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A classical tool in nonlinear analysis is the notion of an approximating curve, whereby a particular
solution to a nonuniquely solvable problem is obtained as the limit of the solutions to uniquely solvable
perturbed problems. We introduce and analyze new types of approximating curves for nonexpansive fixed
point problems and monotone inclusion problems in Hilbert spaces. The solution attained by these curves
solves a strictly monotone variational inequality over the original solution set. Various special cases are
discussed.
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1. Introduction

In nonlinear analysis, a common approach to solving a problem with multiple solutions is
to replace it by a family of perturbed problems admitting a unique solution, and to obtain
a particular original solution as the limit of these perturbed solutions as the perturbation
vanishes. This principle arises for instance in minimization problems (Tikhonov regular-
ization [2, 26]), in partial differential equations (viscosity solutions [28, Section 33.11]), in
monotone inclusions [28, Section 32.18], in variational inequalities [9], in evolution equa-
tions (elliptic regularization [19, Chapitre 3]), and in fixed point theory (approximating
curves [16]); further examples will be found in [3, 25, 28] and the references therein. For
the sake of illustration, let us consider two examples in a Hilbert space H.

• Let T be a nonexpansive operator defined on H, and suppose that the set Fix T
of its fixed points is nonempty. Given a ∈ H, a classical way to perturb the basic
fixed point equation x = Tx is to add to T a viscosity term ε(a − T ), which yields
xε = εa+ (1− ε)Txε, where ε ∈ ]0, 1[. As the viscosity term vanishes, i.e., as ε → 0,
the approximating curve (xε)ε∈]0,1[ converges strongly to the best approximation x0

to a from Fix T [9]. A simple manipulation shows that the same result holds for the
approximating curve defined by

(∀ε ∈ ]0, 1[) xε = T
(

xε + ε(a− xε)
)

. (1)

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



634 P. L. Combettes, S. A. Hirstoaga / Approximating Curves for Nonexpansive and ...

• Let A : H → 2H be a maximal monotone operator with zeros. Given ε ∈ ]0, 1[, con-
sider the perturbation 0 ∈ Axε+εxε of the inclusion 0 ∈ Ax. Then the approximating
curve (xε)ε∈]0,1[ converges strongly to the zero x0 of A of minimal norm as ε → 0 [11].

Besides their importance in the problems mentioned above, approximating curves are
also relevant to numerical methods since understanding their properties is central in the
analysis of parent continuous [3, 21, 23] and discrete [5, 12, 17, 27] dynamical systems (see
also [13] for an application of such dynamical systems to concrete problems). The goal
of this paper is to analyze the properties of new types of approximating curves for fixed
point and monotone inclusion problems. The limit attained by these curves is the solution
of the general variational inequality 0 ∈ NCx0 +Bx0, where NC denotes the normal cone
operator to the original solution set C and B : H → 2H is a suitable strictly monotone
operator.

Throughout, H is a real Hilbert space with scalar product 〈· | ·〉, norm ‖ · ‖, and identity
operator Id. In addition, PC denotes the projector onto a nonempty closed convex subset
C of H, and NC : H → 2H its normal cone operator, i.e.,

NC : x 7→

{
{

u ∈ H | (∀y ∈ C) 〈y − x | u〉 ≤ 0
}

, if x ∈ C;

?, otherwise.
(2)

As is customary, → and ⇀ denote, respectively, strong and weak convergence.

2. Nonexpansive fixed point problems

The domain and fixed point set of an operator T : H → H are denoted by domT and
Fix T , respectively. Recall that T is nonexpansive if it is Lipschitz-continuous with
constant 1, firmly nonexpansive if 2T − Id is nonexpansive, and a strict contraction if it
is Lipschitz-continuous with a constant in [0, 1[. It will be convenient to introduce the
following notion.

Definition 2.1. Let (Tε)ε∈]0,1[ be a family of operators from H to H with domain H and
let (xε)ε∈]0,1[ be a family in H. Then (xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[ if,
for every x ∈ H and every sequence (εn)n∈N in ]0, 1[ such that εn ↓ 0,

[

xεn ⇀x and xεn − Tεnxεn → 0
]

⇒ (∀ε ∈ ]0, 1[) Tεx = x. (3)

Example 2.2. Let T : domT = H → H be a nonexpansive operator such that Fix T 6=
?, let (λε)ε∈]0,1[ be a family in ]0, 1] such that infε∈]0,1[ λε > 0, set (∀ε ∈ ]0, 1[) Tε =
Id + λε(T − Id), and take (xε)ε∈]0,1[ in H. Then (xε)ε∈]0,1[ is T-focused with respect to
(Tε)ε∈]0,1[.

Proof. Suppose that ]0, 1[ 3 εn ↓ 0, xεn ⇀x, and xεn − Tεnxεn → 0. Then, since
infε∈]0,1[ λε > 0, we obtain xεn − Txεn → 0 and the demiclosed principle [10, Lemma 2]
yields x ∈ Fix T ≡ Fix Tε.

Our first result concerns the convergence of a generalization of (1).

Theorem 2.3. Let (Tε)ε∈]0,1[ and (Sε)ε∈]0,1[ be families of nonexpansive operators from H
to H with domain H, let Q : domQ = H → H be a strict contraction, and suppose that
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C =
⋂

ε∈]0,1[ Fix Tε 6= ?. Then there exists a unique point x0 ∈ C such that x0 = PC(Qx0).
Now set

(∀ε ∈ ]0, 1[) xε = Tε

(

xε + ε(QSεxε − xε)
)

. (4)

Then (xε)ε∈]0,1[ is uniquely defined. In addition, if (xε)ε∈]0,1[ is T-focused with respect to
(Tε)ε∈]0,1[, C ⊂

⋂

ε∈]0,1[ Fix Sε, and, for every x ∈ H and every sequence (εn)n∈N in ]0, 1[
such that εn ↓ 0,

[

xεn → x ∈ C and xεn − Tεnxεn → 0
]

⇒ Sεnxεn → x, (5)

then xε → x0 as ε → 0.

Proof. Let ε ∈ ]0, 1[. Since Tε is nonexpansive, Fix Tε is closed and convex [16, Propo-
sition 1.5.3] and, therefore, C is a nonempty closed convex set. As a result, since PC is
nonexpansive and Q is a strict contraction, PCQ is a strict contraction, and it follows from
the standard Banach-Picard theorem that the point x0 is uniquely defined. Likewise, since
Sε is nonexpansive, the composition QSε is a strict contraction. In turn, εQSε+(1− ε)Id
is a strict contraction and so is Tε

(

εQSε + (1 − ε)Id
)

. Hence, the point xε is uniquely
defined in (4).

To show the last assertion, let θ ∈ [0, 1[ be the Lipschitz constant of Q and let x be a
point in C. Then we deduce from (4) that

(∀ε ∈ ]0, 1[) ‖xε − x‖ = ‖Tε

(

εQSεxε + (1− ε)xε

)

− Tεx‖
≤ ‖εQSεxε + (1− ε)xε − x‖
= ‖ε(QSεxε −QSεx) + (1− ε)(xε − x) + ε(Qx− x)‖
≤ εθ‖Sεxε − Sεx‖+ (1− ε)‖xε − x‖+ ε‖Qx− x‖
≤ (1− ε+ εθ)‖xε − x‖+ ε‖Qx− x‖. (6)

Hence,

(∀ε ∈ ]0, 1[) ‖xε − x‖ ≤ ‖Qx− x‖
1− θ

. (7)

Consequently, (xε)ε∈]0,1[ is bounded and, since

(∀ε ∈ ]0, 1[) ‖QSεxε−xε‖ ≤ ‖QSεxε−QSεx‖+‖xε−Qx‖ ≤ θ‖xε−x‖+‖xε−Qx‖, (8)

we obtain
β = sup

ε∈]0,1[
‖QSεxε − xε‖ < +∞. (9)

Now set (∀ε ∈ ]0, 1[) yε = xε + ε(QSεxε − xε). Then (4) yields

(∀y ∈ C)(∀ε ∈ ]0, 1[) ε2‖QSεxε − xε‖2 + 2ε 〈QSεxε − xε | xε − y 〉
= ‖yε − Tεyε‖2 + 2 〈yε − Tεyε | Tεyε − y 〉
= ‖yε − y‖2 − ‖Tεyε − y‖2 (10)

≥ 0.

Therefore, by (9),

(∀y ∈ C)(∀ε ∈ ]0, 1[) 〈xε −QSεxε | xε − y 〉 ≤ ε

2
‖QSεxε − xε‖2 ≤

εβ2

2
. (11)
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Hence, using Cauchy-Schwarz, we obtain

(∀y ∈ C)(∀ε ∈ ]0, 1[) (1− θ)‖xε − y‖2 ≤ ‖xε − y‖2 − ‖xε − y‖ · ‖QSεxε −QSεy‖
≤ ‖xε − y‖2 − 〈xε − y |QSεxε −QSεy 〉
= 〈(Id−QSε)xε − (Id−QSε)y | xε − y 〉

≤ εβ2

2
+ 〈xε − y |Qy − y 〉 . (12)

Next, we derive from (4) and (9) that

(∀ε ∈ ]0, 1[) ‖xε − Tεxε‖ = ‖Tε

(

xε + ε(QSεxε − xε)
)

− Tεxε‖
≤ ε‖QSεxε − xε‖ (13)

≤ εβ. (14)

Thus,
lim
ε→0

‖xε − Tεxε‖ = 0. (15)

To complete the proof, let (εn)n∈N be an arbitrary sequence in ]0, 1[ such that εn ↓ 0.
Then it is enough to show that xεn → x0. Let w be a weak cluster point of (xεn)n∈N, say
xεkn

⇀w. Then it follows from (15) and (3) that w ∈ C. Therefore, (12) yields

(∀n ∈ N) (1− θ)‖xεn − w‖2 ≤ εnβ
2

2
+ 〈xεn − w |Qw − w 〉 , (16)

which implies that xεkn
→ w. Consequently, by (15) and (5), we obtain Sεkn

xεkn
→ w

and, therefore, (11) results in

(∀y ∈ C)
〈

xεkn
−QSεkn

xεkn

∣

∣ xεkn
− y

〉

→ 〈w −Qw | w − y 〉

≤ lim
n→+∞

〈xεn −QSεnxεn | xεn − y 〉 ≤ 0. (17)

We thus obtain supy∈C 〈w −Qw | w − y 〉 ≤ 0, i.e., w = PC(Qw). Since x0 is the unique
fixed point of PCQ, we have w = x0. Accordingly, the bounded sequence (xεn)n∈N admits
x0 as its unique weak cluster point, whence xεn ⇀x0. In turn, it follows from (16) that
xεn → x0.

Example 2.4. Using the standard characterization of the projection onto a convex set,
the limit x0 of the approximating curve (xε)ε∈]0,1[ in Theorem 2.3 is the solution to the
variational inequality

x0 ∈ C and (∀y ∈ C) 〈y − x0 |Qx0 − x0 〉 ≤ 0. (18)

Here are some specific examples, where 0 < α ≤ β < +∞.

(i) Suppose that B : domB = H → H is α-strongly monotone (i.e., B − αId is mono-
tone) and Lipschitz-continuous with constant β, and let γ ∈ ]0, 2α/β2[. Then
Q = Id − γB is a strict contraction with constant θ =

√

1− γ(2α− γβ2) and
x0 is the unique solution to the variational inequality

x0 ∈ C and (∀y ∈ C) 〈y − x0 |Bx0 〉 ≥ 0. (19)
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(ii) Suppose that B : domB = H → H is α-strongly monotone and that B/β is firmly
nonexpansive, and let γ ∈ ]0, 2/β[. Then Q = Id − γB is a strict contraction with
constant θ =

√

1− αγ(2− βγ) (this constant is smaller than that given in [14,
Theorem 2]). Indeed, for every x and y in H, we have

‖Qx−Qy‖2 = ‖x− y‖2 − 2γ 〈x− y |Bx−By 〉+ γ2‖Bx−By‖2

≤ ‖x− y‖2 − γ(2− βγ) 〈x− y |Bx−By 〉

≤
(

1− αγ(2− βγ)
)

‖x− y‖2. (20)

Here, x0 is the unique solution to (19).

(iii) Suppose that ϕ : H → R is convex and differentiable, and that ∇ϕ is α-strongly
monotone and Lipschitz-continuous with constant β. Then it follows from [4,
Corollaire 10] that ∇ϕ/β is firmly nonexpansive. Hence, we deduce from (ii) that
Q = Id− γ∇ϕ is a strict contraction for γ ∈ ]0, 2/β[. In this case, x0 is the unique
minimizer of ϕ over C.

(iv) A special case of (iii) is when ϕ : H → R is convex, twice continuously Fréchet-
differentiable, and that

(∀(x, y) ∈ H2) α‖y‖2 ≤
〈

y
∣

∣∇2ϕ(x)y
〉

≤ β‖y‖2. (21)

This follows from [14, Theorem 4].

(v) Let a ∈ H and suppose that Q : x 7→ a. Then x0 is the projection of a onto C.

Remark 2.5. In Theorem 2.3, Fix Tε may vary with ε. For instance, let (Cε)ε∈]0,1[ be
closed convex subsets of H such that C =

⋂

ε∈]0,1[ Cε 6= ? and such that the associated

projectors (Tε)ε∈]0,1[ satisfy (∀x ∈ H) Tεx⇀PCx as ε → 0. Furthermore, fix a ∈ H and set
Q : x 7→ a and Sε ≡ Id. Then (∀ε ∈ ]0, 1[) Fix Tε = Cε and (4)⇒ xε = Tε

(

xε+ε(a−xε)
)

=
Tεa. Therefore, (5) holds trivially and (xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[.
Indeed, xε⇀x ⇔ Tεa⇀x. However, since Tεa⇀PCa, we obtain x = PCa ∈ C.

Remark 2.6. Let (Bε)ε∈]0,1[ be a family of operators from H to H with domain H which
uniquely define a curve (xε)ε∈]0,1[ via the equations (∀ε ∈ ]0, 1[) xε = Tε(Id− εBε)xε. Set
(∀ε ∈ ]0, 1[) yε = xε − εBεxε. Then

(∀ε ∈ ]0, 1[) yε = (Id− εBε)Tεyε. (22)

Thus, if xε → x0 as ε → 0 and (Bεxε)ε∈]0,1[ is bounded, we also have yε → x0 as ε → 0.
This simple observation yields the following alternative approximating curve result. Let us
make the same assumptions as in Theorem 2.3 and let us set (∀ε ∈ ]0, 1[) Bε = Id−QSε.
Then (22) becomes

(∀ε ∈ ]0, 1[) yε = εQSεTεyε + (1− ε)Tεyε. (23)

In view of (9), the family (Bεxε)ε∈]0,1[ is bounded. Therefore, Theorem 2.3 yields yε →
x0 = PC(Qx0) as ε → 0. In particular, if a ∈ H, Q : x 7→ a, Tε ≡ T , and Sε ≡ Id, we
recover the classical result [9, Theorem 2] alluded to in Section 1 (see also [10, Theorem 1]
and [17, Theorem 1] for alternate proofs of this result).

Remark 2.7 (Infeasible case). Suppose that we make the same assumptions as in The-
orem 2.3, except that C = ? and D =

⋂

ε∈]0,1[ Fix Sε 6= ? (e.g., Sε ≡ Id). Then
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‖xε‖ → +∞ as ε → 0. Indeed, otherwise there would exist a bounded sequence (xεn)n∈N,
where ]0, 1[ 3 εn ↓ 0. Taking x ∈ D in (8), we would obtain the boundedness of
(QSεnxεn − xεn)n∈N and it would follow from (13) that Tεnxεn − xεn → 0. On the other
hand, we could extract a subsequence (xεkn

)n∈N such that xεkn
⇀w. However, the T-

focused assumption would yield w ∈ C, which is absurd.

We close this section with a special case of Theorem 2.3.

Corollary 2.8. Let T : domT = H → H be a nonexpansive operator such that Fix T 6=
? and let Q : domQ = H → H be a strict contraction. Then there exists a unique point
x0 ∈ Fix T such that x0 = PFix T (Qx0). Now let (λε)ε∈]0,1[ and (µε)ε∈]0,1[ be families in
[0, 1] such that infε∈]0,1[ λε > 0 and set

(∀ε ∈ ]0, 1[) xε =
(

Id + λε(T − Id)
)(

xε + ε
(

Q
(

xε + µε(Txε − xε

))

− xε)
)

. (24)

Then (xε)ε∈]0,1[ is uniquely defined and xε → x0 as ε → 0.

Proof. Set C = Fix T and, for every ε ∈ ]0, 1[, Tε = Id + λε(T − Id) and Sε = Id +
µε(T − Id). Then, for every ε ∈ ]0, 1[, Tε and Sε are nonexpansive, and Fix Sε = C or H,
according as 0 < µε ≤ 1 or µε = 0. On the other hand, since infε∈]0,1[ λε > 0, Fix Tε ≡ C.
Altogether, ? 6= C =

⋂

ε∈]0,1[ Fix Tε ⊂
⋂

ε∈]0,1[ Fix Sε. Moreover, Example 2.2 shows that

(xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[, while (5) is readily verified. Thus, the
result is a special case of Theorem 2.3.

In particular, setting Q : x 7→ a and λε ≡ 1 in Corollary 2.8, we recover the fact that the
limit of the approximating curve (1) is the best approximation to a from Fix T .

3. Monotone inclusion problems

Let A : H → 2H be a set-valued operator. The sets domA = {x ∈ H | Ax 6= ?},
ranA = {u ∈ H | (∃x ∈ H) u ∈ Ax}, and grA = {(x, u) ∈ H2 | u ∈ Ax} are the
domain, the range, and the graph of A, respectively. The inverse A−1 of A is the set-
valued operator with graph {(u, x) ∈ H2 | u ∈ Ax}, the resolvent of A is JA = (Id+A)−1,
and its Yosida approximation of index γ ∈ ]0,+∞[ is γA = (Id− JγA)/γ. Moreover, A is
monotone if

(∀(x, u) ∈ grA)(∀(y, v) ∈ grA) 〈x− y | u− v 〉 ≥ 0, (25)

and maximal monotone if, furthermore, grA is not properly contained in the graph of
any monotone operator B : H → 2H. If A is monotone and domA 6= ?, the associated
Fitzpatrick function [15] is the proper lower semicontinuous convex function fA : H×H →
]−∞,+∞] defined by

(∀(x,w) ∈ H ×H) fA(x,w) = 〈x | w 〉+ sup
(y,v)∈grA

〈x− y | v − w 〉 . (26)

Definition 3.1. Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H

and let (xε)ε∈]0,1[ be a family in H. Then (xε)ε∈]0,1[ is A-focused with respect to (Aε)ε∈]0,1[
if, for every x ∈ H and every sequence (εn)n∈N in ]0, 1[ such that εn ↓ 0,

[

xεn ⇀x and 1Aεnxεn → 0
]

⇒ (∀ε ∈ ]0, 1[) 0 ∈ Aεx. (27)



P. L. Combettes, S. A. Hirstoaga / Approximating Curves for Nonexpansive and ... 639

Example 3.2. Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to
2H which graph-converges to some maximal monotone operator A : H → 2H such that
A−10 =

⋂

ε∈]0,1[ A
−1
ε 0, and take (xε)ε∈]0,1[ in H. Then (xε)ε∈]0,1[ is A-focused with respect

to (Aε)ε∈]0,1[.

Proof. Suppose that ]0, 1[ 3 εn ↓ 0, xεn ⇀x, and 1Aεnxεn → 0. Then JAεn
xεn ⇀x and

1Aεnxεn → 0, while (∀n ∈ N)
(

JAεn
xεn ,

1Aεnxεn

)

∈ grAεn . Therefore, [1, Proposition 3.59]
yields (x, 0) ∈ grA.

We start with an application of Theorem 2.3.

Corollary 3.3. Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H

such that C =
⋂

ε∈]0,1[ A
−1
ε 0 6= ? and let Q : domQ = H → H be a strict contraction.

Then there exists a unique point x0 ∈ C such that x0 = PC(Qx0). Now take (ρε)ε∈]0,1[
and (νε)ε∈]0,1[ in [0, 2] such that infε∈]0,1[ ρε > 0, and set

(∀ε ∈ ]0, 1[) xε =
(

Id + ρε(JAε − Id)
)(

xε + ε
(

Q
(

xε + νε(JAεxε − xε)
)

− xε

))

. (28)

Then the family (xε)ε∈]0,1[ is uniquely defined. In addition, if (xε)ε∈]0,1[ is A-focused with
respect to (Aε)ε∈]0,1[, then xε → x0 as ε → 0.

Proof. Set (∀ε ∈ ]0, 1[) Tε = Id + ρε(JAε − Id) and Sε = Id + νε(JAε − Id). For every
ε ∈ ]0, 1[, since Aε is maximal monotone, 2JAε − Id is nonexpansive with domain H
and fixed point set A−1

ε 0 [16, Section 1.11]; consequently, Tε and Sε are nonexpansive,
Fix Tε = A−1

ε 0 (since ρε > 0), and Fix Sε = A−1
ε 0 or H, according as 0 < νε ≤ 2 or

νε = 0. Consequently, ? 6= C =
⋂

ε∈]0,1[ Fix Tε ⊂
⋂

ε∈]0,1[ Fix Sε. Now take ]0, 1[ 3 εn ↓ 0.

Since infε∈]0,1[ ρε > 0, xεn − Tεnxεn → 0 ⇒ 1Aεnxεn → 0, and it follows from (27) that
(xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[. Finally, suppose that xεn → x ∈ C.
Then xεn − Tεnxεn → 0 ⇒ 2‖ 1Aεnxεn‖ → 0 ⇒ νεn‖ 1Aεnxεn‖ → 0 ⇒ ‖xεn − Sεnxεn‖ → 0
⇒ Sεnxεn → x. Hence, (5) holds. Altogether, since (28) is a special case of (4), the claims
follow from Theorem 2.3.

Corollary 3.4. Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H

such that C =
⋂

ε∈]0,1[ A
−1
ε 0 6= ? and let B = Id − Q, where Q : domQ = H → H is a

strict contraction. Then there exists a unique point x0 ∈ C such that x0 = PC(x0 −Bx0).
Now let

(∀ε ∈ ]0, 1[) 0 ∈ Aεxε + εBxε. (29)

Then the family (xε)ε∈]0,1[ is uniquely defined. In addition, if (xε)ε∈]0,1[ is A-focused with
respect to (Aε)ε∈]0,1[, then xε → x0 as ε → 0.

Proof. Setting ρε ≡ 1 and νε ≡ 0 in (28), we obtain (29). We can then apply Corol-
lary 3.3.

Remark 3.5. We can rewrite (29) as (∀ε ∈ ]0, 1[) xε = JAε/ε

(

xε − Bxε

)

. In particular,
for Aε ≡ A and B = Id, we obtain

(∀ε ∈ ]0, 1[) xε = JA/ε0. (30)
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(i) In this case, Corollary 3.4 coincides with [11, Lemma 1], i.e., JA/ε0 → PA−100
as ε → 0 (here (27) follows from the fact that, by maximal monotonicity of A,
grA is sequentially weakly-strongly closed in H × H). This result can be traced
back to [20] (see also [23, Theorem 1 and Remark 2] for a Banach space version,
and [9, Theorem 1] for a related result; moreover, Remark 2.7 corresponds to [22,
Theorem 2], i.e., ‖xε‖ → +∞ if 0 /∈ ranA).

(ii) Let U : H → 2H be a maximal monotone operator, let x ∈ H, and let A = U−1 − x.
Then (30) becomes (∀ε ∈ ]0, 1[) xε =

εUx. Therefore, (i) asserts that
(a) if x ∈ domU , that is 0 ∈ ranA, then xε → PA−100 = PUx0 as ε → 0;
(b) if x /∈ domU , that is 0 /∈ ranA, then ‖xε‖ → +∞ as ε → 0.
This classical result can be found in [7, Proposition 2.6(iii)&(iv)].

In Corollary 3.4, the approximating curve (29) converges strongly to the solution x0 to
the variational inequality

0 ∈ N(

⋂

ε∈]0,1[ A
−1
ε 0

)x0 +Bx0, (31)

where B is a special type of single-valued strongly monotone operator (see Example 2.4
for specific examples). In Theorem 3.10 below, we extend this result to a more general
type of set-valued strictly monotone operator B. First, we require the following facts,
starting with a generalization of the notion of strong monotonicity.

Definition 3.6. Let B : H → 2H be a set-valued operator with domB 6= ? and let
c : [0,+∞[ → [0,+∞[ be a nondecreasing function that vanishes only at 0 and such that
limt→+∞ c(t)/t = +∞. Then B is c-uniformly monotone if

(∀(x, u) ∈ grB)(∀(y, v) ∈ grB) 〈x− y | u− v 〉 ≥ c(‖x− y‖). (32)

If c : t 7→ αt2 for some α ∈ ]0,+∞[, then B is α-strongly monotone.

Lemma 3.7. Let B : H → 2H be a c-uniformly monotone operator. Then (domB)×H ⊂
dom fB.

Proof. Fix (x, u) ∈ grB and w ∈ H, and set γ = ‖u − w‖ and ψ : [0,+∞[ → R : t 7→
γt− c(t). Since limt→+∞ c(t)/t = +∞, we can find τ ∈ [0,+∞[ such that ψ(t) < 0 = ψ(0)
whenever t > τ . Thus, supt∈[0,+∞[ ψ(t) = supt∈[0,τ ] ψ(t) ≤ γτ < +∞. Therefore, (26),
(32), and Cauchy-Schwarz yield

fB(x,w)−〈x | w 〉 = sup
(y,v)∈grB

〈x− y | v − u〉+〈x− y | u− w 〉 ≤ sup
y∈domB

ψ(‖x−y‖) < +∞.

(33)
In other words, (x,w) ∈ dom fB.

Lemma 3.8. Let A,B : H → 2H be maximal monotone operators such that A + B is
maximal monotone and B is c-uniformly monotone. Suppose that, in addition, (domA)×
(ranA) ⊂ dom fA or domA ⊂ domB. Then:

(i) ran(A+B) = H.

(ii) The inclusion 0 ∈ Ax+Bx admits a unique solution.
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Proof. (i): Fix (y, v) ∈ grB. Then (32) yields

(∀(x, u) ∈ grB) ‖x− y‖ · ‖u‖ ≥ 〈x− y | u〉
= 〈x− y | u− v 〉+ 〈x− y | v 〉
≥ c(‖x− y‖)− ‖x− y‖ · ‖v‖. (34)

Accordingly, since limt→+∞ c(t)/t = +∞, we have limx∈domB
‖x‖→+∞

infu∈Bx ‖u‖ = +∞ whenever

domB is unbounded. It then follows from [28, Corollary 32.35] that ranB = H and, in
turn, from Lemma 3.7 that (domB) × (ranB) = (domB) × H ⊂ dom fB. We then
deduce from the Brézis-Haraux theorem [8, Théorèmes 3 and 4] that int ran(A + B) =
int(ranA+ ranB) = H.

(ii): Since A is monotone and B is strictly monotone, A+B is strictly monotone. Hence,
the inclusion 0 ∈ Ax+Bx has at most one solution. Existence follows from (i).

Remark 3.9. Fitzpatrick functions have recently been shown to be remarkably useful in
establishing concise proofs of various key results in monotone operator theory (see [6, 24]
and the references therein). In the same vein, S. Simons (personal communication, April
7, 2005) has produced a new proof of the Brézis-Haraux theorem in Banach spaces.

Theorem 3.10. Let (Aε)ε∈]0,1[ be a family of maximal monotone operators from H to 2H

such that C =
⋂

ε∈]0,1[ A
−1
ε 0 6= ? and let B : domB = H → 2H be a maximal monotone

operator which is c-uniformly monotone. Then there exists a unique point x0 ∈ H such
that 0 ∈ NCx0 +Bx0. Now let

(∀ε ∈ ]0, 1[) 0 ∈ Aεxε + εBxε. (35)

Then the family (xε)ε∈]0,1[ is uniquely defined. In addition, if B maps every bounded subset
into a bounded subset and if (xε)ε∈]0,1[ is A-focused with respect to (Aε)ε∈]0,1[, then xε → x0

as ε → 0.

Proof. By maximal monotonicity, the sets (A−1
ε 0)ε∈]0,1[ are closed and convex, and so is

therefore C. Accordingly, NC is maximal monotone and, since domB = H, Lemma 3.8(ii)
guarantees that x0 is uniquely defined. Likewise, it follows from (35) and Lemma 3.8(ii)
that (xε)ε∈]0,1[ is uniquely defined.

To show the last assertion, we first derive from (35) that there exists a family (bε)ε∈]0,1[
such that

(∀ε ∈ ]0, 1[) bε ∈ Bxε and − εbε ∈ Aεxε. (36)

Now fix x ∈ C and u ∈ Bx. Then (∀ε ∈ ]0, 1[) 0 ∈ Aεx. Hence, in view of (36), the
monotonicity of the operators (Aε)ε∈]0,1[ yields

(∀ε ∈ ]0, 1[) 〈x− xε | bε 〉 ≥ 0, (37)

while the c-uniform monotonicity of B yields

(∀ε ∈ ]0, 1[) 〈x− xε | u− bε 〉 ≥ c(‖x− xε‖). (38)

Adding (37) and (38) we obtain

(∀ε ∈ ]0, 1[) 〈x− xε | u〉 ≥ c(‖x− xε‖), (39)
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and therefore

(∀ε ∈ ]0, 1[) ‖x− xε‖ · ‖u‖ ≥ c(‖x− xε‖). (40)

Consequently, since limt→+∞ c(t)/t = +∞, (xε)ε∈]0,1[ is bounded. In turn, it follows from
the boundedness of B on bounded sets that

β = sup
ε∈]0,1[

‖bε‖ < +∞. (41)

Now, observe that the monotonicity of the operators (Aε)ε∈]0,1[ and (36) yield

(∀ε ∈ ]0, 1[)(∀y ∈ C) 〈xε − y | bε 〉 ≤ 0. (42)

Likewise,

{

−εbε ∈ Aεxε

1Aεxε ∈ AεJAεxε

⇒
〈

1Aεxε

∣

∣
1Aεxε + εbε

〉

≤ 0 ⇒ ‖ 1Aεxε‖ ≤ ε‖bε‖ ≤ εβ,

(43)
where the last implication follows from Cauchy-Schwarz and (41). We have thus shown
that

lim
ε→0

‖ 1Aεxε‖ = 0. (44)

Now let (εn)n∈N be an arbitrary sequence in ]0, 1[ such that εn ↓ 0. Then it remains to show
that xεn → x0. To this end, take a weak cluster point of (xεn)n∈N, say xεkn

⇀w. Then it
follows from (44) and (27) that w ∈ C. In turn, (39) implies that xεkn

→ w. Moreover,
in view of (41), passing to a further subsequence if necessary, we assume that (bεkn )n∈N
converges weakly, say bεkn ⇀v. Since B is maximal monotone, its graph is sequentially
strongly-weakly closed in H×H and therefore v ∈ Bw. Altogether, xεkn

→ w, bεkn ⇀v,
and hence (42) yields

(∀y ∈ C)
〈

xεkn
− y

∣

∣ bεkn
〉

→ 〈w − y | v 〉 ≤ lim
n→+∞

〈xεn − y | bεn 〉 ≤ 0. (45)

Consequently, supy∈C 〈w − y | v 〉 ≤ 0 and, therefore, −v ∈ NCw. Recalling that v ∈ Bw,
we obtain 0 ∈ NCw+Bw. However, since the inclusion 0 ∈ NCx0 +Bx0 admits a unique
solution, w = x0 is the unique weak cluster point of (xεn)n∈N and therefore xεn ⇀x0.
Invoking (39), we conclude that xεn → x0.

Remark 3.11 (Infeasible case). Suppose that we make the same assumptions as in
Theorem 3.10, except that C = ?. Then ‖xε‖ → +∞ as ε → 0. Indeed, otherwise there
would exist a bounded sequence (xεn)n∈N, where ]0, 1[ 3 εn ↓ 0. Hence, the sequence
(bεn)n∈N given by (36) would also be bounded and, as in (43), we would get ‖ 1Aεnxεn‖ ≤
εn‖bεn‖ → 0. Furthermore, we could extract a subsequence (xεkn

)n∈N such that xεkn
⇀w,

and (27) would force w ∈ C = ?.

Remark 3.12.

(i) As seen in Example 3.2, the A-focused condition holds in Theorem 3.10 when
(Aε)ε∈]0,1[ graph-converges to a maximal monotone operator A : H → 2H such that
A−10 =

⋂

ε∈]0,1[ A
−1
ε 0. In such instances, 0 ∈ NA−10x0 +Bx0.
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(ii) Suppose that B is single-valued in Theorem 3.10. Then xε → x0 = PC(x0−Bx0) as
ε → 0. However, as shown in (41), the family (Bxε)ε∈]0,1[ is bounded. On the other
hand, (35) can be rewritten as

(∀ε ∈ ]0, 1[) xε = JAε

(

Id− εB
)

xε. (46)

Consequently, it follows from the observation made in Remark 2.6 that, under the
same assumptions as in Theorem 3.10, the approximating curve defined by (∀ε ∈
]0, 1[) yε = xε − εBxε, i.e., by

(∀ε ∈ ]0, 1[) yε = JAεyε − εBJAεyε, (47)

converges strongly to x0 as ε → 0.

(iii) Consider the special case when Aε ≡ A. Then (35) reduces to

(∀ε ∈ ]0, 1[) 0 ∈ Axε + εBxε. (48)

In this context, a result related to Theorem 3.10 – though based on different as-
sumptions – is [28, Theorem 32.K]. If we further specialize by imposing that B be
strongly monotone, then Theorem 3.10 and Remark 3.11 reduce to [18, Proposi-
tion 2.1]. Finally, when A is the subdifferential of a proper lower semicontinuous
convex function f : H → ]−∞,+∞] and B the subdifferential of a uniformly con-
vex function g : H → R, xε in (48) is the minimizer of f + εg, and we obtain the
Tikhonov regularization setting (see [2, Section 5] for related results and [26] for
classical work).

4. Further nonexpansive fixed point results

In this section, we derive from the results of Section 3 additional approximating curves
for fixed point problems.

As seen in Example 2.4(i)&(ii), Theorem 2.3 asserts that if B : domB = H → H
is strongly monotone and possesses additional properties then, for some suitable γ ∈
]0,+∞[, the limit x0 of the approximating curve

(∀ε ∈ ]0, 1[) xε = Tε

(

xε + ε((Id− γB)Sεxε − xε)
)

, (49)

as ε → 0, solves the variational inequality (19). We now investigate an alternative ap-
proximating curve, which allows for a more general type of operator B.

Corollary 4.1. Let (Tε)ε∈]0,1[ be a family of nonexpansive operators from H to H with
domain H such that C =

⋂

ε∈]0,1[ Fix Tε 6= ? and let B : domB = H → H be a maximal
monotone operator which is c-uniformly monotone. Then there exists a unique point
x0 ∈ C such that x0 = PC(x0 −Bx0). Now set

(∀ε ∈ ]0, 1[) xε = Tε

(

xε − εBxε

)

− εBxε. (50)

Then (xε)ε∈]0,1[ is uniquely defined. In addition, if B maps every bounded subset into
a bounded subset and (xε)ε∈]0,1[ is T-focused with respect to (Tε)ε∈]0,1[, then xε → x0 as
ε → 0.
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Proof. Set (∀ε ∈ ]0, 1[) Fε = (Tε + Id)/2 and Aε = F−1
ε − Id. Since (Fε)ε∈]0,1[ is a

family of firmly nonexpansive operators with domain H, (Aε)ε∈]0,1[ is a family of maximal
monotone operators [16, Section 1.11]. Moreover, it follows from Definitions 2.1 and 3.1
that (xε)ε∈]0,1[ is A-focused with respect to (Aε)ε∈]0,1[. Finally, since (50) is equivalent to
(46), which is itself equivalent to (35), the results follow from Theorem 3.10.

We conclude with two results on the approximation of a particular fixed point of a non-
expansive operator.

Corollary 4.2. Let T : domT = H → H be a nonexpansive operator such that Fix T 6=
?, let (λε)ε∈]0,1[ be a family in ]0, 1] such that infε∈]0,1[ λε > 0, and let B : domB = H → H
be a maximal monotone operator which is c-uniformly monotone. Then there exists a
unique point x0 ∈ Fix T such that x0 = PFix T (x0 −Bx0). Now set

(∀ε ∈ ]0, 1[) xε = T
(

xε −Bxε

)

+ ε
λε − 2

λε

Bxε. (51)

Then (xε)ε∈]0,1[ is uniquely defined. In addition, if B maps every bounded subset into a
bounded subset, then xε → x0 as ε → 0.

Proof. Set (∀ε ∈ ]0, 1[) Tε = Id + λε(T − Id) in Corollary 4.1 and use Example 2.2.

Corollary 4.3. Let T : domT = H → H be a nonexpansive operator such that Fix T 6=
? and let B : domB = H → H be a maximal monotone operator which is c-uniformly
monotone. Then there exists a unique point x0 ∈ Fix T such that x0 = PFix T (x0 −Bx0).
Now set

(∀ε ∈ ]0, 1[) xε = Txε − εBxε. (52)

Then (xε)ε∈]0,1[ is uniquely defined. In addition, if B maps every bounded subset into a
bounded subset, then xε → x0 as ε → 0.

Proof. It suffices to set Aε ≡ Id−T in Theorem 3.10. To check (27), take ]0, 1[ 3 εn ↓ 0,
xεn ⇀x, and 1Aεnxεn → 0. Letting (∀n ∈ N) pn = JAεn

xεn , we obtain pn⇀x and
pn − Tpn = Aεnpn = xεn − pn → 0. Then the demiclosed principle [10, Lemma 2] yields
x ∈ Fix T ≡ A−1

ε 0.

In particular, if B = Id−Q, where Q : domQ = H → H is a strict contraction, then (52)
reduces to

(∀ε ∈ ]0, 1[) xε =
ε

ε+ 1
Qxε +

1

ε+ 1
Txε, (53)

and Corollary 4.3 reduces to [21, Theorem 2.1].
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J. Math. 23 (1976) 165–186.

[9] F. E. Browder: Existence and approximation of solutions of nonlinear variational inequali-
ties, Proc. Natl. Acad. Sci. USA 56 (1966) 1080–1086.

[10] F. E. Browder: Convergence of approximants to fixed points of nonexpansive nonlinear
mappings in Banach spaces, Arch. Ration. Mech. Anal. 24 (1967) 82–90.

[11] R. E. Bruck Jr.: A strongly convergent iterative solution of 0 ∈ U(x) for a maximal mono-
tone operator U in Hilbert space, J. Math. Anal. Appl. 48 (1974) 114–126.

[12] P. L. Combettes: Construction d’un point fixe commun à une famille de contractions fermes,
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