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1. Introduction

Separability of two convex sets is one of the fundamental facts of convex analysis that can
be considered as a geometrical form of Hahn-Banach theorem. Some attempts to extend
the notion of separability for star-shaped sets were undertaken in [4] and [3]. (Recall that
a set is star-shaped if it can be represented as the union of a family of convex sets (Ut)t∈T ,
such

⋂

t∈T Ut 6= ∅.) The support collection of linear functions at a regular boundary point
x of a star-shaped set U ⊂ Rn was defined there and the existence of this collection
was proved. A separability of two star-shaped sets by means of m linearly independent
linear functions (the so-called weak separability) was also defined and studied. In the
current paper we introduce the notion of a conical support collection and discuss some
properties of conical collections and also weak separability (Section 2). We also examine
some applications of these notions (Sections 3–5). One of the main goals of this paper is
to indicate some areas of research where the star-shaped separability can be used.

In Section 3 we study a "best approximation-like" problem for star-shaped sets: we in-
troduce a star-shaped distance and consider the minimization of this distance over a
star-shaped set. This is a non-convex optimization problem.

One of the most challenging questions that arise in modern optimization is the develop-
ment of a theory of global minimization for some broad classes of non-convex optimization
problems. The theory of local optimization is based on calculus and its sophisticated gen-
eralizations. Different tools should be used in global optimization. Since separability by
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a linear function has found applications in convex programming, it is natural to apply
separability by a collection of linear functions in star-shaped optimization.

From a certain point of view, classical best approximation problems are the simplest
convex nonlinear problems. Similarly, star-shaped best approximation problems are the
simplest star-shaped optimization problems, so we start with best approximation. One of
the interesting questions here is the description of functions with star-shaped level sets, in
particular star-shaped distances. We chose the following way for such a description: it is
known (see, for example, [3]) that each upper semicontinuous function f : Rn → R∪{−∞}
can be represented as the pointwise infimum of a family of convex finite functions. In
order to describe functions with the given properties, we need to indicate properties of
a family of convex functions, such that the infimum over this family gives a required
function. Such approach allows us to describe some star-shaped distances. In particular,
the function of the form d(x, y) = inft∈T ‖x−y‖t is a star-shaped distance, if (‖·‖t)t∈T is a
family of norms such that c‖x‖∗ ≤ ‖x‖t ≤ C‖x‖∗ for all x ∈ Rn, where 0 < c < C < +∞
and ‖ · ‖∗ is a fixed norm.

We show that characterization of best approximation can be done in terms of weak sep-
arability of star-shaped sets. A challenging problem is to describe separation collections
of linear functions at least in simple cases. This is the topic of the further research.

In Section 4 we show that some problems involving the distance function to an arbitrary
(not star-shaped) set can be studied by means of star-shaped analysis. In Section 5 we
give another application of a conical support collection of linear functions. Using these
collections we define a degree of strict non-convexity of a radiant set U near its regular
boundary point. Examples demonstrate that this definition is not of a local nature. We
study some simple properties of the degree of strict non-convexity.

We use the following notation:

Rn is the usual n-dimensional vector space with the topology of the coordinate-wise con-
vergence,

R = R1, R+ = {x ∈ R : x ≥ 0}.
[l, x] =

∑n
i=1 lixi is the inner product of vectors l and x.

If x∗ ∈ (Rn)∗ is a linear function generated by a vector l ∈ Rn then we use notation
x∗(x) = [l, x].

We need the following definitions. Let U ⊂ Rn be a set. The set

kernU = {u ∈ U : u+ λ(x− u) ∈ U for all x ∈ U and λ ∈ [0, 1]}

is called the kernel of U . A set U is called star-shaped if kernU 6= ∅. A star-shaped set
U is called radiant if 0 ∈ kernU . If U is a star-shaped set and u ∈ kernU then U − u is
radiant.

Let Un be the totality of all radiant sets U ⊂ Rn that are nontrivial in the sense that
U 6= {0}. Let U ∈ Un. The function

µU(x) = inf{λ > 0 : x ∈ λU} (x ∈ Rn)

is called the Minkowski gauge of U . (By definition, inf ∅ = +∞.) If U ∈ Un then
µU(x) = 1 if and only if x ∈ bdU and λx /∈ U for all λ > 1. (Here and below bdU stands
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for the boundary of a set U .) It is known (see, for example [3]) that 0 ∈ int kernU if and
only if µU is Lipschitz.

2. Support collections and weak separability

We start with the following definition (see [4] and [3], Subsection 5.4.3).

Definition 2.1. Let U ⊂ Rn and let x 6= 0 belong to the closure clU of the set U . A
collection of linearly independent vectors ` = (l1, . . . , lm) is called a support collection to
U at x if [li, x] = 1 (i = 1, . . . ,m) and

min
i=1,...,m

[li, u] < 1 for all u ∈ U, u 6= x. (1)

Equalities [l1, x] = . . . = [lm, x] are used here only for normalization. It is important that
[li, x] > 0 for all i.

Let U ⊂ Rn be a set and x ∈ U . Recall the Bouligand cone Γ(x, U) consists of all vectors
z such that for each α0 > 0 and ε > 0 there exist v and α > 0 such that ‖v − z‖ < ε,
α < α0 and x+ αv ∈ U .

For U ∈ Un consider the set

∆(U) = {x ∈ U : µU(x) = 1 and x /∈ Γ(x, U)}. (2)

The inclusion ∆(u) ⊂ bdU holds. A point x ∈ U is called a regularly boundary point of
U if x ∈ ∆(U).

Remark 2.2. If 0 ∈ int kernU then µU is a Lipschitz function. In such a case (see [3],
Propositions 5.15 and 5.17) bdU = {x ∈ Rn : µU(x) = 1} and (see [3], Corollary 5.6)
x /∈ Γ(x, U) for all x ∈ bdU . Hence ∆(U) = bd (U).

The following result holds.

Theorem 2.3 (see [3], Theorem 5.7). Let U ∈ Un be a closed set and let x ∈ ∆(U).
Then there exists a support collection ` = (l1, . . . , ln) to the set U at the point x.

We present a geometric interpretation of a support collection `. For each collection ` =
{l1, . . . , lm} of m vectors consider the cone T ` = {y : [li, y] ≥ 0, i = 1, . . . ,m}. Then `
is a support collection to a set U at a point x ∈ clU if and only if vectors (l1, . . . , lm)
are linearly independent, U ∩ (x + T `) = {x} and [li, x] = 1 for all i = 1, . . . ,m. If
U ∩ (x+ T `) = {x} and x ∈ intT ` then [li, x] > 0 and the collection `′ = (l′1, . . . , l

′
m) with

l′i = li/[li, x] is support at x. If vectors (l1, . . . , lm) are linearly independent then the cone
T ` does not contain straight lines if and only if m = n.

Sometimes it is convenient to consider a weaker object than a support collection. First
we recall the following definition.

Definition 2.4. Vectors l1, . . . , lm ∈ Rn are said to be conically independent if conditions

α1l1 + · · ·+ αmlm = 0, αi ≥ 0 for all i = 1, . . . ,m

imply that α1 = · · · = αm = 0.
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Conical independence of the collection ` = (l1, . . . , lm) means that −li does not belong to
the cone spanned by (lk)k 6=i for all i.

Definition 2.5. Let U ⊂ Rn be a closed set and x ∈ U, x 6= 0. A collection of vectors
` = (l1, . . . , lm) is called a conical support collection to U at x if [li, x] = 1 (i = 1, . . . ,m)
and

min
i=1,...,m

[li, u] < 1 for all u ∈ U, u 6= x. (3)

A conical support collection ` = (l1, . . . , lm) at x consists of conically independent vectors.
Indeed, let

∑m
i=1 αili = 0 where αi ≥ 0 for all i = 1, . . . ,m. Then

∑m
i=1 αi[li, x] =

∑

i=1 αi = 0, hence αi = 0, i = 1, . . . ,m.

It is clear that each support collection is a conical support collection. It follows from
Definition 2.1, that a support collection cannot contain more than n vectors, on the other
hand a conical collection can contain an arbitrary finite number of vectors.

Let ` = (l1, . . . , lm) be a conical support collection and T ` = {y : [li, y] ≥ 0, i = 1, . . . ,m}
be the cone generated by this collection. Then intT ` is nonempty and contains the
cone {y : [li, y] > 0 i = 1, . . . ,m}. It is known (see, for example, Proposition 5.32 and
Remark 5.12 in [3]) that for each convex cone Q with intQ 6= ∅ there exists a collection
`′ = (l′1, . . . , l

′
n) of n linearly independent vectors such that [l′i, x] = 1 for all i = 1, . . . , n

and T `′ ⊂ intQ. It follows from this that existence of a conical support collection to U
at x implies existence of a support collection to U at x. However, the number of vectors
in these collections can be different.

We now discuss some properties of conical support collections.

Proposition 2.6. Let U be a closed radiant set, and x0 ∈ bdU . Let ` = (l1, . . . , lm) be a
conical support collection at x0 and

Ui = {x ∈ U : [li, x] ≤ 1} = U ∩Hi, where Hi = {x ∈ Rn : [li, x] ≤ 1}. (4)

Then
⋃

i=1,...,m Ui = U and

1) for each i = 1, . . . ,m the set Ui is a nonempty radiant set and kernUi ⊃ kernU∩Hi;
the Minkowski gauge µUi

of Ui has the form

µUi
(x) = max(µU(x), [li, x]); (5)

2) for each x ∈ U there exists i such that Rx ∩ U ⊂ Ui (here Rx = {λx : λ ≥ 0});
3) let

V =
⋂

i=1,...,m

Ui = U ∩

(

⋂

i=1,...,m

Hi

)

. (6)

Then V ∈ Un and
µV (x) = max

i
max(µU(x), [li, x]). (7)

Proof. 1 ) Let y ∈ kernU and [li, y] ≤ 1. Let u ∈ Ui, that is, u ∈ U and [li, u] ≤ 1. For
each λ ∈ [0, 1] we have λy + (1 − λ)u ∈ U and [li, λy + (1 − λ)u] ≤ 1. This means that
y ∈ kernUi. We showed that kernUi ⊃ (kernU)∩Hi. It follows from this that 0 ∈ kernUi,
hence Ui is a nonempty radiant set. It is well-known (see, for example [3]) that the
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Minkowski gauge of the intersection of a finite number of sets is equal to the maximum
of the Minkowski gauges of these sets. On the other hand, µHi

(x) = max(0, [li, x]), where
µHi

is the Minkowski gauge of the half-space Hi. This implies (5) and also (7).

2 ) Let x ∈ U and λx = sup{λ ≥ 0 : λx ∈ U}. If λx < +∞ then λxx ∈ U . Let i be the
index such that λxx ∈ Ui. Then Rx∩ [0, λx]x = Rx∩U ⊂ Ui. Assume now that λx = +∞.
Then Rx∩U = Rx. For each i = 1, . . . ,m consider the set Λi = {λ ≥ 0 : λx ∈ Ui}. There
exists at least one i such that Λi is unbounded. It easy to check that Rx = {λx : λ ∈ Λi},
hence Rx ⊂ U .

3 ) V is radiant as the intersection of radiant sets. Since [li, x0] = 1 for all i, it follows
that x0 ∈ V , therefore V 6= {0}. Hence V ∈ Un.

We need the following definition (see [4] and also ([3], Definition 5.17).

Definition 2.7. Let U and V be subsets of Rn and ` = (li)i=1,...,m be a collection of
linearly independent vectors. The sets U, V are said to be weakly separated by vectors
(li)i=1,...,m if for each pair u ∈ U, v ∈ V there exists i ∈ I such that [li, u] ≤ [li, v]. We
say that U, V are conically weakly separated if there exists a collection ` of conically
independent vectors with the indicated property.

Proposition 2.8. Let U and V be conically weakly separated by vectors (li)
m
i=1 and intU

6= ∅. Then V ∩ intU = ∅.

Proof. First we show that U − V 6= Rn. Consider the superlinear function q(x) =
mini=1,...,m[li, x]. Weak separability of the sets U and V means that q(u − v) ≤ 0 for all
u ∈ U, v ∈ V . Let ∂̄q(0) = {l ∈ Rn : [l, x] ≥ q(x) for all x ∈ Rn} be the superdifferential
of q at zero. Then ∂̄q(0) coincides with convex hull S = {l =

∑m
i∈1 αili : αi ≥ 0 (i =

1, . . . ,m),
∑m

i=1 αi = 1} of vectors (li)
m
i=1. Since these vectors are conically independent

we conclude that 0 /∈ S. Then there exists x ∈ Rn such that 0 < infl∈S[l, x] = q(x). This
means that x /∈ U − V .

Assume that there exists z ∈ (intU) ∩ V . Let Bε(z) ⊂ U be a neighborhood of z. Then
Bε(z)−z ⊂ U−V is a neighborhood of zero. Since q is positive homogeneous and q(x) ≤ 0
for x ∈ U − V it follows that q(x) ≤ 0 for all x ∈ Rn, which is a contradiction.

Remark 2.9. Let l1, . . . , lm be a collection of vectors in Rn such that 0 ∈ co(l1, . . . , lm).
Then q(x) = mini=1,...,m[li, x] ≤ 0 for all x ∈ Rn. This implies the following assertion: let
U, V ⊂ Rn be two arbitrary sets. Then for each u ∈ U, v ∈ V there exists i ∈ {1, . . . ,m}
such that [li, u] ≤ [li, v]. A collection ` = (li)

m
i=1 does not depend on sets U, V . Note that

there exist n+ 1 vectors (li)
n+1
i=1 such that 0 ∈ co(l1, . . . , ln+1).

For weak separability we consider collections (li)
m
1=1 of no more than n vectors and these

vectors are linearly independent. It can be shown (see Proposition 2.11 below) that this
collection can be chosen as a support collection to a certain set Z at a certain point z̄.
This means that this collection enjoys an additional property: [li, z̄] > 0, i = 1, . . . ,m
and also that strict inequalities can be used instead of nonstrict ones.

A conical collection (li)
m
i=1 can contain more then n vectors. However, 0 /∈ co(l1, . . . , lm)

for such a collection.

Under some additional assumptions it can be proved that if (intU) ∩ V = ∅ then U and
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V can be weakly separated (see [4, 3]).

Theorem 2.10 (see Theorem 5.8 in [3]). Let U and V be star-shaped sets such that
int kernU 6= ∅ and (intU) ∩ V = ∅. Then U and V are weakly separated.

Assume that U ∩ V 6= ∅. The proof of the given theorem (Theorem 5.8 in [3]) is based
on the following construction, which is a modification of the construction from [4]. Let
u ∈ int kernU , v ∈ kernV . Consider the point z = v−u and the set Z = (U−u)−(V−v) =
U−V +z. Then Z is a radiant set and 0 ∈ int kernZ. It can be shown that either z /∈ clZ
or z ∈ bd clZ. Since U ∩V 6= ∅ it follows that 0 ∈ U −V , hence z ∈ Z. This implies that
z is a boundary point of clZ. Since z ∈ int kernZ it follows that z ∈ ∆(Z). Then there
exists a support collection ` = (l1, . . . , ln) to clZ at the point z. It is easy to check that
` weakly separate U and V . It follows from the aforesaid that the following statement
holds.

Proposition 2.11. Let U and V be star-shaped sets such that int kernU 6= ∅, the set
U ∩ V is nonempty and the set (intU) ∩ V is empty. Let z ∈ kernV − int kernU and
Z = U − V + z. Then there exists a support collection ` = (l1, . . . , lm), (m ≤ n) to Z at
z and this collection weakly separate sets U and V . In other words, the following holds:

1) [l1, z] = . . . = [lm, z] = 1;

2) for each u ∈ U, v ∈ V with u 6= v there exists i such that [li, u] < [li, v].

We only comment the assertion 2 ). If u ∈ U, v ∈ V and u 6= v, then u− v+ z 6= z, hence
there exists i such that [li, u− v + z] < 1 = [li, z].

3. Star-shaped distance and its minimization

The following well-known corollary of Hahn-Banach theorem is a classical result of the
approximation theory. Let U be a convex subset of a normed space X and x 6∈ U and let
ū ∈ U be best approximation of x by elements of U , that is, r := min{‖u−x‖ : u ∈ U} =
‖ū − x‖. Then there exists a continuous linear function l such that l(u) ≤ l(ū) ≤ l(v)
for all u ∈ U and v ∈ B(x, r) = {y : ‖x − y‖ ≤ r}. We can present this result in the
following form. An element ū is the best approximation of x by U if and only if there
exists a continuous linear function l such that

0 = (−l, l)(ū, ū) = min{(−l, l)(u, v) : (u, v) ∈ U ×B(x, r)} (8)

If U is strictly convex then in addition to (8) the following holds:

((u, v) ∈ U × V, (u, v) 6= (ū, ū)) =⇒ (−l, l)(u, v) > 0. (9)

We now give a version of (8)–(9) for star-shaped sets in Rn. We assume that Rn is
equipped with its usual topology of the pointwise convergence. Let ‖ · ‖ be a norm in Rn.

Let U ⊂ Rn be a star-shaped set and x /∈ U , let r = inf{‖u − x‖ : u ∈ U}. Then the
intersection U ∩ {v : ‖x − v‖ < r} is empty, so the sets U and {v : ‖x − v‖ ≤ r} can be
weakly separated. We do not need to have exactly a norm in order to prove this result,
so we consider a more general situation. First consider a function ρ : Rn×Rn → R+ such
that

ρ(x, y + α(x− y)) ≤ ρ(x, y), x, y ∈ Rn, α ∈ [0, 1]. (10)
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It is easy to check that the function ρ enjoys this property if and only if the "balls"
B(x, r) = {y : ρ(x, y) ≤ r} are star-shaped with x ∈ kernB(x, r) for all r > 0. We need
to have star-shaped balls B(x, r) such that

(1) x ∈ int kernB(x, r) for all r > 0.

(2) the inequality ρ(x, y) < r holds for interior points of B(x, r).

The following definition takes into account these requirements:

Definition 3.1. A function ρ : Rn × Rn → R+ is called a star-shaped distance if

(i) ρ(x, x) = 0 for all x ∈ Rn and ρ(x, y) > 0 for all x, y ∈ Rn x 6= y.

(ii) for each x ∈ Rn and r > 0 there exists a neighborhood V of x such that

ρ(x, y + α(x′ − y)) ≤ αr + (1− α)ρ(x, y), y ∈ Rn, x′ ∈ V, α ∈ [0, 1]. (11)

(iii) for each x ∈ Rn the function ρx(y) defined by

ρx(y) = ρ(x, y), y ∈ Rn (12)

has no local maxima.

(iv) for each x ∈ Rn the function ρx defined by (12) is continuous.

Let x, y ∈ Rn. Then (11) with r = ρ(x, y) and x′ = x implies (10), so sets B(x, r) are
star-shaped for all x ∈ Rn and r > 0. On the other hand (11) implies x ∈ int kernB(x, r).
Indeed, let r > 0, V be a neighborhood of x that is considered in (11) and let ρ(x, y) ≤ r.
Then

ρ(x, αx′ + (1− α)y) ≤ αr + (1− α)ρ(x, y) ≤ αr + (1− α)r = r,

so V ⊂ kernB(x, r). This means that x ∈ int kernB(x, r).

Proposition 3.2. Let ρ be a star-shaped distance. Then intB(x, r) = {v ∈ Rn : ρ(x, v) <
r} for each x ∈ Rn and r > 0.

Proof. Since ρx is continuous, the set {v : ρ(x, v) < r} is open. This implies {v : ρ(x, v) <
r} ⊂ intB(x, r). Let ρ(x, v) = r and v ∈ intB(x, r). Then there exists a neighborhood
V of zero such that v+ V ⊂ intB(x, r). For all v′ ∈ V we have ρ(x, v′ + v) ≤ r = ρ(x, v).
This means that v is a local maximum of ρx which contradicts (iii).

We now give an example of a star-shaped distance.

Proposition 3.3. Let (ft)t∈T be an equicontinuous family of convex functions ft : Rn →
R+ such that ft(0) = 0 and inft∈T ft(x) > 0 for x 6= 0. Then function ρ(x, y) =
inft∈T ft(x− y) is a star-shaped distance in Rn.

Proof. We need to check that (i)–(iv) hold.

(i) It follows from properties of the family (ft)t∈T that ρ(x, x) = 0 and ρ(x, y) > 0 for
x 6= y.

(ii) Let us check (11). Let x ∈ Rn and r > 0. Since (ft)t∈T is equicontinuous at zero it
follows that there exists a neighborhood V0 of zero such that ft(v) ≤ r for all v ∈ V0 and
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t ∈ T . Let V = x− V0 be a neighborhood of x. For any x′ ∈ V it holds:

ρ(x, y + α(x′ − y)) = inf
t∈T

ft(x− y − α(x′ − y)) = inf
t∈T

ft((1− α)(x− y) + α(x− x′))

≤ inf
t∈T

((1− α)ft(x− y) + αft(x− x′)) ≤ (inf
t∈T

(1− α)ft(x− y)) + αr

= (1− α)ρ(x, y) + αr.

Thus (11) is valid.

(iii) We need to check that for each x, y ∈ Rn and small ε′ > 0 there exists a direction v
such that

ρ(x, y + ε′v)− ρ(x, y) > 0. (13)

Let z = x−y. Then ρ(x, y) = inft∈T ft(z). If z = 0 then (13) trivially holds, so we assume

that z 6= 0. Consider the number ε =
ε′

1 + ε′
and put u =

z

1− ε
. Then for each t ∈ T we

have

ft(z) = ft((1−ε)u) = ft((1−ε)u+ε0) ≤ (1−ε)ft(u) ≤ ft(u)−ε inf
τ∈T

fτ (u) = ft

(

z

1− ε

)

−εχ

where χ = infτ∈T fτ (u) > 0. Since
1

1− ε
= 1 + ε′ this implies the following:

ρ(x, y) = inf
t∈T

ft(z) ≤ inf
t∈T

ft((1 + ε′)z)− εχ < ρ(x, y − ε′z).

Thus (13) holds.

(iv) Since the family (ft)t∈T is equicontinuous it follows that ρx(y) = inft∈T ft(x − y) is
continuous.

Example 3.4. Consider a family (‖ · ‖t)t∈T of norms for which there exist numbers 0 <
c < C < +∞ such that

c‖x‖∗ ≤ ‖x‖t ≤ C‖x‖∗, (14)

for all t ∈ T , where ‖ · ‖∗ is a fixed norm. The right inequality in (14) shows that family
(‖ · ‖t)t∈T is equicontinuous, the left inequality shows that inft∈T ‖x‖t > 0 for all x 6= 0.
Hence the function d(x, y) = inft∈T ‖x− y‖t is a star-shaped distance.

Theorem 3.5. Let ρ be a star-shaped distance on Rn and U ⊂ Rn be a radiant set. Let
x /∈ U , ū ∈ U and r = ρ(x, ū). Then

1) If r = minu∈U ρ(x, u) then there exists m linearly independent vectors l1, . . . , lm such
that:
(i) [l1, x] = . . . = [lm, x] = 1.
(ii) for each u ∈ U and v ∈ B(x, r) with u 6= v there exists an index i such that

[li, u] < [li, v].

2) If there exist m conically independent vectors li such that the condition (ii′) below
holds then r := ρ(x, ū) = minu∈U ρ(x, u). Here
(ii′) U ×B(x, r) =

⋃m
i=1(U ×B(x, r))i where

(U ×B(x, r))i = {(u, v) ∈ U ×B(x, r) : [li, u] ≤ [li, v]}.
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(Condition (ii′) means that for every pair (u, v) with u ∈ U and v ∈ B(x, r) there
exists i such that [li, u] ≤ [li, v].)

Proof. 1 ) Let r := ρ(x, ū) = minu∈U ρ(x, u). It follows from the properties of the star-
shaped distance that the set B(x, r) is star-shaped and x ∈ int kernB(x, r). The inter-
section U ∩ B(x, r) contains ū, hence nonempty. The intersection U ∩ intB(x, r) = ∅.
Indeed, in view of Proposition 3.2 we have intB(x, r) = {v : ρ(x, v) < r}. On the other
hand U ⊂ {u : ρ(x, u) ≥ r}.
Consider the set Z = U − B(x, r). Since 0 ∈ kernU and x ∈ int kernB(x, r) it follows
that z̄ := −x ∈ kernU − int kernB(x, r). Then (see Proposition 2.11) there exists m
linearly independent vectors l′1, . . . , l

′
m such that [l′1,−x] = . . . = [l′m,−x] = 1 and for each

u ∈ U, v ∈ B(x, r) with u 6= v there exists i such that [l′i, v] < [l′i, u]. Thus (i) and (ii)
hold for li = −l′i.

2 ) Let (ii′) hold. Let q(x) = mini=1,...,m[li, x]. Then (ii′) is equivalent to

q(u− v) ≤ 0 for all u ∈ U, v ∈ B(x, r). (15)

We claim that
U ∩ intB(x, r) = ∅. (16)

Indeed, assume that there exists u ∈ U and a neighborhood V of zero such that u− V ⊂
B(x, r). In view of (15) we get q(v) ≤ 0 for all v ∈ V . It follows from positive homogeneity
of q that q(x) ≤ 0 for all x ∈ Rn, hence 0 ∈ ∂̄q = co{l1, . . . , lm}. This contradicts the
conical independence of vectors l1, . . . , lm.

Combining (16) and Proposition 3.2 we get U ⊂ {u ∈ Rn : ρ(x, u) ≥ r}. Since ū ∈ U and
r = ρ(x, ū) it follows that r = minu∈U ρ(x, ū).

Theorem 3.5 can be considered as a version of (8)–(9) for X = Rn. If U is a convex set
and ρ(x, y) = ‖x− y‖ and if we replace strict inequalities in (ii) with nonstrict ones, then
(8) follows from Theorem 3.5 with m = 1. We cannot take m = 1 for convex sets if we
use strict inequalities. However Theorem 3.5 holds with m = 1 for a strictly convex set
U .

4. Star-shapedness and distance to a closed set

In this section we demonstrate that star-shapedness can be used in the study of arbitrary
(not necessarily star-shaped) sets.

First we consider an arbitrary closed subset U of Rn with 0 ∈ U . Let ‖ · ‖ be an arbitrary
norm in Rn and

dU(x) = inf{‖x− u‖ : u ∈ U}, x ∈ Rn

be the distance function generated by this norm. Let βU be the function defined on Rn

by
βU(x) = ‖x‖ − dU(x). (17)

Note that βU(x) = ‖x‖ for x ∈ U ; if x /∈ U then β(x) < ‖x‖. The sets {x ∈ Rn : β(x) ≤
c} = {x ∈ Rn : dU(x) ≥ ‖x‖ − c}, c > 0 can be useful for examination of the distance
function. We will study these sets from the point of view of star-shapedness.
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We need some preliminaries.

A function f : Rn → R+ is called increasing-along-rays (IAR) if for each x 6= 0 the
function of one variable fx(t) = f(tx) is increasing (that is fx(t1) ≥ fx(t2) for t1 ≥ t2 on
[0,+∞)). (The definition of IAR function in more general situation was introduced in
[1].) Note that f(0) = minx∈X f(x) for an IAR function f . It has been proved in [5], (see
also [1]) that a function f is IAR if and only if its level sets Sr(f) := {x ∈ X : f(x) ≤ r}
are radiant for all r ≥ f(0).

Let

(dU)
↑
H(x, x) = lim sup

α→+0,v→x

dU(x+ αv)− dU(x)

α

be the upper Hadamard directional derivative of dU at a point x in the direction x. It is
easy to check that (dU)

↑
H(x, x) ≤ ‖x‖. Indeed, since the distance dU is Lipschitz continuous

with the Lipschitz constant L = 1 it follows that (dU)
↑
H(x, x) ≤ lim supv→x ‖v‖ = ‖x‖.

Theorem 4.1. Let x0 ∈ Rn \ {0} be a point such that ‖x0‖ > (dU)
↑
H(x0, x0) and let

V = {x ∈ Rn : ‖x‖ − dU(x) ≤ ‖x0‖ − dU(x0)}. Then there exists m linearly independent
vectors l1, . . . , lm such that

1) [l1, x0] = . . . = [lm, x0] = 1;

2) for each x ∈ V there exists i such that [li, x] ≤ 1.

The sets Vi = {x ∈ V : [li, x] ≤ 1} are star-shaped for all i.

Proof. First we show that the function βU defined by (17) is increasing-along-rays. Let
x ∈ Rn and λ > µ ≥ 0. Then

dU(λx) = inf
u∈U

‖λx− u‖ = inf
u∈U

‖(λ− µ)x+ µx− u‖ ≤ (λ− µ)‖x‖+ dU(µx),

hence

βU(λx) = λ‖x‖ − dU(λx) ≥ µ‖x‖ − dU(µx) = βU(µx),

so βU is IAR. It follows from this that level sets Sr(βU) = {x : βU(x) ≤ r} of βU are
radiant for all r ≥ β(0) = 0.

Let x0 ∈ Rn \ {0} be a given point and let r = β(x0) = ‖x0‖ − dU(x0) ≥ 0. Then

V := Sr(βU) = {x ∈ Rn : ‖x‖ − dU(x) ≤ ‖x0‖ − dU(x0)} (18)

is a radiant set. Since x0 6= 0 it follows that V ∈ Un. We need to show that x0 is a regularly
boundary point, that is, x0 ∈ ∆(V ), where ∆(V ) = {x ∈ V : µV (x) = 1, x /∈ Γ(x, V )}
is the set defined for V = Sr(βU) by (2). Let us calculate µV (x0). The inclusion x0 ∈ V
implies µV (x0) ≤ 1. Let us check that µV (x0) ≥ 1 and hence µV (x0) = 1.

Since V is a radiant set and 0 6= x0 ∈ V then it is sufficiently to check that λx0 6∈ V for
λ > 1. If λx0 ∈ V for some λ > 1 then (x0 + αx0) ∈ V for all α ∈ (0, λ− 1), that is

‖x0 + αx0‖ − dU(x0 + αx0) ≤ ‖x0‖ − dU(x0) for all α ∈ (0, λ− 1).

This fact implies ‖x0‖ ≤ (dU)
↑
H(x0, x0), which is impossible. Hence µV (x0) = 1.
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Assume that x0 ∈ Γ(x0, V ). Then there exist sequences vk → x0 and αk → 0 such that
x0 + αkvk ∈ V , that is

‖x0 + αkvk‖ − ‖x0‖ ≤ dU(x0 + αkvk)− dU(x0). (19)

Let p(x) = ‖x‖. Since p′(x, x) = ‖x‖ it follows from (19) that ‖x0‖ ≤ (dU)
↑
H(x0, x0),

which is impossible. Hence x0 /∈ Γ(x0, V ).

Applying Theorem 2.3 and Proposition 2.6 we conclude that the desired result holds.

We now consider bounded subsets of Rn.

Proposition 4.2. Let U be a bounded subset of Rn. Then the set hyp dU is star-shaped.
(Here hyp dU = {(x, λ) ∈ Rn × R : λ ≤ dU(x)}.)

Proof. Let c > 0 be a number such that ‖u‖ ≤ c for all u ∈ U . We will show that
(0,−c) ∈ kern hyp dU . Let t ≤ dU(x) and α ∈ (0, 1). Then

−αc+ (1− α)t ≤ −αc+ (1− α)dU(x) = inf
u∈U

(‖(1− α)x− (1− α)u‖ − αc)

= inf
u∈U

(‖(1− α)x− u+ αu‖ − αc) ≤ inf
u∈U

(‖(1− α)x− u‖+ α‖u‖ − αc)

≤ inf
u∈U

‖(1− α)x− u‖ = dU((1− α)x.

Hence

α(0,−c) + (1− α)(x, t) = ((1− α)x,−αc+ (1− α)t) ∈ hyp dU ,

which means (0,−c) ∈ kern hyp dU .

Corollary 4.3. Let U be a bounded subset of Rn and 0 ∈ U . Then the sets epi ‖ · ‖ and
hyp dU are weakly separated. (Here epi ‖ · ‖ = {(x, λ) : λ ≥ ‖x‖}.)

Proof. Since 0 ∈ U then dU(x) ≤ ‖x‖, that is int epi ‖ · ‖ ∩ hyp dU = ∅. It follows from
convexity of norm that int kern epi ‖ · ‖ = int epi ‖ · ‖ 6= ∅. Thus we can apply Theorem
2.10.

5. Degree of strict non-convexity

Consider a radiant set U , which is non strictly convex. It is interesting to classify its
boundary points in terms of their strict non-convexity. Conical support collections can
be used for such a classification.

Definition 5.1. A positive integer m is called the degree of strict non-convexity of a set
U ∈ Un near a point x ∈ ∆(U) if there exists a conical support collection ` that consists
of m conically independent vectors and there is no a support collection of m− 1 conically
independent vectors. We denote the degree of strict non-convexity by nsc (x, U).

A point x ∈ ∆(U) will be called a point of strict convexity of U if nsc (x, U) = 1. We now
present some simple illustrative examples.
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Example 5.2. 1) Let U ⊂ R2 be a polyhedron with 0 ∈ intU . Then nsc (x, U) = 1 for
each vertex x of U and nsc (x, U) = 2 for a point x ∈ U , which is not a vertex.

2) Let U = U1 ∪ U2, where U1 and U2 are circles:

U1 = {(x1, x2) ∈ R2 : (x1 − 1)2 + x2
2 ≤ 1}, U2 = {(x1, x2) : (x1 + 1)2 + x2

2 ≤ 1}.

Then U is a radiant set. Consider all boundary points of U . Let x = (0, 0). Then
µU(x) = 0 so x 6∈ ∆(U) so the degree of strict non-convexity is not defined at this
point. Let x = (x1, x2) be a boundary point of U with either x1 < −1 or x1 > 1. Then
nsc (x, U) = 1, so such points are points of strict convexity. Let x = (x1, x2) be a boundary
point with either x1 ∈ [−1, 0) or x1 ∈ (0, 1]. Then nsc (x, U) = 2.

3) Let U = {x = (x1, x2) ∈ R2 : |x1x2| ≤ 1}. Then U is radiant and nsc (x, U) = 2 for
each boundary point x of U .

The second example shows that degree of strict non-convexity of U at x is a global notion:
it is possible that nsc (x, U) > 1 and the intersection of a set U with a small neighborhood
of x is strictly convex (this means that U is locally strictly convex at x).

We now present a simple assertion about the degree of strict non-convexity.

Proposition 5.3. Let U1, . . . , Uk be strictly convex subsets of Rn such that 0 ∈ intUi for
all i. Let U =

⋃

i Ui and x ∈ bdU . Then nsc (x, U) ≤ k.

Proof. It easy to check that kernU ⊃ ∩iintUi, therefore 0 ∈ int kerU . In view of Remark
2.2 we conclude that each boundary point of U belongs to ∆(U), therefore x ∈ ∆(U).
Since x ∈ bdU then x 6∈ intUi for all i. It is well known from convex analysis that there
exist vectors l1, . . . , lk ∈ Rn\{0} such that [li, u] < [li, x] for all i and u ∈ Ui (u 6= x).
Since li 6= 0 and 0 ∈ intUi it follows that [li, x] > 0 for all i. Denote l′i = li/[li, x]. Then
[l′i, x] = 1 and [l′i, u] < 1 for all i and u ∈ Ui (u 6= x). This implies mini[l

′
i, u] < 1 for all

u ∈ U (u 6= x).
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