on every Banach space as easily
shown by its definition. Let us recall that the Clarke-Rockafellar subdifferential
∂f(x) at x ∈ dom f of a lower semicontinuous function f : X −→ R ∪ {+∞} is the
set of ξ ∈ X∗ such that 〈ξ, u〉 ≤ f ↑(x;u) for all u ∈ X where

f ↑(x;u) = sup
ε>0

inf
η>0

sup
(z,f(z),t)∈Bη(x)×Bη(f(x))×(0,η)

inf
v∈Bε(u)

t−1(f(z + tv)− f(z)).

2. The Dini subdifferential ∂− is defined at x0 ∈ dom f by

∂−f(x0) = {ξ ∈ X∗ : 〈ξ, u〉 ≤ f ′(x0;u) for all u ∈ X}, (4)
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where f ′(x0;u) = lim inf










t ↓ 0

v → u

f(x0 + tv)− f(x0)

t
. This subdifferential satisfies (P2)

on every finite dimensional X (see e.g. [32, Theorem 2]).

3. The Fréchet subdifferential Ý∂f(x), that is the set of ξ ∈ X∗ such that

lim inf
z→x

‖z − x‖−1(f(z)− f(x)− 〈ξ, z − x〉) ≥ 0

satisfies (P2) on every Asplund space (see [25]). It follows that when X is asplund,
the Mordukhovich subdifferential which in that case is the limiting Fréchet subdif-
ferential, also satisfies (P2). One also uses, for ε > 0, the ε-Fréchet subdifferential
Ý∂εf(x) defined as the set of ξ ∈ X∗ such that

lim inf
z→x

‖z − x‖−1(f(z)− f(x)− 〈ξ, z − x〉) ≥ −ε.

Then it is noteworthy that

0 ∈ Ý∂εf(x) if and only if |∇f |(x) ≤ ε. (5)

4. The Ioffe subdifferential ∂A satisfies (P2) on every Banach space (see e.g. [36, The-
orem 1]). It is defined for Lipschitz functions by

∂Af(x0) =
⋂

L∈F

Lim sup
x

f→x0

∂−
L f(x) (6)

where F is the family of finite dimensional subspaces of X,

∂−fL(x0) = {ξ ∈ X∗ : 〈ξ, u〉 ≤ f ′(x0;u) for all u ∈ L},

the Lim sup being taken with respect to the weak∗ topology and x
f→ x0 means

(x, f(x)) → (x0, f(x0)). If f is lower semicontinuous and x0 ∈ dom f , this definition
extends to

∂Af(x0) = {ξ ∈ X∗ : (ξ,−1) ∈
⋃

L>0

∂Adepi f (x, f(x))}.

5. A bornology β is a collection of bounded convex symmetric subsets of X which is
closed under multiplication by scalars and is such that X =

⋃

B∈β B and such that
the union of two elements of β is contained in some element of β. A function f
is said to be β-differentiable at x0 whenever there is ∇βf(x0) ∈ X∗ such that for
any B ∈ β, we have limt→0 t

−1(f(x0 + tu) − f(x0) − t〈∇βf(x0), u〉) = 0 uniformly
for u ∈ B. We say that the function f is β-smooth at x0 whenever ∇βf exists
near x0 and the mapping ∇βf is continuous when X∗ is endowed with the uniform
convergence on elements of the bornology β. Then the β subdifferential ∂βf(x0) is
the set of ξ ∈ X∗ such that for all ε > 0 and for all B ∈ β, there exists η > 0 such
that t−1(f(x0 + tu)− f(x0))− 〈ξ, u〉 > −ε for all t ∈ (0, η) and for all u ∈ B. This
subdifferential satisfies (P2) whenever there exists a β-differentiable Lipschitz bump
function, that is a Lipschitz function ϕ with values on [0, 1] with ϕ(0) = 1 whose
support is contained in B̄ and such that each maximizing sequence converges to 0
(see e.g. [36, 2, Theorem 1]).
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6. Given a bornology on X, the β-viscosity subdifferential Dβf(x0) of a lower semicon-
tinuous function f : X → R ∪ {+∞} at x0 ∈ dom f is the set of ξ ∈ X∗ for which
there exists a locally Lipschitz function g which is β-smooth at x0 and such that
f − g attains a local minimum at x0 along with ∇βg(x0) = ξ. Such a subdifferential
satifies (P2) whenever X admits an equivalent norm which is β-smooth away from
0 (see e.g. [13, Theorem 2.9]).

7. If 0 < s ≤ 1, a function g : X → R is of class C1,s if it is (GÝateaux-)differentiable
on X and its differential Dg is s-Hölder continuous, i.e., there is a constant C ≥ 0
such that

‖Dg(x)−Dg(y)‖ ≤ C‖x− y‖s for all x, y ∈ X .

The Banach spaceX has a s+1-power modulus of smoothness ifX has an equivalent
differentiable norm ‖·‖ for which the function g := 1

s+1
‖·‖s+1 is of class C1,s. The

Banach spaces with a power modulus of smoothness are the superreflexive spaces.
Equipped with their natural norm, Hilbert spaces have a power modulus of smooth-
ness t2, and Lp spaces, p > 1, have a power modulus of smoothness tmin{p,2}. Then
the s-Hölder smooth subdifferential is of f at x ∈ dom f is the set ∂sf(x) of ξ ∈ X∗

such that there exists η, σ > 0 such that

f(y)− f(x) ≥ 〈ξ, y − x〉 − σ‖y − x‖1+s for all y ∈ Bη(x).

In other words

∂sf(x) := {ξ ∈ X∗ : lim inf
y→x

f(y)− f(x)− 〈ξ, y − x〉
‖y − x‖1+s

> −∞} ,

and the associated viscosity subdifferential is the set ∂̃sf(x) of thoseDϕ(x) such that
ϕ is of class C1,s and x is a local minimum of f−ϕ. It is clear that ∂̃sf(x) ⊂ ∂sf(x).
It is easily seen, by using [22, Lemma 1.2.5], that the viscosity subdifferential ∂̃sf(x)
satisfies (P2) whenever X has a power modulus of smoothness ts+1. When s = 1
and X is Hilbert, then ∂s coincides with Rockafellar’s proximal subdifferential ∂π

[55].

The two following propositions provide useful information for estimating the slope from
below.

Proposition 2.6. Let X be a Banach space and ∂ be a subdifferential operator which
satisfies (P1) and (P2) on X. Then, for every lower semicontinuous function h : X →
R ∪ {+∞}, for every function g Lipschitz continuous near x ∈ dom f , we have, setting
f = g + h:

|∇f |(x) ≥ lim inf
(z,y,f(z),f(y))→(x,x,f(x),f(x))

d∗(0, ∂g(z) + ∂h(y)) .

Proof. Let x ∈ X. We may assume that x is not a local minimum point of f (for,
otherwise, the result readily follows from (P2)), and that |∇f |(x) < +∞ (so that x ∈
dom f). Given σ > |∇f |(x) and ε > 0, let r > 0 be such that

f(x) ≤ f(y) + σ‖y − x‖ for every y ∈ Br(x) ,

so that the function h+ g + σ‖ · −x‖ attains a finite local minimum at x. From property
(P2), we find y, z u ∈ X and ξ ∈ ∂h(y), ζ ∈ ∂(σ‖ · −x‖)(u) and χ ∈ ∂g(z) such that

‖y − x‖ ≤ ε , h(y) ≤ h(x) + ε , and ‖ξ + χ+ ζ‖∗ ≤ ε .
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From property (P1), ‖ζ‖∗ ≤ σ, so that ‖ξ+χ‖∗ ≤ σ+ ε, and the conclusion follows since
ε > 0 is arbitrary, taking into account the lower semicontinuity of f .

Applying the previous proposition with g = 0 we get:

Proposition 2.7. Let X be a Banach space and ∂ be a subdifferential operator such
that properties (P1) and (P2) are satisfied on X. Then, for every lower semicontinuous
function f : X → R ∪ {+∞} and every x ∈ X, we have:

|∇f |(x) ≥ lim inf
(y,f(y))→(x,f(x))

d∗(0, ∂f(y)) .

Proposition 2.7 tells us that if infy∈Ω d∗(0, ∂f(y)) ≥ τ where Ω is an open subset of X for
some τ > 0, then infx∈Ω |∇f |(x) ≥ τ .

The strong slope can also be estimated, just using the definitions, with various notions of
directional derivative. For example, for x ∈ dom f , let us consider

f ′(x;u) := lim inf
t↘0
v→u

f(x+ tv)− f(x)

t

the contingent derivative.

Proposition 2.8. Let f : X −→ R ∪ {+∞} be a proper lower semicontinuous function
defined on a Banach space X and let x ∈ dom f . We have

|∇f |(x) ≥ sup
‖u‖≤1

(−f ′(x;u)). (7)

Moreover, if X is finite dimensional, we have

|∇f |(x) = max
‖u‖≤1

(−f ′(x;u)). (8)

Proof. Assuming that x is a local minimum, then f ′(x;u) ≥ 0 for all u ∈ X, thus
|∇f |(x) ≥ sup‖u‖≤1(−f ′(x;u). Otherwise, fix u ∈ X \ {0} with ‖u‖ ≤ 1. If −f ′(x;u) ≤ 0,
the inequality −f ′(x;u) ≤ |∇f |(x) is obvious. Suppose that −f ′(x;u) > 0 and choose
sequences tn ↓ 0 and vn → u such that

−f ′(x;u) := lim
n→∞

f(x)− f(x+ tnvn)

tn
> 0.

Then

−f ′(x;u) ≤ lim
n→∞

f(x)− f(x+ tnvn)

tn‖u‖
= lim

n→∞

f(x)− f(x+ tnvn)

tn‖vn‖

yielding

−f ′(x;u) ≤ lim sup
y
6=→x

f(x)− f(y)

‖x− y‖
= |∇f |(x),

from which we get (7). Assume now that X is finite dimensional. If x is a local minimum,
then |∇f |(x) = 0 = −f ′(x; 0). Otherwise, let (xn)n∈N be a sequence converging to x
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with xn 6= x such that |∇f |(x) = lim sup
n→∞

f(x)− f(xn)

‖x− xn‖
. Setting tn = ‖xn − x‖ and

un = t−1
n (xn−x), there exists a subsequence, still denoted by (un)n∈N converging to some

u ∈ X with ‖u‖ = 1. Thus we get

−|∇f |(x) = lim inf
n→∞

t−1
n (f(x+ tnun)− f(x)) ≥ f ′(x, u),

hence (8).

Estimates from above of the slope are also available in some special cases. These estimates
will be useful when aimed at seeking for necessary conditions for metric regularity of
multifunctions.

Proposition 2.9. Let f : X −→ R ∪ {+∞} be a closed proper function defined on a
Banach space X and let x ∈ dom f . We have

a) d∗(0, Ý∂f(x)) ≥ |∇f |(x), where Ý∂ denotes the Fréchet subdifferential;

b) d(0, ∂sf(x)) ≥ |∇f |(x) whenever ∂s denotes the s-Hölder smooth subdifferential.

c) d∗(0, ∂
−f(x)) ≥ |∇f |(x) whenever X is finite dimensional and ∂− denotes the Dini

subdifferential.

Proof. a) We may assume that x is not a local minimum, since in that case the right
member of the inequality in a) is equal to 0. Let ξ ∈ Ý∂f(x) and let ε > 0. We can find
r > 0 such that f(y)− f(x) ≥ 〈ξ, y − x〉 − ε‖y − x‖ for all y ∈ Br(x), yielding

f(x)− f(y)

‖y − x‖
≤ ‖ξ‖∗ + ε for all y ∈ Br(x),

and then lim sup
y
6=→x

f(x)− f(y)

‖x− y‖
≤ ‖ξ‖∗ for all ξ ∈ Ý∂f(x), from which we get

d∗(0, Ý∂f(x)) ≥ |∇f |(x).

b) follows from a) since ∂sf(x) ⊂ Ý∂f(x).

c) From Proposition 2.8, putting τ := |∇f |(x), we can find a unit vector u ∈ X such
that f ′(x;u) = −τ . Thus if ξ ∈ ∂−f(x), we have −τ = f ′(x;u) ≥ 〈ξ, u〉, so that
‖ξ‖∗ ≥ 〈ξ,−u〉 ≥ τ .

Remark 2.10. If f : X 7−→ R ∪ {+∞} is a closed proper convex function defined on a
Banach space X, then

|∇f |(x) = d∗(0, ∂f(x)) for all x ∈ dom f. (9)

Indeed, we get from part a) of Proposition 2.9 that d∗(0, ∂f(x)) ≥ |∇f |(x). Now if
0 < σ < d∗(0, ∂f(x)), then, x is not a minimum point of the function z 7→ f(z)+σ‖x−z‖
for, otherwise, from standard convex calculus, we have 0 ∈ ∂f(x)+σB̄∗, where B̄∗ denotes
the closed unit ball of X∗, contradicting the choice of σ. Let thus z ∈ X be such that
f(z) + σ‖x− z‖ < f(x), so that for every λ ∈ ]0, 1]:

f(x)− f(x+ λ(z − x))

λ‖x− z‖
> σ ,

showing that |∇f |(x) ≥ σ, whence |∇f |(x) ≥ d∗(0, ∂f(x)).
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2.1.3. Parametric error bounds

When dealing with parametric family of multifunctions, a parametric error bound result
may be useful. Let us begin with a result of [10] which is of independant interest.

Theorem 2.11. Let X be complete, f : X → R ∪ {+∞} be a lower semicontinuous
function, U be a subset of X, α ∈ R, and σ, ρ > 0. Assume that U ∩ [f<α+ σρ] 6= ∅ and
that

inf
Bρ(U)∩[α<f<α+σρ]

|∇f | ≥ σ .

Then, [f≤α] 6= ∅, and the following local error bound holds

σ d(x, [f≤α]) ≤ (f(x)− α)+ for all x ∈ U ∩ [f<α+ σρ].

Proof. The fact that [f≤α] 6= ∅ is established in Proposition 2.4. We may now assume
that U ∩ [α<f<α + σρ] 6= ∅. Assume further, for a contradiction, that for some x̄ ∈
U ∩ [α<f<α+ σρ] we have:

f(x̄)− α < σd(x̄, [f≤α]) .

Let 0 < r := min{d(x̄, [f≤α]), ρ}, and g := (f − α)+, so that

g(x̄) < inf
B̄r(x̄)

g + σr .

Applying Corollary 2.3, we find x ∈ Br(x̄) with g(x) ≤ g(x̄) and |∇g|(x) < σ. Then,
x ∈ Bρ(U) ∩ [α<f<α+ σρ] and |∇f |(x) = |∇g|(x) < σ: a contradiction.

The following definition is classical.

Definition 2.12. Let X be a complete metric space, let P be a topological space and let
f : X × P −→ R ∪ {+∞}. We say that f is epi-upper semicontinuous at (x0, p0) if

(e- lim sup
p→p0

fp)(x0) ≤ fp0(x0)

where
(e- lim sup

p→p0

fp)(x0) = sup
ε>0

inf
N∈N (p0)

sup
p∈N

inf
x∈Bε(x0)

fp(x),

denoting by N (p0) the family of neighborhoods of p0 and by fp = f(·, p).

Observing that (e- lim supp→p0 fp)(x0) ≤ lim supp→p0 fp(x0), it follows that f is epi-upper
semicontinuous at (x0, p0) whenever the function p 7→ fp(x0) is upper semicontinuous at
p0. In the case f(x, p) = iCp(x), where (Cp)p∈P is a family of subsets of X, the function
f is epi-upper semicontinuous at (x0, p0) with x0 ∈ Cp0 if and only if x0 ∈ Lim infp→p0 Cp.
Such a condition is clearly weaker than the requirement lim supp→p0 fp(x0) ≤ fp0(x0) which
amounts to x0 ∈ Cp for p close to p0. Let us recall that the closed set Lim infp→p0 Cp is
the set of those x ∈ X such that for each neighborhood V of x, the set of p ∈ P such
that V ∩Cp 6= ∅ is a neighborhood of p0. In other words x ∈ Lim infp→p0 Cp if and only if
there exists a mapping p 7→ xp defined near x with values in X such that limp→p0 xp = x
and xp ∈ Cp near p0.
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Theorem 2.13. Let X be a complete metric space, let P be a topological space and let
f : X × P −→ R ∪ {+∞} and (x0, p0) ∈ X × P . Assume that

a) fp0(x0) ≤ 0;

b) fp is lower semicontinuous for all p near p0;

c) f is epi-upper semicontinuous at (x0, p0);

d) there exist neighborhoods U0 of x0, N0 of p0 and τ > 0

such that

inf










(x, p) ∈ U0 ×N0

f(x, p) > 0

|∇fp|(x) ≥ τ.

Then there exist neighborhoods V of x0 and N of p0 such that [fp≤0] 6= ∅ for all p ∈ N ,
and for all γ ≥ 0,

τ d(x, [fp≤γ]) ≤ (fp(x)− γ)+ for all (x, p) ∈ V ×N.

Proof. Let ρ > 0 be such that B4ρ(x0) ⊂ U0. From assumption c), we can findN ∈ N (p0)
such that N ⊂ N0 and supp∈N infx∈Bρ(x0) fp(x) < τρ. Setting U = Bρ(x0), we get, for all
p ∈ N that U ∩ [fp<τρ] 6= ∅ and

inf
x∈Bρ(U)∩[0<fp<τρ]

|∇fp|(x) ≥ τ for all p ∈ N.

Thus we obtain from Theorem 2.11 that for all p ∈ N we have [fp≤0] 6= ∅ and

τ d(x, [fp≤0]) ≤ fp(x)
+ for all x ∈ U ∩ [fp<τρ] and p ∈ N,

yielding [fp≤0] ∩B2ρ(x0) 6= ∅ for all p ∈ N .

Now we claim that τ d(x, [fp≤γ]) ≤ (fp(x)−γ)+ for all x ∈ V := Bρ(x0) for all p ∈ N and
for all γ ≥ 0. If not, we can find x ∈ Bρ(x0), p ∈ N and γ ≥ 0 such that 0 < fp(x)− γ <
τ d(x, [fp≤γ]). Setting r = d(x, [fp≤γ]), we get 0 < r < 3ρ and g(x) < infB̄r(x) g + τr
where g = (fp−γ)+. From Corollary 2.3, there exists y ∈ Br(x) such that |∇g|(y) < τ . As
d(y, x) < d(x, [fp≤γ]), we get fp(y) > γ, so that |∇fp|(y) = |∇g|(y) < τ and y ∈ B4ρ(x0),
a contradiction.

Remark 2.14. Theorem 2.13 fails to be true without epi-upper semicontinuity of f at
(x0, p0) as shown by the following example. Let f : R× R −→ R be defined by

f(x, p) =

{

ex if p 6= 0

x+ if p = 0,

so that f is lower semicontinuous on R × R and f(0, 0) = 0. For all p ∈ R and for all
x ∈ [fp>0] ∩ (−1, 1), we derive from (2) that |∇fp|(x) > r with r = e−1. Thus we get

from (5) that for all p ∈ R and for all x ∈ [fp>0] ∩ (−1, 1) we have 0 /∈ Ý∂εfp(x) for all

ε ∈ (0, r) where Ý∂εfp(x) is the ε-Fréchet subdifferential of fp at x. However [fp≤0] = ∅
for all p 6= 0 and then f provides a counterexample to [15, Theorem 2].
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In the previous theorem, we saw that the fact for the slope to be bounded away from 0 on
the complement of a level set in a neighborhood of some point yields a local error bound
result for all greater level sets. The powerfulness of the strong slope lies in the fact that
the converse is true as shown in the following proposition which is [9, Remark 3.2].

Proposition 2.15. Let f : X → R ∪ {+∞} be a function defined on a metric space X,
U be a subset of X, and α ∈ R, β ∈ R∪{+∞} with α < β. Assume that, for some τ > 0
we have

τ d(x, [f≤γ]) ≤ (f(x)− γ)+ for all γ ≥ α and for all x ∈ U ∩ [f<β].

Then
inf

U∩[α<f<β]
|∇f | ≥ τ.

Proof. Let σ ∈ (0, τ), let x ∈ U ∩ [α<f<β], and set γn := f(x) − 1/n for n ∈ N large
enough so that γn > α. For each n ∈ N, let xn ∈ [f≤γn] be such that f(x)−γn > σd(x, xn).
Then, we have:

0 < d(x, xn) ≤
f(x)− γn

σ
→ 0 as n → ∞ ,

so that x is not a local minimum of f , and

f(x)− f(xn)

d(x, xn)
≥ f(x)− γn

d(x, xn)
≥ σ ,

showing that |∇f |(x) ≥ σ, and the conclusion follows by letting σ increase to τ .

3. Metric regularity in complete metric spaces

We further consider a multifunction F ⊂ X × Y identified to its graph: for x ∈ X and
y ∈ Y we respectively set:

F (x) := {y ∈ Y : (x, y) ∈ F} , F−1(y) := {x ∈ X : (x, y) ∈ F} .

For z ∈ Y , we define a function fz : X × Y → R ∪ {+∞} by:

fz(x, y) := d(z, y) + iF (x, y) =

{

d(z, y) if (x, y) ∈ F

+∞ otherwise,

so that fz is lower semicontinuous if (and only if) F is closed (F is a closed-graph multi-
function). Moreover, for every γ ≥ 0, we have:

[fz≤γ] =
⋃

y∈B̄γ(z)

(F−1(y)× {y}) (10)

(where, of course, F−1(y)× {y} = ∅ if F−1(y) = ∅).
As usual, we say that the multifunction F is metrically regular near (x0, y0) ∈ F if there
exist τ > 0 and a neighborhood W of (x0, y0) such that

τ d(x, F−1(y)) ≤ d(y, F (x)) for all (x, y) ∈ W. (11)

We shall need the following definition
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Definition 3.1. For z ∈ X, let dz : X → R be defined by dz(x) := d(z, x). We say that
the metric space X is coherent at z ∈ X if

|∇dz|(x) = 1 for every x 6= z .

If this is true for every z ∈ X, we just say that X is coherent .

Clearly, if X is a convex subset of a normed vector space, then X (with the metric
associated with the norm) is coherent. In general, since dz is 1-Lipschitzian, so that
|∇dz| ≤ 1, the fact that a complete metric space X is coherent at z is equivalent to:

(d(z, x)− γ)+ ≥ d(x, B̄γ(z)) for all x ∈ X and for all γ ≥ 0 , (12)

according to [8, Theorem 2.4].

We now consider two metric spaces X and Y (we shall use the same notation d for both
metrics), and, for δ > 0, the product space X × Y as endowed with the metric:

dδ((x, y), (x
′, y′)) := max{d(x, x′), δd(y, y′)} .

Accordingly, if f : X × Y → R ∪ {+∞} is a lower semicontinuous function, we shall let
|∇δf | denote the strong slope of f with respect to the metric dδ. The next theorem is a
slight variant of [10, Theorem 5.3].

Theorem 3.2. Let X and Y be complete metric spaces, F ⊂ X × Y be a closed multi-
function, (x0, y0) ∈ F , let Z be a subset of Y , let V and W be neighborhoods of x0 and
y0, respectively, σ > 0, and 0 < δ ≤ 1/σ.

(a) Assume that:

|∇δfz|(x, y) ≥ σ for all (x, y, z) ∈ V ×W × Z , y 6= z ,

where fz(x, y) = d(z, y) + iF (x, y). Then, there exists ε > 0 such that:

d(z, F (x)) ≥ σd(x, F−1(z)) for all (x, z) ∈ Bε(x0)× (Bε(y0) ∩ Z) ,

(in particular Bε(y0) ∩ Z ⊂ F (X)).

(b) Conversely, assume that Y is coherent and that:

d(z, F (x)) ≥ σd(x, F−1(z)) for all (x, z) ∈ V ×W . (13)

Then, there exists r > 0 such that

|∇δfz|(x, y) ≥ σ for all (x, y, z) ∈ Br(x0)×Br(y0)×Br(y0) , y 6= z .

Proof. (a) Let ρ > 0 be such that B2ρ(x0, y0) ⊂ V ×W , and let z ∈ Bσρ(y0) ∩ Z ⊂ W .
Applying Theorem 2.11 to fz with U := Bρ(x0, y0), α := 0, and the given σ and ρ, since
(x0, y0) ∈ U ∩ [fz<σρ] and |∇δfz|(x, y) ≥ σ for every (x, y) ∈ [fz>0] ∩ Bρ(U), we obtain
that, for all z ∈ Bσρ(y0) ∩ Z ⊂ W :

fz(x, y) ≥ σdδ((x, y), [fz≤0]) for all (x, y) ∈ [fz<σρ] ∩Bρ(x0, y0) . (14)
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Let 0 < r ≤ ρ be such that Br(x0, y0) ∩ F ⊂ [fz<σρ] for every z ∈ Bσr(y0). Then, taking
the definitions of fz and of dδ, the fact that σδ ≤ 1, and (10), into account, (14) yields:

d(z, y) ≥ σd(x, F−1(z)) for all (x, y) ∈ Br(x0, y0) ∩ F , for all z ∈ Bσr(y0) ∩ Z , (15)

and in particular:

d(z, y0) ≥ σd(x0, F
−1(z)) for all z ∈ Bσr(y0) ∩ Z . (16)

Assume now that the conclusion does not hold. Then, there exist sequences (xn, yn) ⊂ F
and (zn) ⊂ Z such that d(xn, x0) → 0, d(zn, y0) → 0, and:

d(zn, yn) < σd(xn, F
−1(zn)) . (17)

Taking (16) into account yields:

d(yn, y0)− d(zn, y0) < σd(xn, x0) + σd(x0, F
−1(zn)) ≤ σd(xn, x0) + d(zn, y0) ,

which shows that d(yn, y0) → 0, so that (17) contradicts (15) for large n.

(b) Let r > 0 be such that Br(x0) ⊂ V and B3r(y0) ⊂ W . Let z ∈ Br(y0) be fixed, let
then γ ≥ 0 and (x, y) ∈ F ∩ (Br(x0)× Br(y0)) ∩ [fz>γ], so that γ < d(z, y) ≤ 2r. Then,
for every y′ ∈ B̄γ(z) ⊂ V , we have:

d(y′, y) ≥ σd(x, F−1(y′))

(in particular, F−1(y′) 6= ∅ for every such y′), hence:

d(y′, y) ≥ σdδ((x, y), F
−1(y′)× {y′}) ,

and finally, since y′ is arbitrary in B̄γ(z):

d(y, B̄γ(z)) ≥ σdδ((x, y), [fz≤γ]) .

According to (12), we have:

fz(x, y)− γ ≥ σdδ((x, y), [fz≤γ]) .

Letting U := Br(x0)×Br(y0), we thus have:

inf
γ>0

inf
(x,y)∈U∩[fz>γ]

fz(x, y)− γ

dδ((x, y), [fz≤γ])
≥ σ ,

and the conclusion follows from Proposition 2.15 applied to fz with α := 0 and β := +∞,
since z is arbitrary in Br(y0).

4. Metric regularity in Banach spaces

In this section we survey a large selection of results on metric regularity and we show how
they enter in the general framework described in Section 3. The following result is the
well-known Ursescu-Robinson Theorem ([57, 54]).
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4.1. The Ursescu-Robinson Theorem

Let us recall that the core of a convex set C ⊂ X is the set core(C) of those x ∈ C such
that X = (0,+∞)(C − x).

Theorem 4.1. Let F ⊂ X×Y be a closed convex multifunction where X, Y are Banach
spaces. Assume that y0 ∈ coreF (X), then F is metrically regular near any (x0, y0) ∈ F .

Proof. Let us consider, for z ∈ Y , the closed convex function fz : X × Y 7−→ R∪ {+∞}
defined by fz(x, y) = ‖z − y‖ + iF (x, y) . As y0 ∈ coreF (X), Baire’s Theorem yields r1,
r2 > 0 such that B̄r1(y0) ⊂ cl (F (B̄r2(x0)). Let 0 < σ < r1/r2, let δ = r2/r1 < 1/σ and
let ε = (1 + σ)−1(r1 − r2σ) ∈ (0, r1). Let (x, y) ∈ [fz>0] ∩ (Bε(x0)× Bε(y0)) ∩ F and let
(ξ, ζ) ∈ ∂fz(x, y) so that (ξ, ζ) = (ξ2, ζ1 + ζ2) with ‖ζ1‖∗ = 1 and (ξ2, ζ2) ∈ NF (x, y). As
B̄r1−ε(y) ⊂ B̄r1(y0) we can find, for any v ∈ (r1−ε)B̄Y , a sequence ((xn, yn))n∈N ⊂ F such
that (yn)n∈N converges to y − v and (xn)n∈N ⊂ B̄r2(x0). Now we get, endowing X × Y
with the norm ‖(u, v)‖δ = max(‖u‖, δ‖v‖),

‖(x− xn, y − yn)‖δ‖(ξ, ζ)‖∗ ≥ 〈ξ2, x− xn〉+ 〈ζ1, y − yn〉+ 〈ζ2, y − yn〉 ≥ 〈ζ1, y − yn〉,

yielding 〈ζ1, v〉 ≤ (r2 + ε)‖(ξ, ζ)‖∗ and then ‖(ξ, ζ)‖∗ ≥
r1 − ε

r2 + ε
= σ. Thus we derive from

(9) that, for all z ∈ Y ,
inf

[fz>0]∩(Bε(x0)×Bε(x0))
|∇δfz| ≥ σ,

and then the conclusion of the theorem follows from Theorem 3.2 (a) applied with Z =
Y .

4.2. Normal conditions

Given a multifunction F ⊂ X × Y and a subdifferential operator ∂, the coderivative
D∗F (x, y) at a point (x, y) ∈ F is the multifunction D∗F (x, y) ⊂ Y ∗ × X∗ defined by
D∗F (x, y) = {(ζ, ξ) ∈ Y ∗ × X∗ : (ξ,−ζ) ∈ NF (x, y)} where NF (x, y) = ∂iF (x, y) is the
normal cone associated to the subdifferential operator ∂. We shall further denote by SY ∗

the unit sphere in Y ∗. Given a metrix space Z, a subset S ⊂ Z and z0 ∈ clS, the notation

z
S→ z0 will mean z goes to z0 in S.

4.2.1. Characterization using coderivatives

The following basic result is a mixing of the main results of [33, Section 6] and [47].

Theorem 4.2. Let X, Y be Banach spaces, let ∂ be a subdifferential satisfying (P1) and
(P2) on X × Y and let F ⊂ X × Y be a closed multifunction. Assume that

lim inf
(x,y)

F→(x0,y0)

d∗(0, D
∗F (x, y)(SY ∗)) > τ > 0 .

Then there exists a neighborhood W of (x0, y0) such that

τ d(x, F−1(y)) ≤ d(y, F (x)) for all (x, y) ∈ W. (18)

Conversely, assuming that (18) holds true, then

lim inf
(x,y)

F→(x0,y0)

d∗(0, D
∗F (x, y)(SY ∗)) ≥ τ,
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whenever ∂ is the Fréchet subdifferential or the s-Hölder-smooth subdifferential or the Dini
subdifferential where X and Y are finite dimensional.

Proof. Let us set as usual fz(x, y) = ‖z−y‖+iF (x, y) = g(x, y)+iF (x, y) and let us endow
X×Y with the norm ‖(x, y)‖ = max(‖x‖, τ−1‖y‖) whose dual norm is ‖(ξ, ζ)‖∗ = ‖ξ‖∗+
τ‖ζ‖∗. We can find an open neighborhoodW0 of (x0, y0) such that d∗(0, D

∗F (x, y)(SY ∗)) >
τ for all (x, y) ∈ W0 ∩ F . Let z ∈ Y and (x, y) ∈ W0 ∩ F ∩ [fz>0] and let (x1, y1),
(x2, y2) ∈ W0 ∩ F , ξ1 ∈ ∂g(x1, y1), (ξ2, ζ2) ∈ NF (x2, y2). Assume that (x1, y1) is close
enough to (x, y) in order that ‖z − y1‖ > 0. We have ξ1 = (0, ζ1) with ‖ζ1‖∗ = 1 so that

‖(0, ζ1) + (ξ2, ζ2)‖∗ = ‖ξ2‖∗ + τ‖ζ1 + ζ2‖∗ ≥ ‖ξ2‖∗ − τ‖ζ2‖∗ + τ ≥ τ

since ξ2 ∈ D∗F (x2, y2)(−ζ2). Thus we derive from Proposition 2.6 that |∇fz|(x, y) ≥ τ
for all (x, y) ∈ W0 ∩ [fz>0] and then the conclusion of the theorem follows from Theorem
3.2.

Assume now that (18) holds true. We derive from Theorem 3.2 that there exists r > 0
such that |∇δfz|(x, y) ≥ τ for all (x, y, z) ∈ Br(x0)×Br(y0)×Br(y0) such that fz(x, y) > 0
with δ = 1/τ . For any of the three subdifferentials involved, we have ∂g(x, y)+∂iF (x, y) ⊂
∂fz(x, y). Now let (x, y) ∈ F ∩ (Br(x0) × Br(y0)), let ζ ∈ SY ∗ and let ξ ∈ D∗F (x, y)(ζ),
so that (ξ,−ζ) ∈ NF (x, y). Given ε > 0, we can find by the Bishop-Phelps Theorem
(see e.g. [19, Theorem 7.2]) χ ∈ SY ∗ and v ∈ SY = {w ∈ Y : ‖w‖ = 1} such that
‖ζ−χ‖∗ ≤ τ−1ε and 〈χ, v〉 = 1. Let t > 0 small enough in order that z = y− tv ∈ Br(y0).
We have (0, χ) ∈ ∂g(x, y) so that (ξ, χ− ζ) ∈ ∂fz(x, y) and then, by Proposition 2.9,

‖(ξ, χ− ζ)‖∗ = ‖ξ‖∗ + τ‖χ− ζ‖∗ ≥ |∇δfz|(x, y) ≥ τ,

from which we get ‖ξ‖∗ ≥ τ − ε and then ‖ξ‖∗ ≥ τ by letting ε go to 0.

4.2.2. The Borwein-Zhu sufficient condition

Given a metric space X, a subset A ⊂ X and a mapping h defined near x0 ∈ A with values
in a metric space space Y , we say that (h,A) is metrically regular near x0 whenever there
exist τ > 0 and neighborhoods V of x0 and W of y0 = h(x0) such that τ d(x, h−1(y)∩A) ≤
d(y, h(x)) for all (x, y) ∈ (V ∩ A) × W . This amounts to say that the multifunction
{(x, h(x)) : x ∈ A} is metrically regular near (x0, y0).

Lemma 4.3. Let X be a Banach space, let A ⊂ X be a closed set and let h be a continuous
mapping defined near x0 ∈ A with values in a normed space Y . Then (h,A) is metrically
regular near x0 if and only if there exist neighborhoods V of x0 and W of y0 such that

inf










(x, y) ∈ (V ∩ A)×W

h(x) 6= y

|∇fy|(x) > 0, (19)

where fy(x) = ‖h(x)− y‖+ iA(x).

Proof. Observing that [fy≤0] = h−1(y)∩A and that f(x, ·) is continuous for all x ∈ X, we
derive from Theorem 2.13 that (h,A) is metrically regular near x0. Conversely, assume
that (h,A) is metrically regular near x0, so that we can find r > 0, ρ > 0 such that
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τ d(x, h−1(y) ∩ A) ≤ ‖h(x)− y‖ all (x, y) ∈ (Br(x0) ∩ A)× B2ρ(y0). Let V ⊂ Br(x0) and
W ⊂ B2ρ(y0) be such that ‖h(x)−y‖ < ρ for all (x, y) ∈ V ×W and let (x, y) ∈ (V ∩A)×W
be such that h(x) 6= y. Setting γn = fy(x) − n−1, we get γn > 0, fy(x) > γn and
τ − n−1 > 0 eventually. Thus there exist θn ∈ (0, 1) and zn ∈ Y such that ‖zn − y‖ = γn
and zn = y + θn(h(x) − y), from which we get zn ∈ B2ρ(y0). As h(x) 6= zn, we can find
xn ∈ h−1(zn) ∩ A such that

(τ − n−1)‖x− xn‖ ≤ ‖zn − h(x)‖ = (1− θn)‖h(x)− y‖ = fy(x)− fy(xn) = fy(x)− γn.

It follows that (xn)n∈N converges to x and that

τ ≤ lim sup
n→∞

fy(x)− fy(xn)

‖x− xn‖
≤ |∇fy|(x),

yielding the conclusion of the lemma.

Theorem 4.4. Let X, Y be Banach spaces with β-smooth norms, let A ⊂ X be a closed
set, and let h be defined and continuous near x0 ∈ A. Assume that h is strictly differen-
tiable at x0 and that (h,A) is not metrically regular near x0. Then

lim inf
x

A→x0

d∗(0,Λ
∗(SY ∗) +Nβ

A(x)) = 0 (20)

where Λ = Dh(x0) and where SY ∗ = {ζ ∈ Y ∗ : ‖ζ‖∗ = 1} is the unit sphere in Y ∗.

Proof. Let ε > 0, δ > 0 and let 0 < η < δ such that h − Λ is ε-Lipschitzian on
B2η(x0). From Lemma 4.3, we can find x ∈ Bη(x0) ∩ A ∩ [fy>0] and y ∈ Bη(y0) such
that |∇fy|(x) < ε, so that the function fy(·) + ε‖y − ·‖ admits a local minimum at x.
Setting g(z, y) = ‖h(z) − y‖ and applying [13, Theorem 2.9], we can find x1 ∈ Bη(x0),

x2 ∈ Bη(x0) ∩ A and ξ1 ∈ Dβgy(x1), ξ2 ∈ Nβ
A(x2) such that ‖h(x1) − y‖ > 0 and

‖ξ1 + ξ2‖∗ ≤ ε. Let u ∈ B̄X so that we can find tu > 0 such that

t−1(‖h(x1 + tu)− y‖ − ‖h(x1)− y‖) ≥ 〈ξ1, u〉 − ε ≥ −〈ξ2, u〉 − 2ε for all t ∈ (0, tu).

Let us set ζt(u) = ∇β(‖·‖)(h(x1+ tu)−y) which is well defined for all t > 0 small enough.
As ‖ζt(u)‖∗ = 1, we have for all t > 0 small enough

〈ζt(u), t−1(h(x1 + tu)− y − (h(x1)− y))− Λ(u)〉 ≤ ε,

hence t−1(‖(h(x1 + tu) − y‖ − (‖(h(x1) − y‖) ≤ 〈ζt(u),Λ(u)〉 + ε for all t ∈ (0, tu). As
ζt(u) weakly converges to ζ = ∇β(‖ · ‖)(h(x1) − y), we get 〈Λ∗(ζ) + ξ2, u〉 ≥ −3ε for all
u ∈ B̄X yielding ‖Λ∗(ζ) + ξ2‖∗ ≤ 3ε and then d∗(0,Λ

∗(SY ∗) + Nβ
A(x2)) ≤ 3ε, so that

lim inf
x

A→x0
d∗(0,Λ

∗(SY ∗) +Nβ
A(x)) = 0.

Remark 4.5. In [13, Theorem 4.3] the preceding result is obtained with (20) replaced
by lim inf

x
A→x0

d∗(0,Λ
∗(SY ∗) + Ñβ

A(x)) = 0 with Ñβ
A(x) =

⋃

L>0 LDβdA(x). As Nβ
A(x) ⊂

Ñβ
A(x), Theorem 4.4 extends the quoted result.
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4.2.3. Pointwise criteria

Given a subdifferential operator ∂ and a multifunction F ⊂ X × Y , we say that F is ∂-
codirectionally compact at (x0, y0) ∈ F whenever for any sequence ((xn, yn))n∈N ⊂ F con-
verging to (x0, y0) and for any sequence ((ξn, ζn))n∈N ⊂ X∗×Y ∗ with ξn ∈ D∗F (xn, yn)(ζn)
such that (ξn)n∈N converges to 0, then (ζn)n∈N converges to 0 whenever it ∗-weakly con-
verges to 0. It is clear that any closed multifunction is ∂-codirectionally compact at each
(x0, y0) ∈ F for any subdifferential operator whenever Y is finite dimensional. The next
theorem captures the main results of [46, 48, 53].

Theorem 4.6. Let X, Y be Banach spaces and let F ⊂ X × Y be a closed multifunction
which is Ý∂-codirectionally compact at (x0, y0) ∈ F where Ý∂ is the Fréchet subdifferential.

a) Assume that X and Y are Asplund and that

KerD∗F (x0, y0) = {0},
where D∗F (x0, y0) is the Mordukhovich (limiting Fréchet) coderivative and

KerD∗F (x0, y0) = {ζ ∈ Y ∗ : 0 ∈ D∗F (x0, y0)(ζ)}.
Then F is metrically regular near (x0, y0).

b) Conversely, if X is finite dimensional and if F is metrically regular near (x0, y0),
then KerD∗F (x0, y0) = {0}.

Proof. a) We claim that lim inf
(x,y)

F→(x0,y0)
d∗(0, ÝD

∗F (x, y)(SY ∗)) > 0 where ÝD∗F (x, y)

stands for the Fréchet coderivative, which will give the conclusion of the theorem by
Theorem 4.2. Indeed, if not, we can find sequences ((xn, yn))n∈N ⊂ F converging to
(x0, y0) and ((ξn, ζn))n∈N ⊂ X∗ × Y ∗ with (ζn)n∈N ⊂ SY ∗ , ξn ∈ ÝD∗F (xn, yn)(ζn) such that
(ξn)n∈N converges to 0. Denoting also by (ζn)n∈N a subsequence that ∗-weakly converges
to some ζ ∈ Y ∗, we get ζ ∈ KerD∗F (x0, y0) thus ζ = 0. It follows that (ζn)n∈N converges
to 0 contradicting the fact that ‖ζn‖∗ ≡ 1.

b) Conversely, assume that KerD∗F (x0, y0) 6= {0}, so that there exists ζ ∈ SY ∗ such that
(0, ζ) ∈ NF (x0, y0). Thus we can find sequences ((xn, yn))n∈N ⊂ F converging to (x0, y0)
and ((ξn, ζn))n∈N ⊂ X∗ × Y ∗ such that (ξn)n∈N converges to 0 and (ζn)n∈N ∗- weakly con-
verges to ζ. Considering a subsequence still denoted by ((ξn, ζn))n∈N such that (‖ζn‖∗)n∈N
converges to some c > 0, we derive that (Ýξn, Ýζn) ∈ ÝNF (xn, yn) where Ýξn = ‖ζn‖−1ξn and
Ýζn = ‖ζn‖−1ζn ∈ SY ∗ . As (Ýξn)∈N converges to 0, we get lim inf

(x,y)
F→(x0,y0)

d∗(0, ÝD
∗F (x, y)

(SY ∗)) = 0 thus F is not metrically regular near (x0, y0) by applying again Theorem
4.2.

As a consequence, we derive the nice characterization given by Mordukhovich in [46].

Theorem 4.7. Let X, Y be finite dimensional spaces and let F ⊂ X × Y be a closed
multifunction. Then F is metrically regular near (x0, y0) ∈ F if and only if

KerD∗F (x0, y0) = {0},
where D∗F (x0, y0) is the Mordukhovich (limiting Fréchet) coderivative.

Proof. Follows immediately from Theorem 4.6 since finite dimensional spaces are As-
plund and each closed multifunction F ⊂ X × Y is ∂-codirectionally compact at each
(x0, y0) ∈ F for any subdifferential operator.
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4.3. Tangencial conditions

Let us list the definitions of the tangent cones and directional derivatives we shall use
in this section. Given a subset C ⊂ X of a normed space and ε > 0, the ε-contingent
cone to C at x0 ∈ cl (C) is the set T ε

C(x0) of those u ∈ X such that there exist sequences
(un)n∈N ⊂ B̄(u, ε‖u‖) and (tn)n∈N ⊂ (0,+∞) converging to 0 such that x0 + tnun ∈ C
for all n ∈ N. We also need a notion of ε-directional derivative namely, given f : X →
R ∪ {+∞}, ε > 0, x0 ∈ dom f and u ∈ X:

f ′
ε(x0;u) = lim inf

t↓0

(

inf
v∈B̄(u,ε‖u‖)

f(x0 + tv)− f(x0)

t

)

.

Observe that these two notions depend on the norm and that (iC)
′
ε(x0; ·) = iT ε

C(x0). Then,
it is clear that

(1 + ε)‖u‖|∇f |(x0) ≥ −f ′
ε(x0;u). (21)

Moreover, it is also clear that

f ′
ε(x0;u) ≤ g′(x0;u) +Kε‖u‖+ h′

ε(x0;u) (22)

whenever f = g + h with g : X → R convex and Lipschitz continuous of rank K near x0.

The contingent cone (or Bouligand cone, see [16, p. 32]) to C at x0 ∈ cl (C) is the set
TC(x0) of u ∈ X for which there exist sequences (un)n∈N converging to u and (tn)n∈N ⊂
(0,+∞) converging to 0 such that x0 + tnun ∈ C for all n ∈ N. In other words TC(x0) =
⋂

ε>0 T
ε
C(x0) and we have i′C(x0; ·) = iTC(x0) where f ′(x;u) := lim inf

t↘0
v→u

f(x+ tv)− f(x)

t
.

Given a subset C ⊂ X of a normed space, the Clarke tangent cone to C at x0 ∈ cl (C) is
the closed convex cone T ↑

C(x0) defined by

T ↑
C(x0) = {u ∈ X : lim











x
C→ x0

t ↓ 0

t−1d(x+ tu, C) = 0}.

4.3.1. The Borwein-Aubin-Frankowska Theorem

The next theorem which is [3, Theorem 2.3] is also a consequence of [11, Theorem 3.1].

Theorem 4.8. Let X, Y be Banach spaces such that Y is finite dimensional, let F ⊂
X × Y be a closed multifunction, and let (x0, y0) ∈ F . Assume that T ↑

F (x0, y0)(X) = Y .
Then F is metrically regular near (x0, y0).

Proof. Let us endow Y with a norm such that B̄Y = co (v1, · · · , vN) for some N ∈ N and
some v1, · · · , vN ∈ Y . From our assumption, we can find τ > 0 and u1, · · · , uN ∈ X such
that (ui, vi) ∈ T ↑

F (x0, y0) and ‖ui‖ ≤ τ−1‖vi‖, i = 1, · · · , N . Let us endow X × Y with
the norm ‖(x, y)‖ = max(‖x‖, τ−1‖y‖) and let us set

K = pos ((u1, v1), · · · , (uN , vN)) =
N
∑

i=1

R+(ui, vi)
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so that K is a closed convex cone contained in T ↑
F (x0, y0) and τB̄Y ⊂ K(B̄X). Given

ε ∈ (0, 1), we can find, by Ascoli’s Theorem and by the definition of the Clarke tangent
cone, a neighborhood W of (x0, y0) and η > 0 such that d((u, v), t−1(F − (x, y)) < ε for
all (u, v) ∈ K ∩ B̄X×Y , for all (x, y) ∈ F ∩ W and for all t ∈ (0, η). For z ∈ Y , let us
define a lower semicontinuous function fz : X × Y −→ R ∪ {+∞} by

fz(x, y) = ‖z − y‖+ iF (x, y),

and let z ∈ Y and let (x, y) ∈ F ∩W be such that fz(x, y) > 0. Setting v = τ
z − y

‖y − z‖
,

we can find u ∈ B̄X such that (u, v) ∈ K ∩ B̄X×Y . Thus there exists, for all t ∈ (0, η) a
vector (ut, vt) ∈ X × Y such that (x, y) + t(ut, vt) ∈ F and ‖(ut, vt)− (u, v)‖ < ε, so that

fz((x, y) + t(ut, vt))− fz(x, y) ≤ ‖y − z + tv‖ − ‖y − z‖+ tτε ≤ −tτ + tτε,

yielding (1 + ε)|∇fz|(x, y) ≥ τ(1 − ε). Thus the conclusion of the theorem follows from
Theorem 3.2 applied with Z = Y .

In fact the Borwein-Aubin-Frankowska Theorem can be deduced from a more general
result exposed in the next subsection.

4.3.2. Equi-circatangency

The results of this subsection are taken from [6].

Definition 4.9. Let X be a Banach space and let C ⊂ X be a subset of X. We say that
a cone K is equi-circatangent to C at x0 ∈ cl (C) whenever

lim










x
C→ x0

t ↓ 0

e
(

K ∩ B̄X ,
C − x

t

)

= 0.

Thus if K is equi-circatangent to C at x0 we have K ⊂ T ↑
C(x0).

Theorem 4.10. Let X, Y be Banach spaces, let F ⊂ X × Y be a closed multifunction,
and let (x0, y0) ∈ F . Assume that there exists a cone K ⊂ X × Y such that K is equi-
circatangent to F at (x0, y0) and there exists τ > 0 such that τ B̄Y ⊂ K(B̄X). Then for
all σ ∈ (0, τ), there exists a neighborhood W of (x0, y0) such that

σ d(x, F−1(y)) ≤ d(y, F (x)) for all (x, y) ∈ W.

Proof. For z ∈ Y , let us define a lower semicontinuous function fz : X×Y −→ R∪{+∞}
by

fz(x, y) = ‖z − y‖+ iF (x, y).

Let us endow X × Y with the norm ‖(x, y)‖ = max(‖x‖, τ−1‖y‖) and let ε ∈ (0, 1) be

such that σ ≤ τ
1− ε

1 + ε
. We can find a neighborhood W of (x0, y0) and η > 0 such that

d((u, v), t−1(F −(x, y))) < ε for all (u, v) ∈ K∩B̄X×Y , (x, y) ∈ F ∩W and t ∈ (0, η). Now
let z ∈ Y and let (x, y) ∈ F ∩W be such that fz(x, y) > 0. Setting v = τ‖y−z‖−1(z−y),
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we can find u ∈ B̄X such that (u, v) ∈ K. As (u, v) ∈ B̄X×Y , there exists, for all t ∈ (0, η)
a vector (ut, vt) ∈ X × Y such that (x, y) + t(ut, vt) ∈ F and ‖(ut, vt) − (u, v)‖ < ε, so
that

fz((x, y) + t(ut, vt))− fz(x, y) ≤ ‖y − z + tv‖ − ‖y − z‖+ tτε ≤ −tτ + tτε,

yielding (1 + ε)|∇fz|(x, y) ≥ τ(1 − ε) and then |∇fz|(x, y) ≥ σ. Thus the conclusion of
the theorem follows from Theorem 3.2 applied with Z = Y .

Remark 4.11. a) By the Ursescu-Robinson theorem, the assumptions of Theorem 4.10
are fulfilled whenever the equi-circatangent cone K is closed and convex and satisfies
K(X) = Y .

b) In [5], Aubin and Frankowska define a closed set C to be uniformly sleek at x0 ∈ A if
lim

x
C→x0

e(TC(x0) ∩ B̄X , TC(x)) = 0. In that case the contingent and the Clarke tangent

cone at x0 do coincide. One easily checks (see [6, Proposition 2.4]) that, assuming C to
be uniformly sleek at x0, the Clarke tangent cone T ↑

C(x0) is then equi-circatangent to C
at x0. Nevertheless, there exist (see [6]) closed sets C 3 x0 whose Clarke tangent cone is
equi-circatangent to C at x0 which are not uniformly sleek at x0. It follows that Theorem
4.10 extends the results of [5] based on uniform sleekness.

4.3.3. ε-Contingent cone

The next theorem is a slight improvement of [7, Theorem 3.2].

Theorem 4.12. Let X, Y be Banach spaces, let F ⊂ X × Y be a closed multifunction,
and let (x0, y0) ∈ F . Assume that there exist ε > 0, τ > 0, a neighborhood W0 of (x0, y0)
and γ ≥ 0 such that τ − γ − ε(τ + γ) > 0 and

τB̄Y ⊂ T ε
F (x, y)(B̄X) + γB̄Y for all (x, y) ∈ W0 ∩ F. (23)

Then there exists a neighborhood W of (x0, y0) such that

σ d(x, F−1(y)) ≤ d(y, F (x)) for all (x, y) ∈ W,

where σ =
τ − γ − ε(τ + γ)

(1 + ε)(1 + τ−1γ)
> 0.

Proof. Let us endow X × Y with the norm ‖(x, y)‖ = max(‖u‖, τ−1‖v‖), and let us
define, for z ∈ Y a lower semicontinuous function fz : X×Y −→ R∪{+∞} by fz(x, y) =
‖z − y‖+ iF (x, y). Now let z ∈ Y and let (x, y) ∈ W0 ∩ F such that fz(x, y) > 0. Setting
v = τ‖y− z‖−1(z− y), we can find (u,w) ∈ T ε

F (x, y) such that ‖u‖ ≤ 1 and ‖w− v‖ ≤ γ.
Relying on (22) and observing that (x, y) 7−→ ‖z − y‖ is τ -Lipschitzian, we get

(fz)
′
ε((x, y), (u,w)) ≤ ‖ · ‖′(y − z;w) + τε(‖(u,w)‖+ (iF )

′
ε((x, y), (u,w))

≤ ‖ · ‖′(y; v) + γ + τε(1 + τ−1γ),

thus (fz)
′
ε((x, y), (u,w)) ≤ −τ+γ+ε(τ+γ), from which we get by (21) that |∇fz|(x, y) ≥

σ. Thus the conclusion of the theorem follows from Theorem 3.2 applied with Z = Y .

A very slight modification of the proof of Theorem 4.12 yields [2, Theorem 2]:
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Theorem 4.13. Let X, Y be Banach spaces, let F ⊂ X × Y be a closed multifunction,
and let (x0, y0) ∈ F . Assume that there exist τ > 0, a neighborhood W0 of (x0, y0) and
γ ∈ [0, τ) such that

τB̄Y ⊂ TF (x, y)(B̄X) + γB̄Y for all (x, y) ∈ W0 ∩ F. (24)

Then there exists a neighborhood W of (x0, y0) such that

τ − γ

1 + τ−1γ
d(x, F−1(y)) ≤ d(y, F (x)) for all (x, y) ∈ W.

Proof. For all ε ∈
(

0,
τ − γ

τ + γ

)

, and for all z ∈ Y we have (23) with W0 independent of ε.

For all (x, y) ∈ W0 ∩ [fz>0], we know from the proof of Theorem 4.12 that |∇fz|(x, y) ≥
τ − γ − ε(τ + γ)

(1 + ε)(1 + τ−1γ)
. Letting ε decrease to 0, we derive that |∇fz|(x, y) ≥

τ − γ

1 + τ−1γ
, hence

the conclusion of the theorem follows by applying Theorem 3.2 with Z = Y .

Remark 4.14. a) One can have γ = 0 in (24). It follows that if, for some τ > 0 and
some neighborhood W0 of (x0, y0) we have

τB̄Y ⊂ TF (x, y)(B̄X) for all (x, y) ∈ W0 ∩ F. (25)

Then there exists a neighborhood W of (x0, y0) such that τ d(x, F−1(y)) ≤ d(y, F (x))
for all (x, y) ∈ W . Conversely, assuming that F is metrically regular near (x0, y0), then
there exists τ > 0, η > 0 and neighborhoods U of x0 and V of y0 such that for all
(x, y) ∈ (U × V )∩F , v ∈ B̄Y and for all t ∈ (0, η), we have y+ τtv ∈ F (x+ tut) for some
ut ∈ B̄X , from which we get

τB̄Y ⊂
⋂

t∈(0,η)

t−1(F (x+ tB̄X)− y) for all (x, y) ∈ (U × V ) ∩ F. (26)

Then for all (x, y) ∈ (U ×V )∩F , v ∈ τB̄ and for t > 0 small enough, there exists ut ∈ B̄
such that (x+ tut, y+ tv) ∈ F . It follows that assuming Y to be finite dimensional, there
exists (u, v) ∈ TF (x, y) with ‖u‖ ≤ 1, thus condition (25) is in fact a characterization of
metric regularity of F near (x0, y0).

b) Assume that assumption (25) is replaced by the weaker one: there exists some τ > 0
and some neighborhood W0 of (x0, y0) such that

τB̄Y ⊂ (coTF (x, y))(B̄X) for all (x, y) ∈ W0 ∩ F. (27)

Then, it is shown in [23] that F is metrically regular near (x0, y0) whenever X and Y are
finite dimensional. In fact this conclusion still holds under the weaker condition that X
and Y are Asplund spaces. Indeed it is easily shown (see e.g. [53, Lemma 3.1]) that (27)
leads to ‖ξ‖∗ ≥ τ‖ζ‖∗ for all (ξ, ζ) ∈ TF (x, y)

− and for all (x, y) ∈ W0 where TF (x, y)
−

denotes the negative polar cone of TF (x, y). As the Fréchet normal cone ÝNF (x, y) is
contained in TF (x, y)

−, it then follows from Theorem 4.2 that, assuming X and Y to be
Asplund spaces, then the multifunction F is metrically regular near (x0, y0).
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c) Assume that there exist τ > 0 and a neighborhood W of (x0, y0) such that

τB̄Y ⊂ Lim sup
t↓0

F (x+ tB̄X)− y

t
for all (x, y) ∈ W ∩ F, (28)

where Lim supt↓0 St =
⋂

η>0 cl
(

⋃

t∈(0,η) St

)

. Let us endowX×Y with the norm ‖(u, v)‖ =

max(‖u‖, τ−1‖v‖) and let us set, for any z ∈ Y , fz(x, y) = ‖z − y‖ + iF (x, y). For any
(x, y) ∈ [fz>0]∩W , we can find sequences (tn)n∈N ⊂ (0,+∞) converging to 0, (un)n∈N ⊂

B̄X and (vn)n∈N ⊂ Y converging to v = τ
z − y

‖z − y‖
such that (x + tnun, y + tnvn) ∈ F for

all n ∈ N. It then follows, for n large enough (so that 1− tnτ‖z − y‖−1 ≥ 0)

fz(x+ tnun, y + tnvn) ≤ ‖y + tnv − z‖+ tn‖vn − v‖ ≤ fz(x, y)− tnτ + tn‖vn − v‖

thus, for n large enough in order that vn 6= 0,

max(1, τ−1‖vn‖)
fz(x, y)− fz((x, y) + tn(un, vn))

tn‖(un, vn)‖
≥ τ − ‖vn − v‖

yielding |∇fz|(x, y) ≥ τ . Thus we get from Theorem 3.2 applied with Z = Y that F is
metrically regular near (x0, y0), this is [27, Theorem 6.1]. In fact (26) shows that (28) is
a characterization of metric regularity.

d) In fact Theorem 4.10 follows from Theorem 4.12. Indeed, we know from [6, Proposition
2.3] that a cone K is equi-circatangent to a set C ⊂ X, X Banach, at x0 ∈ clC if and
only if, for all ε > 0, there exists a neighborhood V of x0 such that K ⊂

⋂

x∈V ∩C T ε
C(x).

4.3.4. The Ursescu Theorem

Theorem 4.15. Let X, Y be Banach spaces and let F ⊂ X×Y be a closed multifunction.
Assume that there exists an open neighborhood W of (x0, y0) ∈ F and τ > 0 such that

τBY ∩ TF (x, y)(X) ⊂ cl
(

TF (x, y)(BX)
)

for all (x, y) ∈ W ∩ F.

Then there exists neighborhoods U of x0 and V of y0 such that

τ d(x, F−1(y)) ≤ d(y, F (x)) for all (x, y) ∈ U × (V ∩ Z).

where Z =
⋂

(x,y)∈W∩F

(y + cl (TF (x, y)(X))).

Proof. Let us endow X × Y with the norm ‖(x, y)‖ = max(‖x‖, τ−1‖y‖) and let us
consider, for any z ∈ Z, the function fz : X × Y −→ R ∪ {+∞} defined by fz(x, y) =
‖z − y‖ + iF (x, y). Let (x, y) ∈ F ∩ W and z ∈ Z be such that (x, y) ∈ [fz>0]. Given
ε ∈ (0, τ) and setting v = (τ − ε)‖y− z‖−1(z− y), we can find w′ ∈ TF (x, y)(X) such that
‖w′ − v‖ ≤ ε and u ∈ B̄X , w ∈ Y such that (u,w) ∈ TF (x, y) and ‖w′ − w‖ ≤ ε. Given
sequences (tn)n∈N ⊂ (0,+∞) converging to 0 and ((un, wn))n∈N ⊂ X × Y converging to
(u,w) such that (x, y) + tn(un, wn) ∈ F , we have

fz(x, y)− fz(x+ tnun, y + tnwn)

tn
≥ ‖y − z‖ − ‖y + tnv − z‖

tn
− ‖wn − w‖ − 2ε

≥ τ − 3ε,
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yielding ‖(u,w)‖|∇fz|(x, y) ≥ τ −3ε and then, by letting ε go to 0, |∇fz|(x, y) ≥ τ . Thus
the conclusion of the theorem follows from Theorem 3.2.

Remark 4.16. In [58, Theorem 2] Ursescu proves a partial converse to Theorem 4.15.
Namely, assuming that X is finite dimensional and that, for some subset Z ⊂ Y , there
exist neighborhoods U of x0 and V of y0 such that

τ d(x, F−1(y)) ≤ d(y, F (x)) for all (x, y) ∈ U × (V ∩ Z),

then it follows from the quoted theorem that, for any σ ∈ (0, τ),

σBY ∩ TZ(y) ⊂ TF (x, y)(BX) for all (x, y) ∈ F ∩ (U × V ).

In particular, if X is finite dimensional and if F is metrically regular near (x0, y0) (which
corresponds to the case Z = Y ), then σBY ⊂ TF (x, y)(BX) for all σ ∈ (0, τ) and for all
(x, y) ∈ F ∩ (U × V ).

4.4. Parametric results

4.4.1. Tangencial results

Given Banach spaces X, Y and a metric space P , we say that a mapping h(·, ·) defined
in a neighborhood of (x0, p0) ∈ X × P with values in Y is partially strictly differentiable
in x at (x0, p0) whenever there exists a linear continuous mapping φ ∈ L(X, Y ) such that
for all ε > 0, there exist neighborhoods V0 of x0 and U0 of p0 such that

‖h(x, p)− h(z, p)− φ(x− z)‖ ≤ ε‖x− z‖ for all (x, z, p) ∈ V0 × V0 × U0.

Observe that we then have φ = Dhp0(x0) where hp(·) = h(·, p). The following theorem is
[11, Theorem 4.1].

Theorem 4.17. Let X, Y be Banach spaces, let P be a topological space, let A ⊂ X be
a closed convex set, and let h be defined and continuous near (x0, p0) ∈ A×P with values
in Y . Assume that h is partially strictly differentiable in x at (x0, p0) and that

0 ∈ core
(

Dhp0(x0)(A− x0)
)

. (29)

Then there exist τ > 0 and neighborhoods U of x0, V of y0 = h(x0, p0) and N of p0 such
that

τ d(x, h−1
p (y) ∩ A) ≤ ‖hp(x)− y‖ for all (x, y, p) ∈ (A ∩ U)× V ×N.

Proof. From assumption (29), we can find τ > 0 and an open neighborhood Ũ0 of x0 such
that τB̄Y ⊂ cl

(

φ((A− x) ∩ B̄X)
)

for all x ∈ Ũ0 where φ = Dhp0(x0). Given ε ∈ (0, τ/2),

we can find open neighborhoods ÝU0 of x0 and N0 of p0 such that

‖h(x, p)− h(z, p)− φ(x− z)‖ ≤ ε‖x− z‖ for all (x, z, p) ∈ ÝU0 × ÝU0 ×N0.

Let us set W0 = Ũ0∩ ÝU0 and fp,y(x) = ‖h(x, p)−y‖+ iA(x), so that [fp,y≤0] = h−1
p (y)∩A.

Let (p, y) ∈ N0 × Y and x ∈ [fp,y>0] ∩ A ∩W0. Setting Ýw = τ
y − h(x, p)

‖h(x, p)− y‖
, we can find
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w ∈ Y and v ∈ B̄X such that ‖w − Ýw‖ ≤ ε, w = φ(v) and v ∈ (A − x) ∩ B̄X . We then
have, for all t > 0 small enough

‖h(x+ tv, p)− y‖ ≤ ‖h(x, p)− y + t Ýw‖+ 2tε ≤ ‖h(x, p)− y‖ − tτ + 2tε.

Thus we have |∇fp,y|(x) ≥ τ−2ε for all (p, y) ∈ N0×Y and x ∈ [fp,y>0]∩W0 and then the
conclusion of the theorem follows from Theorem 2.13 applied with the parameter space
P × Y , observing that the function (p, y) 7→ fp,y(x0) is continuous.

A multifunction F ⊂ P ×X between topological spaces is said to be lower semicontinuous
at (p0, x0) ∈ F whenever x0 ∈ Lim infp→p0 F (p). This is equivalent to the fact that the
function f : X × P → R ∪ {+∞} defined by f(x, p) = iF (p, x) = iF (p)(x) is epi-upper
semicontinuous at (x0, p0).

In [9, Corollary 5.5], one can find a parametric metric regularity result involving a condi-
tion based on the ε-contingent derivative of the multifunctions.

Theorem 4.18. Let X, Y be Banach spaces, P a metric space, and let

F ⊂ P × (X × Y )

be a closed-valued multifunction which is lower semicontinuous at (p0, (x0, y0)) ∈ F . As-
sume that there exist ε > 0, τ > 0, neighborhoods W0 of (x0, y0), U0 of p0 and γ ≥ 0 such
that τ − γ − ε(τ + γ) > 0 and

τB̄Y ⊂ T ε
Fp
(x, y)(B̄X) + γB̄Y for all (x, y) ∈ W0 ∩ F and for all p ∈ U0. (30)

Then there exists neighborhoods U of x0, W of y0, N of p0 such that F−1
p (z) 6= ∅ for all

(p, z) ∈ N ×W and such that

σ d(x, F−1
p (z)) ≤ d(z, Fp(x)) for all (x, z, p) ∈ U ×W ×N,

where σ =
τ − γ − ε(τ + γ)

(1 + ε)(1 + τ−1γ)
.

Proof. For (p, z) ∈ P × Y , let us define fp,z : X × Y −→ R ∪ {+∞} by fp,z(x, y) =
‖z − y‖ + iFp(x, y). Observe that the functions fp,z are lower semicontinuous, that
fp0,y0(x0, y0) = 0 and that the function f(x, y), (p, z)) = fp,z(x, y) is epi-upper semi-
continuous at ((x0, y0), (p0, y0)) due to the lower semicontinuity of F at (p0, (x0, y0))
and to the Lipschitz continuity of the norm. Let us endow X × Y with the norm
‖(u, v)‖ = sup(‖u‖, τ−1‖v‖) and let (p, z) ∈ U0 × Y and (x, y) ∈ W0 ∩ Fp be such that
fp,z(x, y) > 0. From the proof of Theorem 4.12, we obtain that |∇fp,z|(x, y) ≥ σ. Apply-

ing Theorem 2.13 yields the existence of neighborhoods ÝN of p0, ÝW , ÝV of y0 and ÝU of x0

such that [fp,z≤0] 6= ∅ for all (p, z) ∈ ÝN× ÝW and such that σ d((x, y), [fp,z≤0]) ≤ fp,z(x, y)

for all ((x, y), (p, z)) ∈ ÝU × ÝV × ÝN × ÝW from which we get

σ d(x, F−1
p (z)) ≤ ‖z − y‖ for all (p, (x, y)) ∈ F ∩ ( ÝN × ÝU × ÝV ) and z ∈ ÝW. (31)

Assume now that the conclusion of the theorem fails, so that there exists a sequence
((xn, zn, pn))n∈N converging to (x0, y0, p0) and yn ∈ Fpn(xn) such that d(zn, yn) < σ d(xn,
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F−1
pn (zn)). Considering a mapping p 7→ (xp, yp) such that (xp, yp)∈ Fp and limp→p0(xp, yp) =

(x0, y0), we have

d(yn, ypn)− d(zn, ypn) < σd(xn, xpn) + σ d(xpn , F
−1
pn (zn)) ≤ σd(xn, xpn) + σ d(zn, ypn),

so that (yn)n∈N converges to y0 contradicting (31).

4.4.2. Normal conditions

The next result is [9, Corollary 5.7].

Theorem 4.19. Let X, Y be Banach spaces, let P be a topological space, let ∂ be a
subdifferential satisfying (P1) and (P2) on X × Y and let F ⊂ P × (X × Y ) be a closed
valued multifunction which is lower semicontinuous at some (p0, (x0, y0)) ∈ F . Assume
that

lim inf
(p,x,y)

F→(p0,x0,y0)

d∗(0, D
∗Fp(x, y)(SY ∗)) > τ > 0 .

Then there exist neighborhoods W of (x0, y0) and N of p0 such that

τ d(x, F−1
p (y)) ≤ d(y, Fp(x)) for all ((x, y), p) ∈ W ×N.

Proof. Let us introduce the closed proper function f : (X×Y )× (P ×Y ) −→ R∪{+∞}
defined by f((x, y), (p, z)) = f(p,z)(x, y) = ‖z − y‖ + iFp(x, y) = g(x, y) + iFp(x, y) and
let us endow X × Y with the norm ‖(x, y)‖ = max(‖x‖, τ−1‖y‖) whose dual norm is
‖(ξ, ζ)‖∗ = ‖ξ‖∗ + τ‖ζ‖∗. We can find open neighborhoods U0 of x0, V0 of y0 and N0

of p0 such that d∗(0, D
∗Fp(x, y)(SY ∗)) > τ for all (p, x, y) ∈ (N0 × U0 × V0) ∩ F . Let

p ∈ N0, z ∈ Y and (x, y) ∈ (U0 × V0)∩ [fp,z>0]∩ Fp. Let (p, z) ∈ N0 × Y and let (x1, y1),
(x2, y2) ∈ (U0 × V0) ∩ Fp, ξ1 ∈ ∂g(x1, y1), (ξ2, ζ2) ∈ NFp(x2, y2). Assume that (x1, y1) is
close to (x, y) in order that ‖z − y1‖ > 0. We have ξ1 = (0, ζ1) with ‖ζ1‖∗ = 1 so that

‖(0, ζ1) + (ξ2, ζ2)‖∗ = ‖ξ2‖∗ + τ‖ζ1 + ζ2‖∗ ≥ ‖ξ2‖∗ − τ‖ζ‖2 + τ ≥ τ

since ‖ξ2‖∗ ≥ τ‖ζ‖2. Thus we derive from Proposition 2.6 that |∇fp,z(x, y) ≥ τ for all
(p, z) ∈ N0 × Y and for all (x, y) ∈ [fp,z>0] ∩ (U0 × V0). As F is lower semicontinuous at
(p0, (x0, y0)) and as the norm is Lipschitzian, it follows that f is epi-upper semicontinuous
at ((x0, y0), (p0, y0)). Applying Theorem 2.13, there exists neighborhoods ÝU of x0, ÝV , ÝW
of y0 and ÝN of p0 such that τ d(x, F−1

p (z)) ≤ ‖z− y‖ for all (p, (x, y)) ∈ F ∩ ( ÝN × ÝU × ÝV )

and for all z ∈ ÝW from which one easily gets the conclusion of the theorem as in Theorem
4.18.

Remark 4.20. Parametric results based on coderivatives can be found in a less general
setting in [43, 49] under a coderivative condition which seems to be difficult to check.
Our condition seems to be more natural since it a uniform version, with respect to the
parameter, of the condition used for a single multifunction. Moreover, our condition turns
out to be necessary when using one of the subdifferentials of Proposition 2.9.

As a concluding remark, let us observe that some metric regularity results do not enter
in the framework developped in this article. This is the case for the results based on
the Brouwer’s fixed point theorem, or equivalently the invariance of the domain, such as
[29, 40, 41].
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[7] D. Azé, C. C. Chou, J.-P. Penot: Subtraction theorems and approximate openness for
multifunctions: Topological and infinitesimal viewpoints, J. Math. Anal. Appl. 221(1) (1998)
33–58.
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