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We show, among other results, that if the unit ball of the dual of a Banach space X is w∗-sequentially
compact, the set of norm-attaining functionals contains a separable norm closed subspace M if and only
if the dual M∗ of M is the canonical quotient of X. We provide examples of spaces which cannot be
renormed in such a way that the set of norm-attaining functionals become a linear space.
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1. Introduction

In recent years, quite some work has been done on the “lineability" of some natural subsets
of Banach spaces, in other words, on the existence of linear subspaces of essentially non-
linear subsets. We refer in particular to the paper [1] and references therein. The following
terminology is by now standard:

Definition 1.1. A subset M of a topological vector space E is said to be spaceable in E
if M ∪ {0} contains an infinite dimensional closed linear subspace.

In this note, we investigate the spaceability properties of the set NA(X) of all norm
attaining functionals on a Banach spaceX. This study is intimately related with isometric
duality theory. If X is a dual space, then NA(X) certainly contains its predual. It is
also motivated by proximinality questions: indeed, an hyperplane H = kerx∗ of X is
proximinal in X if and only if x∗ ∈ NA(X). If a finite codimensional subspace Y of X is
proximinal in X, then Y ⊥ ⊆ NA(X), and the converse also holds in some Banach spaces,
but not always. We refer to [3, 19, 20, 28] for some recent progress on this question.

When a Banach space X has an infinite dimensional quotient which is isomorphic to a
dual space, it is easy to construct an equivalent norm on X for which NA(X) is spaceable.
We show in this paper that the converse holds for Banach spaces whose dual unit ball is
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w∗-sequentially compact (Theorem 2.12), and that similar results are available in spaces
which share some features of Asplund spaces. On the other hand, we also show that
NA(X) is not a linear space when a non-reflexive space X enjoys some form of the
Radon-Nikodým Property (RNP) (Proposition 2.23, Proposition 2.24). Quite naturally,
one of our main tools is James’ characterization of weakly compact sets [25], and more
precisely the combinatorial principle which lies in the proof of its separable case, namely
Simons’ inequality [32].

This work leads to several natural open questions, which are scattered throughout this
note. Our hope is to stimulate research on these topics.

2. The Results

Notation 2.1. We work with real Banach spaces. For a Banach space X, we will denote
by BX and SX respectively the closed unit ball and the unit sphere of X. We will denote
by NA(X) the set of all continuous linear functionals which attain their norm on BX .
We will identify any x ∈ X with its canonical image in X∗∗.

We recall that a closed linear subspace Y is said to be a proximinal subspace of X if for
every x ∈ X there exists y ∈ Y such that ‖x− y‖ = d(x, Y ).

We begin with some simple observations. The first one is an immediate application of
James’ theorem.

Lemma 2.2. Let Y be a proximinal subspace of X. Then X/Y is reflexive if and only if
Y ⊥ ⊆ NA(X).

Proof. If X/Y is reflexive, every x∗ ∈ Y ⊥ ' (X/Y )∗ is norm attaining on X/Y . Since
Y is proximinal in X, x∗ ∈ NA(X). Thus Y ⊥ ⊆ NA(X).

Conversely, suppose Y ⊥ ⊆ NA(X). Then every x∗ ∈ Y ⊥ attains its norm on X/Y . By
James’ theorem, X/Y is reflexive.

Corollary 2.3. A linear subspace M ⊆ NA(X) is w∗-closed if and only if M is reflexive.

It follows that if there exists a proximinal subspace Y of X such that X/Y is infinite
dimensional and reflexive, then NA(X) is spaceable. In fact, the above argument actually
proves something more.

Lemma 2.4. Let Y be a proximinal subspace of X such that X/Y is isometrically iso-
morphic to a dual space Z∗. Then Z ⊆ NA(X).

Proof. If X/Y ' Z∗, then every x∗ ∈ Z is norm attaining on X/Y . Thus, as above,
Z ⊆ NA(X).

It follows that if there exists a proximinal subspace Y of X such that X/Y is isometrically
isomorphic to an infinite dimensional dual space, then NA(X) is spaceable. We now show
that in certain Asplund-like spaces, up to renorming, these are the only situations when
NA(X) is spaceable. We refer to [8] for the renorming theory of Banach spaces.

We will need the following renorming result.
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Lemma 2.5. Let Y be a closed linear subspace of a Banach space (X, ‖ · ‖). Let ‖ · ‖1 be
an equivalent norm on X/Y . Then there is an equivalent norm ||| · ||| on X that coincides
with ‖ · ‖ on Y , whose quotient norm on X/Y coincides with a positive multiple of ‖ · ‖1,
and which makes Y proximinal.

Proof. Since ‖ · ‖1 is an equivalent norm on X/Y , there exist α, β > 0 such that α‖x+
Y ‖1 ≤ ‖x+Y ‖ < β‖x+Y ‖1 for all x ∈ X \Y . Now define |||x||| = max{‖x‖, β‖x+Y ‖1}.
Clearly, this is an equivalent norm on X. It is also clear that |||y||| = ‖y‖ for any y ∈ Y .

Now for any x ∈ X \ Y , since ‖x + Y ‖ < β‖x + Y ‖1, there exists y ∈ Y such that
‖x + Y ‖ ≤ ‖x + y‖ < β‖x + Y ‖1. It follows that |||x + y||| = β‖x + Y ‖1 = |||x + Y |||.
Thus, |||x+ Y ||| = β‖x+ Y ‖1 and Y is proximinal in the ||| · ||| norm.

We are now ready for our main results.

Notation 2.6. If M is a norm closed linear subspace of X∗, we say that M∗ is the
canonical quotient of X if the restriction S = Q|X of the canonical quotient map Q :
X∗∗ → M∗ to X is an isometry between X/M⊥ and M∗; equivalently, S(BX) is norm
dense in BM∗ .

The following lemma extends previous results in [14, 16, 30].

Lemma 2.7. Let X be a Banach space such that BX∗ is w∗-sequentially compact. Let
M ⊆ NA(X) be a norm closed separable subspace. Then M∗ is the canonical quotient of
X.

Proof. Let S be as above and let B = S(BX) ⊆ BM∗ . Let τp(B) denote the topology of
pointwise convergence on B.

Since M ⊆ NA(X), for every m ∈ M there is m∗ ∈ B such that m∗(m) = ‖m‖. In
other words, B is a boundary of BM∗ . Since BX∗ is w∗-sequentially compact, for any
(mn) ⊆ BM , there is a subsequence (mnk

) which is τp(B)-convergent, and hence, weakly
Cauchy ([32], see [17, Corollary 2]). Thus, M 6⊇ `1. Following the lines of the proof of
[16, Theorem I.2], we now show that M∗ is the canonical quotient of X.

If B 6= BM∗ , there exists F ∈ BM∗∗ and m∗
0 ∈ BM∗ such that F (m∗

0) > supF (B). Let

supF (B) < α < F (m∗
0). Let C = {m ∈ BM : m∗

0(m) > α}. Clearly F ∈ C
w∗

. Since M
is separable and M 6⊇ `1, the compact space BM∗∗ is “angelic" in the sense defined in [6],
and thus there is, by [29], a sequence {mn} ⊆ C such that limn→∞m∗(mn) = F (m∗) for
all m∗ ∈ B. Since B is a boundary of BM∗ , it follows from Simons’ inequality [32] that

there is m ∈ co({mn}) ⊆ C such that α > supm(B). Since, clearly, B
w∗

= BM∗ , this
implies α > ‖m‖. But this contradicts m∗

0(m) > α.

Remark 2.8.

(a) Clearly, every separable Banach space satisfies the hypothesis of Lemma 2.7. By
[23], so does any Asplund space.

(b) Lemma 2.7 is false for X = `1(c). Take M = C[0, 1] ⊆ NA(`1(c)). Lemma 2.10
below implies that the space `1(c) is essentially a minimal example.

(c) It may happen that M∗ is not even isomorphic to a quotient of X. Let X = L∞[0, 1]
and M ⊆ NA(X) be the space constructed (under (CH)) in [16, p. 183]. One has
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M = `1(c) and M∗ = `∞(c) is not a quotient of L∞, since dens(L∞) = c and
dens(`∞(c)) = 2c.

The following lemma provides the same conclusion under weaker assumptions on X, but
under some mild topological assumption of the set S(BX).

Definition 2.9. A metrizable space is analytic if it is a continuous image of a Polish
space.

We recall that any Borel subset of a Polish space is analytic.

Lemma 2.10. Let X 6⊇ `1(c) and M ⊆ NA(X) be a norm closed separable subspace. If
S(BX) ⊆ BM∗ contains a w∗-analytic boundary, then M∗ is the canonical quotient of X.

Proof. Let A ⊆ S(BX) be a w∗-analytic boundary. Let

K = BM∗∗|A ⊆ F(A,R).

K is τp(A)-compact and since BM∗∗ = BM
w∗

, K ∩ C(A, w∗) is τp(A)-dense in K. Now by
[6], K is angelic or K ⊇ L ' βN. If K is angelic, then co(A) = BM∗ as in Lemma 2.7 and
thus BM∗ = S(BX).

Assume now that K ⊇ L ' βN. We can lift L to a compact subset L0 of BM∗∗ with
L0 ' βN and since A ⊆ S(BX), the restriction of S∗ to L0 is one-to-one. Therefore
(BX∗ , w∗) contains S∗(L0) ' βN, and thus, X ⊇ `1(c) by [33], a contradiction.

Example 2.11. If X is weakly K-analytic, then X 6⊇ `1(c) and S(BX) is w∗-analytic,
hence Lemma 2.10 applies. Note that Lemma 2.7 applies as well in this case.

The next result provides, for a large class of Banach spaces, a simple characterization of
the existence of an equivalent norm for which the set NA(X) is spaceable.

Theorem 2.12. Let X be a Banach space such that BX∗ is w∗-sequentially compact.
Then the following are equivalent:

(a) There is an equivalent norm ‖ · ‖ on X such that NA(X, ‖ · ‖) is spaceable.
(b) there is an infinite dimensional quotient space of X which is isomorphic to a dual

space.

Proof. (b) ⇒ (a). This implication holds in any Banach space X. Let Y be a subspace
of X such that X/Y is isomorphic to an infinite dimensional dual space Z∗. Let ‖ · ‖1 be
an equivalent dual norm on X/Y . Now Lemma 2.5 produces an equivalent norm ||| · ||| on
X which makes Y proximinal and X/Y isometrically isomorphic to Z∗. Thus the result
follows from Lemma 2.4.

(a) ⇒ (b). If NA(X) is spaceable, then it contains an infinite dimensional separable
subspace M . Thus the implication follows immediately from Lemma 2.7.

Question 2.13. Is Theorem 2.12 true in full generality?

Under a mild regularity assumption, Lemma 2.10 provides a positive answer. Indeed, one
has:
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Proposition 2.14. Let X be any Banach space and M ⊆ NA(X) be a norm closed
infinite dimensional separable subspace such that S(BX) contains a w∗-analytic boundary.
Then there is an infinite dimensional quotient space of X which is isomorphic to a dual
space.

Proof. If X 6⊇ `1(c), apply Lemma 2.10. If X ⊇ `1(c), then `∞(N) is a quotient of X.

Theorem 2.12 applies of course when X is separable. Under the stronger assumption that
X∗ is separable, more can be said.

Theorem 2.15. Let X be a Banach space such that X∗ is separable. Then the following
are equivalent:

(a) There is an equivalent norm ‖ · ‖ on X such that NA(X, ‖ · ‖) is spaceable.
(b) X∗ contains an infinite dimensional reflexive subspace.

Proof. (b) ⇒ (a). As before, this implication holds in any Banach space X and follows
from Lemma 2.2, modulo the renorming via Lemma 2.5.

(a) ⇒ (b). If X∗ is separable, then so is X, and we can apply Lemma 2.7. If M ⊆ NA(X)
then M∗ = X/M⊥ and thus M∗∗ ⊆ X∗. Therefore M∗∗ is separable. This implies that M
contains an infinite dimensional reflexive subspace [26] (see [10, Theorem 4.1] for a more
general result).

Remark 2.16. The above proof actually shows that if X∗ is separable and M ⊆ NA(X)
is a norm closed infinite dimensional subspace, then M contains an infinite dimensional
reflexive subspace. This fails in general for separable X 6⊇ `1(N). Indeed, by [22], there
exists Z not containing an infinite dimensional reflexive subspace, such that Z∗ is separable
and does not contain `1(N). Then we can take X = Z∗ and M = Z ⊆ NA(X) ⊆ Z∗∗.

It follows from [5] or [11] that when the above space M is not reflexive, one may replace
“reflexive" by “quasi-reflexive of order 1" in Theorem 2.15.

Question 2.17. Is Theorem 2.15 true for any Asplund space?

Let us note that the answer is affirmative if X is a weakly compactly generated (WCG)
Asplund space.

Proposition 2.18. Let X be a WCG Asplund space. Then the following are equivalent:

(a) There is an equivalent norm ‖ · ‖ on X such that NA(X, ‖ · ‖) is spaceable.
(b) X∗ contains an infinite dimensional reflexive subspace.

Proof. (a) ⇒ (b). Since X is Asplund, we can apply Lemma 2.7. Thus, if M ⊆ NA(X)
is a closed separable subspace, M∗ = X/M⊥. Therefore M∗ is a WCG Asplund space.
Since M is separable and M∗ is WCG, M∗ is separable. Moreover, since M∗ is Asplund,
M∗∗ is separable. Thus, as before, by [26], M contains an infinite dimensional reflexive
subspace.

The answer is also affirmative under some additional isometric assumptions on the As-
plund space.
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Definition 2.19. [4] A point x ∈ SX is said to be an almost LUR point of BX if for any
{xn} ⊆ BX and {x∗

n} ⊆ BX∗ , the condition

lim
m

lim
n

x∗
m

(xn + x

2

)

= 1

implies limn ‖xn − x‖ = 0. We say that a Banach space X is almost LUR if every point
of SX is an almost LUR point.

Proposition 2.20. Let X be an Asplund space. Assume that the norm ‖ · ‖X on X
satisfies one of the following conditions:

(i) ‖ · ‖X is almost LUR.

(ii) the dual norm on X∗ is GÝateaux differentiable.

Then the following are equivalent:

(a) NA(X) is spaceable.

(b) there exists a proximinal subspace Y of X such that X/Y is infinite dimensional
and reflexive.

Proof. (b) ⇒ (a) follows from Lemma 2.2.

(a) ⇒ (b). Let M ⊆ NA(X) be a norm closed infinite dimensional subspace.

It has been proved in [2] that x ∈ SX is an almost LUR point if and only if it is strongly
exposed by every functional that attains its norm at x. It follows that (i) holds if and
only if

NA(X) = {x∗ ∈ X∗ : ‖ · ‖X∗ is Fréchet smooth at x∗} ∪ {0}

Thus, the norm on M is Fréchet smooth and hence, M is an Asplund space with the RNP.
Therefore, by [26], there is Z ⊆ M infinite dimensional and reflexive. We now argue as
in [3]. Let Y = Z⊥ and Q : X → X/Y be the quotient map. Since Z is reflexive and
smooth, X/Y is strictly convex. If λ ∈ SX/Y , there is x∗ ∈ Y ⊥ with ‖x∗‖ = x∗(λ) = 1
and since X/Y is strictly convex, {σ ∈ SX/Y : x∗(σ) = ‖σ‖ = 1} = {λ}. Now since
x∗ ∈ Y ⊥ ⊆ NA(X), there is x ∈ X with ‖x‖ = x∗(x) = 1, and thus Q(x) = λ. Hence
Q(BX) = BX/Y and Y is proximinal in X.

Under (ii), M has a GÝateaux smooth norm and it follows from Bishop-Phelps theorem
that M∗ is the canonical quotient of X. Therefore, M∗∗ is GÝateaux smooth and thus, the
norm on M is very smooth. Hence, M is an Asplund space with RNP and the conclusion
follows as before.

Remark 2.21. (i) applies in particular when ‖·‖X is LUR. Note that under the assump-
tion (i), the proximinal subspace Y is actually a Chebyshev subspace with a continuous
metric projection [3].

When a Banach space X has a w-UR norm, then it is an Asplund space [24] and its dual
X∗ is (uniformly) GÝateaux smooth. Hence, (ii) applies in particular to spaces with a
w-UR norm.

Coming to non-spaceability, the following isomorphic result implies that the Asplund
spaces with the Dunford-Pettis Property are far from being dual spaces.
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Proposition 2.22. Let X be an Asplund space with the Dunford-Pettis Property. Then
norm closed linear subspaces of NA(X) are finite dimensional. Therefore, NA(X) is not
spaceable.

Proof. It follows from [9, Exercise IX.4] that X∗ has the Schur property.

Let M ⊆ NA(X) be a norm closed subspace. Let (x∗
n) ⊆ BM . By [23], (x∗

n) has a w∗-
convergent subsequence (x∗

nk
). As in the proof of Lemma 2.7, (x∗

nk
) is weakly Cauchy, and

hence, by the Schur property, norm convergent. Thus, BM is norm compact, and hence,
dim(M) < ∞.

Note that Proposition 2.22 applies in particular to X = C(K) for a scattered compact set
K, and more generally, to any space whose dual is isomorphic to `1(Γ) for some set Γ. In
the case of isometric preduals of `1(Γ), the result can also be shown through Lemma 2.7
and the fact that such a space X has Pełczynski’s property (V ) [27].

It seems natural to conjecture that Proposition 2.22 applies to spaces which are isomor-
phic to polyhedral spaces (see [13] and references thereof for this notion). However, it
is not known whether the dual of a separable polyhedral space can contain an infinite
dimensional reflexive space [12].

We now investigate some cases where NA(X) itself is not a linear space. The following
proposition is essentially from [3]. We include the details for completeness. We refer to
[7, 21] for more precise results on the topological properties of the set NA(X).

Proposition 2.23. Let X be a Banach space with the RNP or an almost LUR norm.
Then span(NA(X)) = X∗. In particular, if NA(X) is a vector space, then X must be
reflexive.

Consequently, X is reflexive if and only if the intersection of any two proximinal hyper-
planes in X is proximinal.

Proof. As noted above, if X is almost LUR, then,

NA(X) = {x∗ ∈ X∗ : the norm on X∗ is Fréchet smooth at x∗} ∪ {0}.

It is well known that the points of Fréchet smoothness of a dual norm always forms a Gδ

set in X∗ and is contained in NA(X). Moreover, if X has the RNP, this set is also dense.
Thus, in either case, NA(X) is residual. It now follows from Baire Category Theorem
that NA(X)−NA(X) = X∗. Thus, span(NA(X)) = X∗.

If NA(X) is a vector space, NA(X) = X∗. By James’ theorem, this implies X is reflexive.

Now, suppose the intersection of any two proximinal hyperplanes is proximinal. Let
x∗, y∗ ∈ NA(X). Then kerx∗ and ker y∗ are proximinal hyperplanes in X. If Y =
kerx∗ ∩ ker y∗ is proximinal in X, then Y ⊥ ⊆ NA(X). This implies NA(X) is a linear
subspace of X∗.

In a dual space, Proposition 2.23 can be improved. Indeed we have

Proposition 2.24. If NA(X∗) ⊆ X∗∗ is a vector space, then X is weakly sequentially
complete.
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Proof. If X is not weakly sequentially complete, there exists x∗∗
0 ∈ X∗∗ \ X of 1st

Baire class. By [15, Theorem II.11], then there exists x ∈ X such that x∗∗ = x∗∗
0 + x ∈

NA(X∗)\X. Now if x∗∗ = w∗-limxn, there exists x0 ∈ co(xn) such that x∗∗−x0 /∈ NA(X∗)
([31], see [18, Remark II.20.1]). This shows that NA(X∗) is not a linear subspace.

Question 2.25. Does there exist a nonreflexive Banach space X such that NA(X∗) is a
vector space?

We conclude on a last open problem, which shows how little we know of the structure of
the set of norm-attaining functionals.

Question 2.26. Let X be an infinite dimensional Banach space. Does there exist a linear
space of dimension 2 contained in NA(X)?

It might even be that every infinite dimensional Banach space X contains a proximinal
subspace of codimension 2, and this would immediately imply a positive answer to this
last question.
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