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A classical tool in nonlinear analysis is the notion of an approximating curve, whereby a particular
solution to a nonuniquely solvable problem is obtained as the limit of the solutions to uniquely solvable
perturbed problems. We introduce and analyze new types of approximating curves for nonexpansive fixed
point problems and monotone inclusion problems in Hilbert spaces. The solution attained by these curves
solves a strictly monotone variational inequality over the original solution set. Various special cases are
discussed.
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1. Introduction

In nonlinear analysis, a common approach to solving a problem with multiple solutions is
to replace it by a family of perturbed problems admitting a unique solution, and to obtain
a particular original solution as the limit of these perturbed solutions as the perturbation
vanishes. This principle arises for instance in minimization problems (Tikhonov regular-
ization [2, 26]), in partial differential equations (viscosity solutions [28, Section 33.11}), in
monotone inclusions [28, Section 32.18], in variational inequalities [9], in evolution equa-
tions (elliptic regularization [19, Chapitre 3]), and in fixed point theory (approximating
curves [16]); further examples will be found in [3, 25, 28] and the references therein. For
the sake of illustration, let us consider two examples in a Hilbert space H.

e Let T be a nonexpansive operator defined on H, and suppose that the set Fix T
of its fixed points is nonempty. Given a € H, a classical way to perturb the basic
fixed point equation x = Tz is to add to T a viscosity term e(a — T'), which yields
r. =ea+ (1 —e)Tx., where € € |0, 1[. As the viscosity term vanishes, i.e., as ¢ — 0,
the approximating curve (z.).cjo,1[ converges strongly to the best approximation z,
to a from Fix 7' [9]. A simple manipulation shows that the same result holds for the
approximating curve defined by

(Ve €10,1)) z. =T (2. +¢e(a — z.)). (1)
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e Let A: ' H — 2™ be a maximal monotone operator with zeros. Given ¢ € 0, 1], con-
sider the perturbation 0 € Ax.+ex. of the inclusion 0 € Ax. Then the approximating
curve (&.)eejo,1[ converges strongly to the zero zy of A of minimal norm as e — 0 [11].

Besides their importance in the problems mentioned above, approximating curves are
also relevant to numerical methods since understanding their properties is central in the
analysis of parent continuous [3, 21, 23| and discrete [5, 12, 17, 27] dynamical systems (see
also [13] for an application of such dynamical systems to concrete problems). The goal
of this paper is to analyze the properties of new types of approximating curves for fixed
point and monotone inclusion problems. The limit attained by these curves is the solution
of the general variational inequality 0 € Noxg + Bxg, where No denotes the normal cone
operator to the original solution set C' and B: H — 27 is a suitable strictly monotone
operator.

Throughout, H is a real Hilbert space with scalar product (- | ), norm || - ||, and identity
operator Id. In addition, P- denotes the projector onto a nonempty closed convex subset
C of H, and Ng: 'H — 2™ its normal cone operator, i.e.,

eH|(Vyel — <0}, ifxreC;

, otherwise.

As is customary, — and — denote, respectively, strong and weak convergence.

2. Nonexpansive fixed point problems

The domain and fixed point set of an operator T: H — H are denoted by domT and
Fix T, respectively. Recall that T is nonexpansive if it is Lipschitz-continuous with
constant 1, firmly nonexpansive if 27" — Id is nonexpansive, and a strict contraction if it
is Lipschitz-continuous with a constant in [0,1[. It will be convenient to introduce the
following notion.

Definition 2.1. Let (7%).cj,1[ be a family of operators from H to ‘H with domain H and
let (2:)scp0,11 be a family in H. Then (z.).cjo,1[ is T-focused with respect to (1%).cjo.q if,
for every = € ‘H and every sequence (&, ),en in |0, 1[ such that e, | 0,

2.,z and z., —T. 2., —0] = (Vee€]0,1]) Tz =u. (3)

Example 2.2. Let T: domT = 'H — H be a nonexpansive operator such that Fix T" #
@, let (A:)eeoa; be a family in ]0,1] such that inf.qoi - > 0, set (Ve € ]0,1[) 1. =
Id + A\(T — Id), and take (x.).cjo,1] in H. Then (z.)cco,) is T-focused with respect to
(Ts>e€]0,1[-

Proof. Suppose that |0,1] > ¢, | 0, z., =z, and x., — T., x., — 0. Then, since
inf.cjo1; Ae > 0, we obtain z., — Tw., — 0 and the demiclosed principle [10, Lemma 2]
yields z € Fix T' = Fix T.. O]

Our first result concerns the convergence of a generalization of (1).

Theorem 2.3. Let (T7).cjo1] and (Se)ecjo] be families of nonexpansive operators from 'H
to H with domain H, let Q: dom @ = H — H be a strict contraction, and suppose that
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C = ﬂae]o,l[ Fix T, # @. Then there exists a unique point xo € C such that xog = Po(Q o).
Now set

(Ve €]0,1]) x. =T- (a:E +e(QScx. — 335)) (4)
Then (x:)ecjoa] 15 uniquely defined. In addition, if (x.)scjo.( s T-focused with respect to
(T%)ecroup, C C ﬂge]OJ[FiX S., and, for every x € H and every sequence (g,)nen in |0, 1]
such that €, | 0,

(2., >2€C and z.,-T.z.,—0] = S, 2, —u= (5)
then x. — xog as € — 0.

Proof. Let € € ]0,1[. Since T. is nonexpansive, Fix 7. is closed and convex [16, Propo-
sition 1.5.3] and, therefore, C' is a nonempty closed convex set. As a result, since P is
nonexpansive and () is a strict contraction, Po(@) is a strict contraction, and it follows from
the standard Banach-Picard theorem that the point x( is uniquely defined. Likewise, since
Se is nonexpansive, the composition @S is a strict contraction. In turn, eQS. + (1 —¢)Id
is a strict contraction and so is 7. (8@55 + (1 - e)Id). Hence, the point z. is uniquely
defined in (4).

To show the last assertion, let § € [0, 1] be the Lipschitz constant of ) and let = be a
point in C. Then we deduce from (4) that

(Ve €10,1[) ||xe — || = ||T5(€QSEI5 +(1— 5):65) — T.x||
< |e@QSex. + (1 — )z, — x|
= le(Q@Scxe — QSex) + (1 —&)(z. — ) + e(Qr — )|
< eb||Scxe — Sex|| + (1 — &)||xe — || + €| Qx — z|]

< (1~ &+ ). ~ ol + €@ — all. ©)
Hence,
(e €101 . < 1922l @)

Consequently, (z:)ecjo,1[ is bounded and, since
(Ve €]0,1]) [|QS:w: —ze| < |QS:xe — QS:x|| +||2e — Qul| < O|ze — 2| +[|x. — Qul], (8)

we obtain
B = sup [|QS.z. — .|| < +oc. 9)

€€]0,1]

Now set (Ve € ]0,1]) y. = z. + (@S2 — x-). Then (4) yields

(Vy € C)(Ve €]0,1]) €2||QS-x. — xc||* + 2 (QSex. — 2 | 7. — y)
= Hys - Tz—:y€||2 + 2 <ys - Tz—:ye | Tsye - y>
= llye = yll* = [ Teye — yII? (10)
> 0.

Therefore, by (9),

Wy € O)Ve €101 {r — @Ser. | —y) < SQSr. P < D (1)
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Hence, using Cauchy-Schwarz, we obtain

(Vy € O)(Ve €]0,1)) (1= 0)[lze — y|* < [l — ylI* = llze — ¢l - |QSez. — QSy||
< |lze —ylI> = (- —y | QSea. — QS:y)
= ((Id = QS:)z. — (Id = QS:)y |z —y)
e3?

§7+<ma—y!Qy—y>- (12)

Next, we derive from (4) and (9) that

(Ve €10,1]) |lze — Tee|| = HTE(xs +e(QSex: — xs)) —Tex||

< ]| QSwe — | (13)
< ef. (14)

Thus,
lir% |z. — Tox.|| = 0. (15)

To complete the proof, let (¢,),en be an arbitrary sequence in |0, 1[ such that ¢, | 0.
Then it is enough to show that z., — xo. Let w be a weak cluster point of (x., ),en, say
., —w. Then it follows from (15) and (3) that w € C'. Therefore, (12) yields

(Vn € N) (1—9)Hx5n—w|]2§8n762+<x5n—w | Quw —w), (16)

which implies that z., — w. Consequently, by (15) and (5), we obtain S, z., —— w
and, therefore, (11) results in

(vy € C) <x5k’n - QSEknxakn | 'Tﬁkn - y> - <w - Qw ’ w — y)
< lim (xe, — QSe, xe, | xe, —y) <O0. (17)

n—-+o0o

We thus obtain sup,cc (w — Quw |w —y) <0, ie, w = Po(Qw). Since 7 is the unique
fixed point of Po@Q), we have w = xy. Accordingly, the bounded sequence (z., )nen admits
zo as its unique weak cluster point, whence x., — zo. In turn, it follows from (16) that
Te — Xg. ]

n

Example 2.4. Using the standard characterization of the projection onto a convex set,
the limit o of the approximating curve (x.)-cj,1 in Theorem 2.3 is the solution to the
variational inequality

o€ C and (MyeC) (y—uxo|Qro— ) <O0. (18)

Here are some specific examples, where 0 < o < 3 < +00.

(i)  Suppose that B: dom B = 'H — H is a-strongly monotone (i.e., B — ald is mono-
tone) and Lipschitz-continuous with constant 3, and let v € ]0,2a/3%[. Then
Q = Id — vB is a strict contraction with constant § = /1 —v(2a —y3?) and
Zo is the unique solution to the variational inequality

g€ C and (MyeC) (y—xy|Bxy) > 0. (19)
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(ii) Suppose that B: dom B = H — H is a-strongly monotone and that B/ is firmly
nonexpansive, and let v € ]0,2/5[. Then Q = Id — vB is a strict contraction with
constant § = /1 — ay(2 — Bv) (this constant is smaller than that given in [14,
Theorem 2]). Indeed, for every x and y in H, we have

1Qz — Qyl|* = ||z — y||* = 27 (x — y | Bz — By) + 7*||Bx — By|?
<|lz—yl]* —~v(2 - By)(zr —y | Bx — By)
< (1=ay(2=57)) |z —yl*. (20)

Here, x¢ is the unique solution to (19).

(iii) Suppose that ¢: H — R is convex and differentiable, and that V¢ is a-strongly
monotone and Lipschitz-continuous with constant 5. Then it follows from [4,
Corollaire 10] that Vi /(3 is firmly nonexpansive. Hence, we deduce from (ii) that
Q =1d — vV is a strict contraction for v € ]0,2/5]. In this case, xy is the unique
minimizer of ¢ over C.

(iv) A special case of (iii) is when ¢: H — R is convex, twice continuously Fréchet-
differentiable, and that

(V(z,y) € H*) allyl® < (y | Vie(x)y) < Bllyll*. (21)

This follows from [14, Theorem 4].
(v) Let a € H and suppose that Q: x — a. Then x, is the projection of a onto C.

Remark 2.5. In Theorem 2.3, Fix T, may vary with . For instance, let (C;).cj,1| be
closed convex subsets of H such that C' = (., C: # @ and such that the associated

projectors (T;).¢cjo,1f satisfy (Vo € H) T.x — Pox as e — 0. Furthermore, fix a € H and set
Q: z+— aand S; = Id. Then (Ve € ]0,1[) Fix T, = C. and (4) = z. = T.(z.+e(a—z.)) =
T.a. Therefore, (5) holds trivially and (z.)ccjoq; is T-focused with respect to (7%).cjoq]-
Indeed, x. = x < T.a — x. However, since T.a — Pca, we obtain x = Pgca € C.

Remark 2.6. Let (B.).cjo,1 be a family of operators from H to H with domain H which
uniquely define a curve (.).cjo,1[ via the equations (Ve € ]0,1]) x. = T.(Id — eB.)x.. Set
(Ve €10,1[) y. = x. — eB.x.. Then

(V&? € ]07 1[) Ye = (Id - €B€>T€ys- (22>

Thus, if 2. — 29 as ¢ — 0 and (B:2.)cejo,1[ is bounded, we also have y. — z as € — 0.
This simple observation yields the following alternative approximating curve result. Let us
make the same assumptions as in Theorem 2.3 and let us set (Ve € ]0,1[) B. =Id—Q5..
Then (22) becomes

(V{—j € ]07 1[) Ye = EQSeTaye + (1 - 5)Taye- (23)

In view of (9), the family (B.z.).cjo1; is bounded. Therefore, Theorem 2.3 yields y. —
zrg = Po(Qxg) as € — 0. In particular, if a € H, Q: 2 — a, T. = T, and S, = Id, we
recover the classical result [9, Theorem 2] alluded to in Section 1 (see also [10, Theorem 1]
and [17, Theorem 1] for alternate proofs of this result).

Remark 2.7 (Infeasible case). Suppose that we make the same assumptions as in The-
orem 2.3, except that C' = @ and D = (g, Fix S: # @ (eg., S: = Id). Then
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|z:|| — 400 as € — 0. Indeed, otherwise there would exist a bounded sequence (., )nen,
where 0,1 5 ¢, | 0. Taking x € D in (8), we would obtain the boundedness of
(QS., ., — T:, )nen and it would follow from (13) that 7. z. — z., — 0. On the other
hand, we could extract a subsequence (7., )nen such that z. —w. However, the TJ-
focused assumption would yield w € C', which is absurd.

We close this section with a special case of Theorem 2.3.

Corollary 2.8. Let T: domT = 'H — H be a nonexpansive operator such that Fix T #
& and let Q: dom @ = H — H be a strict contraction. Then there exists a unique point
rg € Fix T such that xo = Pyix 7(Q x0). Now let (X:)zcjo1) and (pie)ecoa] be families in
[0, 1] such that inf.cp 1A > 0 and set

(Ve €]0,1]) z. = (Id + A (T — Id)) (xs + E(Q(:UE + pe(Tx. — xg)) - xs)) (24)
Then (<)ecjo] %5 uniquely defined and r. — xo as e — 0.

Proof. Set C = Fix T and, for every ¢ € ]0,1[, Tt = Id + \(T' — Id) and S. = Id +
pe(T —Id). Then, for every € € ]0,1[, T. and S are nonexpansive, and Fix S. = C or H,
according as 0 < p. < 1 or p. = 0. On the other hand, since inf.cjo;;Ac > 0, Fix T, = C.
Altogether, @ # C' = (g1 Fix Tz C (¢, Fix S.. Moreover, Example 2.2 shows that

(%)ae}o,l[ is T-focused with respect to (Ta)ae]o,l[a while (5) is readily verified. Thus, the
result is a special case of Theorem 2.3. O

In particular, setting (): x — a and A. = 1 in Corollary 2.8, we recover the fact that the
limit of the approximating curve (1) is the best approximation to a from Fix T

3. Monotone inclusion problems

Let A: H — 2™ be a set-valued operator. The sets domA = {z € H | Az # o},
ranA = {u € H | 3z € H) v € Az}, and gr A = {(z,u) € H? | u € Ax} are the
domain, the range, and the graph of A, respectively. The inverse A~! of A is the set-
valued operator with graph {(u,z) € H? | u € Az}, the resolvent of A is J4 = (Id+ A)~,
and its Yosida approximation of index v € ]0,+o00[is "A = (Id — J,4)/7. Moreover, A is
monotone if

(V(z,u) € grA)(V(y,v) € grA) (x—y[u—v) =0, (25)

and maximal monotone if, furthermore, gr A is not properly contained in the graph of
any monotone operator B: H — 2. If A is monotone and dom A # @, the associated
Fitzpatrick function [15] is the proper lower semicontinuous convex function fa: HxH —
|—00, +00] defined by

V(z,w) e HxXH) falz,w)=(zx |w)+ sup {(x—y|v—w). (26)

(y,v)egr A

Definition 3.1. Let (A.).cj0,1] be a family of maximal monotone operators from H to 2"
and let (2.).cjo1; be a family in H. Then (x.).c),1[ is A-focused with respect to (Ae)eejo
if, for every x € ‘H and every sequence (&, ),en in ]0, 1] such that &, | 0,

(2., 2z and 'A.z., —0] = (Vee]0,1]) 0€ A.x. (27)
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Example 3.2. Let (A.).c0,1; be a family of maximal monotone operators from H to
2" which graph-converges to some maximal monotone operator A: H — 2" such that
A0 = Necjo AZ10, and take (z.).e1; in H. Then (2.).¢jo,1[ is A-focused with respect

to (As)ae}&l[-

Proof. Suppose that ]0,1[ > ¢, | 0, 2., =z, and 'A. z., — 0. Then Ja., Te, = and
'A., ., — 0, while (Vn € N) (Ja_, z.,, ‘A.,z.,) € gr A.,. Therefore, [1, Proposition 3.59]
yields (z,0) € gr A. O

We start with an application of Theorem 2.3.

Corollary 3.3. Let (A:)-coa] be a family of mazimal monotone operators from H to oM
such that C = ﬂ5€}071[A;10 # @ and let Q: dom@Q = H — H be a strict contraction.

Then there exists a unique point xg € C' such that vo = Po(Qx). Now take (pe)ecjoq]
and (Ve)sepoap in [0, 2] such that inf.cio 11 p- > 0, and set

(Ve €]0,1]) 2. = (Id+ po(Ja. — 1)) (2 + £(Q(- + ve(Jaw — z.)) —z2)).  (28)

Then the family (x.)ccjoa] s uniquely defined. In addition, if (x.)zcjo1f is A-focused with
respect to (Ae)ecoap, then x. — x¢ as e — 0.

Proof. Set (Ve € ]0,1[) 7. = Id + p.(Ja, — Id) and S, = Id 4+ v.(Ja. — Id). For every
e € ]0,1], since A. is maximal monotone, 2J4. — Id is nonexpansive with domain H
and fixed point set AZ'0 [16, Section 1.11]; consequently, 7. and S. are nonexpansive,
Fix T. = AZ'0 (since p. > 0), and Fix S. = AZ'0 or H, according as 0 < v. < 2 or
ve = 0. Consequently, @ # C = (., Fix Tt C ()., Fix S.. Now take [0,1[> &, | 0.
Since inf.qo11pc > 0, z., — T, 2., — 0 = A, x., — 0, and it follows from (27) that
(72)ecpo,1f is T-focused with respect to (7;).cjoq;. Finally, suppose that z., — = € C.
Then x,, — T, x., — 0= 2| 'A., z., || — 0= v ||'A., 2., || — 0 = ||z, — S., 2., | — 0
= S.,x., — x. Hence, (5) holds. Altogether, since (28) is a special case of (4), the claims
follow from Theorem 2.3. O

Corollary 3.4. Let (A.).cjo] be a family of maximal monotone operators from H to oM
such that C' = ﬂae}ovl[Aglo # & and let B =1d — Q, where Q: dom@Q =H — H is a
strict contraction. Then there exists a unique point xo € C such that xo = Po(xo — Bxg).
Now let

(Ve €]0,1[) 0 € A.x. + eBx.. (29)

Then the family (x:)ecjoa] s uniquely defined. In addition, if (x.)zcjo1( is A-focused with
respect to (Ae)ecoap, then x. — x¢ as e — 0.

Proof. Setting p. = 1 and v. = 0 in (28), we obtain (29). We can then apply Corol-
lary 3.3. L

Remark 3.5. We can rewrite (29) as (Ve € ]0,1[) 2. = Ja_je (2. — Bz.). In particular,
for A, = A and B = Id, we obtain

(Ve €]0,1]) @2 = Ja/.0. (30)
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(i) In this case, Corollary 3.4 coincides with [11, Lemma 1], i.e., Ja.0 — Py-1,0
as € — 0 (here (27) follows from the fact that, by maximal monotonicity of A,
gr A is sequentially weakly-strongly closed in H x H). This result can be traced
back to [20] (see also [23, Theorem 1 and Remark 2] for a Banach space version,
and [9, Theorem 1] for a related result; moreover, Remark 2.7 corresponds to [22,
Theorem 2], i.e., ||z.]| — 400 if 0 ¢ ran A).

(ii) Let U: H — 2™ be a maximal monotone operator, let x € H, and let A = U~ — .
Then (30) becomes (Ve € ]0,1[) z. = “Ux. Therefore, (i) asserts that
(a) if x € domU, that is 0 € ran A, then x. — Py-150 = Py,0 as ¢ — 0;

(b) if x ¢ dom U, that is 0 ¢ ran A, then ||z.|| — +o0 as ¢ — 0.
This classical result can be found in [7, Proposition 2.6(iii)&(iv)].

In Corollary 3.4, the approximating curve (29) converges strongly to the solution xy to
the variational inequality

0e N( ):L“o—f—BZL“O, (31)

meE]O,l[Aff_lo
where B is a special type of single-valued strongly monotone operator (see Example 2.4
for specific examples). In Theorem 3.10 below, we extend this result to a more general
type of set-valued strictly monotone operator B. First, we require the following facts,
starting with a generalization of the notion of strong monotonicity.

Definition 3.6. Let B: H — 2" be a set-valued operator with dom B # & and let
c¢: [0,400[ — [0,400[ be a nondecreasing function that vanishes only at 0 and such that
limy_, oo ¢(t)/t = +00. Then B is c-uniformly monotone if

(V(z,u) € gr B)(Y(y,v) € grB) (z—y [u—v)=c(|z—yl). (32)

If c: t — at? for some a € |0, +oo[, then B is a-strongly monotone.

Lemma 3.7. Let B: H — 2™ be a c-uniformly monotone operator. Then (dom B) x H C
dom fB .

Proof. Fix (z,u) € gr B and w € H, and set v = |ju — w|| and ¢: [0,400] — R: ¢ —
vt —c(t). Since limy_ 4 ¢(t)/t = +00, we can find 7 € [0, +00] such that ¥ (t) < 0 = 1(0)
whenever ¢ > 7. Thus, supyejg oo ¥(t) = Supse ¥ (t) < 77 < +o0. Therefore, (26),
(32), and Cauchy-Schwarz yield

fe(z,w)—(r |w)= sup (r—y|v—u)Hz—y|u—w)< sup P(||lz—yl) < +oo.
(y,v)€gr B yEdom B

(33)
In other words, (z,w) € dom fp. O

Lemma 3.8. Let A, B: H — 2" be mazimal monotone operators such that A + B is
mazximal monotone and B is c-uniformly monotone. Suppose that, in addition, (dom A) x
(ran A) C dom f4 or dom A C dom B. Then:

(i) ran(A+ B)="H.

(ii))  The inclusion 0 € Ax + Bx admits a unique solution.
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Proof. (i): Fix (y,v) € gr B. Then (32) yields

(V(z,u) € grB) |lz =yl - |lull = (z -y |u)
=@ —ylu—v)+{z—ylv)
2z c(llz = yl) = llz =yl - llvll (34)

Accordingly, since lim;_, 1 ¢(t)/t = +00, we have lim ycdom B infyep. [|1]| = +00 whenever
l|lzl|—+o0

dom B is unbounded. It then follows from [28, Corollary 32.35] that ran B = H and, in
turn, from Lemma 3.7 that (dom B) x (ran B) = (dom B) x H C dom fg. We then
deduce from the Brézis-Haraux theorem [8, Théoremes 3 and 4] that intran(A + B) =
int(ran A 4+ ran B) = H.

(ii): Since A is monotone and B is strictly monotone, A+ B is strictly monotone. Hence,
the inclusion 0 € Az + Bx has at most one solution. Existence follows from (i). O

Remark 3.9. Fitzpatrick functions have recently been shown to be remarkably useful in
establishing concise proofs of various key results in monotone operator theory (see [6, 24]
and the references therein). In the same vein, S. Simons (personal communication, April
7, 2005) has produced a new proof of the Brézis-Haraux theorem in Banach spaces.

Theorem 3.10. Let (A.).cjo.1f be a family of mazimal monotone operators from H to 27
such that C' = ﬂse]o’l[AjO # & and let B: dom B = H — 2™ be a mazimal monotone
operator which is c-uniformly monotone. Then there exists a unique point xo € H such
that 0 € Noxog + Bxg. Now let

(Ve €]0,1]) 0 € A.x. + eBux.. (35)

Then the family (x.)zcjo,1] is uniquely defined. In addition, if B maps every bounded subset
into a bounded subset and if (x.)ecjo] s A-focused with respect to (Ac)ecjo1[, then x. — g
as € — 0.

Proof. By maximal monotonicity, the sets (AZ'0).¢jo,1[ are closed and convex, and so is
therefore C'. Accordingly, N¢ is maximal monotone and, since dom B = H, Lemma 3.8(ii)
guarantees that zg is uniquely defined. Likewise, it follows from (35) and Lemma 3.8(ii)
that (2.).cjo17 is uniquely defined.

To show the last assertion, we first derive from (35) that there exists a family (be)cejo
such that
(Ve €10,1[) b. € Bx. and —eb. € A.z.. (36)

Now fix x € C and u € Bx. Then (Ve € ]0,1[) 0 € A.x. Hence, in view of (36), the
monotonicity of the operators (A:)-cj,1[ yields

(ve€]0,1)) (v - [b) >0, (37)
while the c-uniform monotonicity of B yields
(Ve €10,1]) (z—xc |u—"0b.) > c(||lx — zc]]). (38)
Adding (37) and (38) we obtain
(Ve €]0,1]) (z— = |u) = c(f|lz — z]), (39)
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and therefore
(Ve €]0,1]) llz —zc|l - lull > c(l|z — x.]]). (40)

Consequently, since limy ., c(t)/t = 400, (2:)zejo1] is bounded. In turn, it follows from
the boundedness of B on bounded sets that

B = sup ||be]] < +o0. (41)
e€]0,1]

Now, observe that the monotonicity of the operators (A:).cjo,1; and (36) yield

(Ve € 10,1)(Vy €C) (. —y |b) 0. (42)
Likewise,
- ba Aa 5
e E A = (M | U +eb ) <0 = || Yer]| < ellbe] < &8,
Acx. € AcJa x.

(43)
where the last implication follows from Cauchy-Schwarz and (41). We have thus shown
that

lim || A.z.|| = 0. (44)

Now let (g,,)nen be an arbitrary sequence in |0, 1] such that ,, | 0. Then it remains to show
that ., — x¢. To this end, take a weak cluster point of (x, ),en, say Te, —w. Then it
follows from (44) and (27) that w € C. In turn, (39) implies that x., — w. Moreover,
in view of (41), passing to a further subsequence if necessary, we assume that (b., )nen
converges weakly, say b, —wv. Since B is maximal monotone, its graph is sequentially
strongly-weakly closed in ‘H x H and therefore v € Bw. Altogether, z., — w, b, —wv,
and hence (42) yields

(Vy € C) <$6kn -y ‘bskn> — (w—y |v) Snl_i)Tfoo@en —y |be,) <0. (45)

Consequently, sup,cc (w —y |v) < 0 and, therefore, —v € Ngw. Recalling that v € Buw,
we obtain 0 € Now + Bw. However, since the inclusion 0 € Nz + Bzy admits a unique
solution, w = =z is the unique weak cluster point of (z., ),eny and therefore x., — .
Invoking (39), we conclude that x., — xo. O

Remark 3.11 (Infeasible case). Suppose that we make the same assumptions as in
Theorem 3.10, except that C' = @. Then ||z.|| — 400 as € — 0. Indeed, otherwise there
would exist a bounded sequence (x.,)nen, Where |0,1] 3 &, | 0. Hence, the sequence
(be, )nen given by (36) would also be bounded and, as in (43), we would get || *A. 2., | <
€nl|be, || — 0. Furthermore, we could extract a subsequence (., )nen such that z., —w,
and (27) would force w € C' = @.

Remark 3.12.

(i)  As seen in Example 3.2, the A-focused condition holds in Theorem 3.10 when
(Ae)eejo) graph-converges to a maximal monotone operator A: H — 2™ such that
A710 = N.qo1; A-'0. In such instances, 0 € Na-1979 + Bio.
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(ii) Suppose that B is single-valued in Theorem 3.10. Then x. — z¢ = Po(xo — Bxg) as
¢ — 0. However, as shown in (41), the family (Bx.).cjo,1] is bounded. On the other
hand, (35) can be rewritten as

(Ve €]0,1]) z. = Ja, (Id — eB)z.. (46)

Consequently, it follows from the observation made in Remark 2.6 that, under the
same assumptions as in Theorem 3.10, the approximating curve defined by (Ve €
]07 1[) Y. = v — Bz, i.e., by

(Ve €10,1]) y- = Ja.y. — eBJa_Ye, (47)

converges strongly to xy as € — 0.
(iii) Consider the special case when A. = A. Then (35) reduces to

(Ve €]0,1]) 0 € Az, + eBx.. (48)

In this context, a result related to Theorem 3.10 — though based on different as-
sumptions — is [28, Theorem 32.K]. If we further specialize by imposing that B be
strongly monotone, then Theorem 3.10 and Remark 3.11 reduce to [18, Proposi-
tion 2.1]. Finally, when A is the subdifferential of a proper lower semicontinuous
convex function f: H — |—o0,+00] and B the subdifferential of a uniformly con-
vex function g: H — R, z. in (48) is the minimizer of f + g, and we obtain the
Tikhonov regularization setting (see [2, Section 5] for related results and [26] for
classical work).

4. Further nonexpansive fixed point results

In this section, we derive from the results of Section 3 additional approximating curves
for fixed point problems.

As seen in Example 2.4(i)&(ii), Theorem 2.3 asserts that if B: domB = H — H
is strongly monotone and possesses additional properties then, for some suitable v €
10, +00], the limit xy of the approximating curve

(Ve €10,1)) 2. = T-(z. 4+ e((Id — vB)Sez. — 2.)), (49)

as € — 0, solves the variational inequality (19). We now investigate an alternative ap-
proximating curve, which allows for a more general type of operator B.

Corollary 4.1. Let (T%).cj01; be a family of nonexpansive operators from H to H with
domain H such that C' = (.o, Fix Tt # @ and let B: dom B ='H — H be a mazimal
monotone operator which is c-uniformly monotone. Then there exists a unique point
xg € C such that xog = Po(xg — Bxg). Now set

(Ve €10,1]) 2. = T.(z. — eBx.) — eBu.. (50)

Then (x:)sclo1] @5 uniquely defined. In addition, if B maps every bounded subset into
a bounded subset and (x.)ccjoa] 45 T-focused with respect to (1.)ecio1[, then x. — o as
e — 0.
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Proof. Set (Ve € ]0,1[) F. = (T +1d)/2 and A. = F_' —Id. Since (F.):gpq is a
family of firmly nonexpansive operators with domain H, (A.):cjo,1[ is a family of maximal
monotone operators [16, Section 1.11]. Moreover, it follows from Definitions 2.1 and 3.1
that (2:)zcjo,11 is A-focused with respect to (A:)zcp,1;- Finally, since (50) is equivalent to
(46), which is itself equivalent to (35), the results follow from Theorem 3.10. O

We conclude with two results on the approximation of a particular fixed point of a non-
expansive operator.

Corollary 4.2. Let T: domT = H — H be a nonexpansive operator such that Fix T #
@, let (A:)ecpoap be a family in )0, 1] such that inf.qjo1; Ae > 0, and let B: dom B =H — H
be a mazximal monotone operator which is c-uniformly monotone. Then there exists a
unique point xo € Fix T such that xog = Prix 7(xo — Bxy). Now set

Ae — 2

(Ve €10,1)) . =T (2. — Ba.) +¢ 3

Bz.. (51)

Then (2z)eejoa] 95 uniquely defined. In addition, if B maps every bounded subset into a
bounded subset, then x. — xy as ¢ — 0.

Proof. Set (Ve €]0,1]) 7. = Id + A\.(7 — Id) in Corollary 4.1 and use Example 2.2. [

Corollary 4.3. Let T: domT = H — H be a nonexpansive operator such that Fix T #
& and let B: dom B = 'H — H be a mazimal monotone operator which is c-uniformly
monotone. Then there exists a unique point xy € Fix T such that xo = Prix 7(x0 — Bxo).
Now set

(Ve €]0,1]) xe =Tz, — eBuz.. (52)

Then (2<)eejoa] 95 uniquely defined. In addition, if B maps every bounded subset into a
bounded subset, then x. — xy as € — 0.

Proof. It suffices to set A. = Id — 7T in Theorem 3.10. To check (27), take ]0,1[ > ¢, | 0,

1., —x, and 'A, x. — 0. Letting (Vn € N) p, = Ja., ., we obtain p, =z and
Pn — TP = Ac,Dn = x-, — P — 0. Then the demiclosed principle [10, Lemma 2| yields
reFixT = A10. O

In particular, if B = Id — @, where @): dom @ = H — H is a strict contraction, then (52)

reduces to

€ 1
\ 0,1 e = -
(Veel0,1) = 5+1Q$+€+1

and Corollary 4.3 reduces to [21, Theorem 2.1].

Tz, (53)
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