
Journal of Convex Analysis

Volume 13 (2006), No. 3+4, 477–488

Variational Methods in
Classical Open Mapping Theorems

D. Azé
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We describe some basic facts from the theory of linear error bounds for lower semicontinuous functions
on complete metric spaces, relying upon Ekeland’s variational principle and on the notion of strong slope.
We then show how this variational method yields the classical Banach-Schauder and Lusternik-Graves
open mapping theorems.

1. Introduction

The purpose of this paper is to show how the variational approach yields open mapping
theorems. We illustrate this fact through two classical results of linear and smooth non-
linear analysis, namely the Banach-Schauder open mapping theorem, and the so-called
Lusternik-Graves theorem. Generally speaking, this is of course a known fact, and indeed
such approach can be seen as the basis for the development, over the last thirty years or
so, of the branch of analysis which is now called nonsmooth analysis , that was motivated
primarily by its applications in optimization theory (see Ioffe [18]).

It is by now widely (if not unanimously) acknowledged, among nonsmooth analysts, that
the key tool in the said approach, is the celebrated variational principle of Ekeland [12].
This was probably first put into light by Ioffe in his paper [15], dealing with locally Lips-
chitz functions defined on a Banach space. This variational approach was also pioneered
by Aubin in [1, 2] and by Borwein in [7]. In that line, we showed in our recent paper
with Lucchetti [5], that the theory of metric regularity (a notion intimately related to
that of openness of (set-valued) mappings) can be developed in the framework of (lower
semi)continuous functions defined on a complete metric space — the framework of the
variational principle itself. This is possible thanks to the notion of strong slope introduced
by De Giorgi, Marino, and Tosques [9], which indeed provides for the best estimates in
such matters, as was then also stressed (and developed) independently by Ioffe in [17, 18].
Thus, this framework appears appropriate for the abstract theory, leaving as corollaries
the results involving notions related to (sub)differential calculus in Banach spaces, which
of course remain important from the point of view of specific applications.
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In [3, 4], refining the approach of [5], we presented our main abstract results as char-
acterizations, in terms of the strong slope, of so-called (linear) error bounds for lower
semicontinuous functions on metric spaces. Here, we wish to present a self-contained,
clear and succinct overview of the methods and principles involved in this variational
approach. For that purpose, in Section 2, we discuss the variational principle, its rela-
tionship with the strong slope, and two abstract results that are particular cases of the
afore-mentioned ones in [3, 4] (while we still slightly refine the proofs). In Section 3, we
show how these two results naturally and directly yield the equality of some “openness
constantsÔ associated with linear and nonlinear operators between Banach spaces, and
how these results of a quantitative type in turn readily yield the Banach-Schauder and
Lusternik-Graves open mapping theorems.

2. The method

Let X be a metric space endowed with the metric d, and f : X → R be a function. For
x ∈ X and r > 0 (resp., r ≥ 0), we denote by Br(x) (resp., B̄r(x)) the open (resp., closed)
ball of center x and radius r. For α ∈ R, we set:

[f>α] := {x ∈ X : f(x) > α} , [f≤α] := {x ∈ X : f(x) ≤ α} ,

and, whenever [f≤α] 6= ∅, we let d(x, [f≤α]) := inf{d(x, y) : y ∈ [f≤α]}, x ∈ X. For
σ > 0, we denote by dσ the metric on X defined by (x, y) 7→ σd(x, y) (in particular,
d1 = d), and we say that x ∈ X is a dσ-point of f if

f(x) < f(z) + σd(z, x) for all z ∈ X , z 6= x .

Defining, for x ∈ X, the set Mσ(x) := {z ∈ X : f(z) + σd(z, x) ≤ f(x)}, we thus have:

x is a dσ-point of f ⇐⇒ Mσ(x) = {x} . (1)

Moreover, it follows from the triangle inequality that for any x, y ∈ X:

y ∈ Mσ(x) =⇒ Mσ(y) ⊂ Mσ(x) . (2)

If σ = 1, we simply write M(x) := M1(x). We recall the following basic result (see
Remark 2.3 below for a brief comment).

Theorem 2.1. The following are equivalent:

(a) (X, d) is complete;

(b) every continuous and bounded from below function f : X → R has a d-point.

Proof. (a) ⇒ (b): Let x0 ∈ X, and define recursively a sequence (xn)n∈N ∈ X by:

xn ∈ M(xn−1) , f(xn) ≤ inf
M(xn−1)

f +
1

n
.

Then, M(xn) ⊂ M(xn−1) for each n, so that for all n, p ∈ N and all y ∈ M(xn+p−1) ⊂
M(xn−1), we have:

d(y, xn) ≤ f(xn)− f(y) ≤ 1

n
. (3)
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Letting y := xn+p in these inequalities we see, first, that (xn) is a Cauchy sequence
in (X, d), and then, letting p → +∞ for fixed n, and since f is continuous, that

x := limxn ∈
⋂

n∈N

M(xn). Then, M(x) ⊂
⋂

n∈N

M(xn) according to (2), so that if y ∈ M(x),

(3) again shows that y = x. Thus, M(x) = {x}, that is, x is a d-point of f according to
(1).

(b)⇒ (a): Let (xn)n∈N be a Cauchy sequence in (X, d). Then, setting f(x) := 2 lim d(x, xn)
defines a continuous function f : X → R such that f(xn) → 0 = infX f . Let x ∈ X be a
d-point of f , we have:

f(x) ≤ f(xn) + d(x, xn) for every n ∈ N ,

so that, letting n → ∞ yields 2f(x) ≤ f(x). Thus, f(x) = 0, that is, x = limxn.

Corollary 2.2. The following are equivalent:

(a) (X, d) is complete;

(b) if a continuous f : X → R, y ∈ X, and σ, r > 0 are such that f(y) < infX f + σr,
then f has a dσ-point x ∈ Br(y) ∩ [f≤f(y)].

Proof. (a) ⇒ (b): Applying Theorem 2.1 to the restriction of f to the complete metric
space (Mσ(y), dσ), we find x ∈ Mσ(y) such that

z ∈ Mσ(y) \ {x} =⇒ z /∈ Mσ(x) .

Since Mσ(x) ⊂ Mσ(y) (recall (2)), we thus have Mσ(x) = {x}, that is (recall (1)), x is
a dσ-point of f . Moreover, f(x) + σd(x, y) ≤ f(y) < f(x) + σr, so that d(x, y) < r and
f(x) ≤ f(y).

(b) ⇒ (a) is obvious, since (b) is clearly stronger than assertion (b) of Theorem 2.1.

Remark 2.3. Clearly, Theorem 2.1 and Corollary 2.2 still hold (with the same proofs)
if we replace “continuousÔ by “lower semicontinuousÔ. Indeed, this observation applies
to all the results of this section. The implication (a) ⇒ (b) in Theorem 2.1 (or in Corol-
lary 2.2), is Ekeland’s variational principle [12, 13]. The reverse implication, yielding a
characterization of metric completeness, is due to Weston [23].

Definition 2.4. For f : X → R and x ∈ X, set:

|∇f |(x) :=















0 if x is a local minimum point of f,

lim sup
y→x
(y 6=x)

f(x)− f(y)

d(x, y)
otherwise.

The extended real number |∇f |(x) ∈ [0,+∞] is called the strong slope of f at x.

This notion was introduced by De Giorgi, Marino, and Tosques in [9]. Before exhibiting
its connection with the variational principle, let us recall the following:
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Example 2.5. Let X be a normed space with norm ‖·‖, U be an open subset of X, and
let f : U → R. For x, u ∈ X, define:

f ′(x;u) = lim inf
t↘0

f(x+ tu)− f(x)

t

(which is called the lower Dini derivative of f at x in the direction u). We have:

−f ′(x;u) ≤ ‖u‖·|∇f |(x) . (4)

Indeed, −f ′(x;u) ≤ 0 if either x is a local minimum of f , or if u = 0, while, otherwise:

−f ′(x;u) = ‖u‖ lim sup
t↘0

f(x)− f(x+ tu)

t‖u‖
≤ ‖u‖·|∇f |(x) .

(Observe, for later use, that if f := ‖·‖, then for every x ∈ X and every α ∈ R, we have:
‖·‖′(x;αx) = α‖x‖ and ‖·‖′(x; ·) is continuous.)
If f is (Fréchet-)differentiable at x ∈ U , then:

|∇f |(x) = ‖Df(x)‖∗ := sup
‖u‖=1

|Df(x)(u)| .

Indeed, since Df(x)(u) = f ′(x;u) for any u ∈ X, inequality (4) yields ‖Df(x)‖∗ ≤
|∇f |(x). Conversely, if |∇f |(x) > σ > 0, there exists a sequence (xn) in U converging to
x and such that f(x)− f(xn) > σ‖x− xn‖, so that

Df(x)

(

x− xn

‖x− xn‖

)

≥ σ ,

showing that ‖Df(x)‖∗ ≥ σ, whence ‖Df(x)‖∗ ≥ |∇f |(x).

If f : X → R (X an arbitrary metric space), x ∈ X, and σ > 0, it is readily seen, from
the definitions, that:

x is a dσ-point of f =⇒ |∇f |(x) ≤ σ . (5)

Thus, we get from Corollary 2.2:

Corollary 2.6. Let X be complete, f : X → R be continuous and bounded from below.
If y ∈ X and σ, r > 0 are such that f(y) < infX f + σr, then, there exists x ∈ Br(y) with
f(x) ≤ f(y) and |∇f |(x) ≤ σ. (In particular, inf

X
|∇f | = 0.)

Let us also mention the following:

Corollary 2.7. Let X be complete and f : X → R be continuous. Then, the set {x ∈
X : |∇f |(x) < +∞} is dense in X.

Proof. Let y ∈ X and ε > 0, and let 0 < ε′ ≤ ε be such that f is bounded from below
on B̄ε′(y). Considering any

σ >
1

ε′

(

f(y)− inf
B̄ε′ (y)

f

)

,

and applying Corollary 2.2 to the restriction f̃ of f to B̄ε′(y), we find a dσ-point x of f̃
with x ∈ Bε′(y), so that |∇f |(x) = |∇f̃ |(x) ≤ σ, according to (5).
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We are now ready to state our main abstract results. The first one is of “globalÔ type,
the second one is a “localÔ result.

Theorem 2.8. Let X be complete, and f : X → R be a continuous function. Assume
that [f>0] 6= ∅ and that:

τ := inf
[f>0]

|∇f | > 0 . (6)

Then, [f≤0] 6= ∅ and

f(x) ≥ τd(x, [f≤0]) for all x ∈ [f>0] .

Proof. Observe first that τ < +∞, according to Corollary 2.7. Also, [f≤0] 6= ∅ — for,
otherwise, inf[f>0] |∇f | = infX |∇f | = 0, according to Corollary 2.6. Let now y ∈ [f>0],

set r := d(y, [f≤0]) > 0, and let σ >
f(y)

r
: we need to show that σ ≥ τ . For x ∈ X,

let g(x) := max{f(x), 0}, so that g(y) < infX g + σr. Applying Corollary 2.6, we find
x ∈ Br(y) such that |∇g|(x) ≤ σ. Thus, f(x) > 0 (since d(x, y) < r), so that |∇f |(x) =
|∇g|(x) ≤ σ, whence the conclusion.

Theorem 2.9. Let X be complete, f : X → R be a continuous function, x0 ∈ X, and
τ, ρ > 0 be such that f(x0) < τρ and:

[x ∈ B2ρ(x0) , 0 < f(x) < τρ] =⇒ |∇f |(x) ≥ τ .

Then, [f≤0] 6= ∅, and:

f(x) ≥ τd(x, [f≤0]) for all x ∈ Bρ(x0) with 0 < f(x) < τρ .

Proof. We may assume that there exists some y ∈ Bρ(x0) with 0 < f(y) < τρ (otherwise,
there is nothing to prove). Let such y be fixed, and set:

r :=

{

ρ if [f≤0] = ∅,
min{ρ, d(y, [f≤0])} if [f≤0] 6= ∅.

Let further σ >
f(y)

r
be fixed, and set g := max{f, 0}, so that g(y) < infX g + σr.

Applying Corollary 2.6, we find x ∈ Br(y) such that g(x) ≤ g(y) < τρ and |∇g|(x) ≤ σ.
By the choice of r, we have x ∈ B2ρ(x0) and f(x) > 0, whence f(x) = g(x) and |∇f |(x) =
|∇g|(x). Thus, we have σ ≥ τ , and we deduce that f(y) ≥ τr. We conclude that r < ρ,
that is, [f≤0] 6= ∅ and r = d(y, [f≤0]).

Remark 2.10. According to [3], the following result, sharpening Theorem 2.8, holds: if
f : X → R ∪ {+∞} is lower semicontinuous (f not identically equal to +∞), then:

inf
[f>0]

|∇f | = inf
γ≥0

inf
x∈[f>γ]

f(x)− γ

d(x, [f≤γ])
,

where the right-hand side is 0 if [f≤0] = ∅, and both sides are +∞ if [f>0] = ∅. See also
[4] for extensions, and more on “localÔ results of the type of Theorem 2.9.
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3. Open mapping theorems

Let X and Y be two Banach spaces: we shall denote either norm by ‖·‖, and by B̄X and
B̄Y the respective closed unit balls. Let A : X → Y be a continuous linear map, and set:

τA := sup{τ ≥ 0 : τB̄Y ⊂ A(B̄X)} , (7)

τ̄A := sup{τ ≥ 0 : τB̄Y ⊂ A(B̄X)} ≥ τA . (8)

Clearly, τA > 0 if and only if A is open (i.e., A(U) is open in Y whenever U is open in
X), in which case A is onto (i.e., A(X) = Y ). We may observe that:

τA = inf
‖y∗‖∗=1

‖A∗y∗‖∗ , (9)

where A∗ : Y ∗ → X∗ is the adjoint operator of A.

We shall show, using Theorem 2.8, that the constants τA and τ̄A are indeed equal. For
this, we introduce another constant, which is precisely connected with the conclusion of
Theorem 2.8. We set:

τ ′A :=

{

sup{τ ≥ 0 : ‖Ax− y‖ ≥ τd(x,A−1(y)) ∀x ∈ X, ∀y ∈ Y } if A is onto,

0 otherwise.

Proposition 3.1. τA = τ ′A.

Proof. Assume (first) that τ ′A > 0. Let 0 < τ < τ ′A, let then ε > 0 be such that τ+ε < τ ′A,
and let y ∈ τB̄Y . Then:

d(0, A−1(y)) ≤ ‖y‖
τ + ε

< 1 ,

so that A−1(y) ∩ B̄X 6= ∅. Thus, τA ≥ τ , and we conclude that τA ≥ τ ′A.

Conversely, assume that τA > 0. Let 0 < τ < τA, and let (x, y) ∈ X × Y be fixed. Then,
there exists x′ ∈ X with:

‖x′‖ ≤ ‖Ax− y‖
τ

and Ax′ = Ax− y ,

so that x − x′ ∈ A−1(y) and τd(x,A−1(y)) ≤ τ‖x′‖ ≤ ‖Ax − y‖. Thus, τ ′A ≥ τ , and we
conclude that τ ′A ≥ τA.

Theorem 3.2. τ̄A = τA.

Proof. Taking Proposition 3.1 and (8) into account, we need only show that:

τ̄A > 0 =⇒ τ ′A ≥ τ̄A .

Let 0 < τ < τ̄A, let y ∈ Y be fixed, and define f : X → R by f(x) := ‖Ax − y‖. Let
x ∈ X with f(x) > 0 (that is, Ax 6= y), and let (xn) be a sequence in B̄X such that

z := −τ
Ax− y

‖Ax− y‖
= lim

n→∞
Axn . (10)
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Then:

f ′(x;xn) = ‖·‖′(Ax− y;Axn) → ‖·‖′(Ax− y; z) = −τ ,

while:

|∇f |(x) ≥ ‖xn‖|∇f |(x) ≥ −f ′(x;xn)

for each n, according to (4). Thus, |∇f |(x) ≥ τ , and it follows from Theorem 2.8 that
[f≤0] = A−1(y) 6= ∅ and

‖Ax− y‖ ≥ τd(x,A−1(y)) for all x ∈ X

(since f ≥ 0). Thus, since y is arbitrary in Y , τ ′A ≥ τ , and the conclusion follows.

This result directly yields the Banach-Schauder open mapping theorem (see [6, 22])

through the following additional, standard argument: ifA is onto, so that Y =
⋃

{nA(B̄X) :
n ∈ N}, it follows from the Baire category theorem that τ̄A > 0. Thus, Theorem 3.2 allows
to conclude that A is open whenever it is onto.

Remark 3.3. Observe that in the preceding proof, we do not actually need to explicitely
invoke (4). Namely, from (10) and for 0 < t ≤ ‖Ax−y‖

τ
, we directly compute:

f(x+ txn)− f(x)

t
≤ ‖Ax− y + tz‖ − ‖Ax− y‖

t
+ ‖Axn − z‖ = −τ + ‖Axn − z‖

(which is negative for large n), so that:

|∇f |(x) ≥ lim sup
t↘0

f(x)− f(x+ txn)

t
≥ τ − ‖Axn − z‖

for large n, whence |∇f |(x) ≥ τ .

Let now U be an open subset of X, and F : U → Y be a continuous mapping. For a
given y ∈ Y , we define a (continuous) function fy : U → R+ by:

fy(x) := ‖F (x)− y‖ . (11)

For x0 ∈ U , we denote by τF,x0 the supremum of the nonnegative reals τ such that for
some neighborhood V0 of x0 we have:

B̄τρ(F (x)) ⊂ F (B̄ρ(x)) for all x ∈ V0 and all ρ > 0 with B̄ρ(x) ⊂ V0 . (12)

Of course, this is satisfied with τ = 0 and arbitrary V0 (so that τF,x0 is well defined), and
it is readily seen that for any x0 ∈ U , we have τF,x ≥ τF,x0 for every x ∈ U sufficiently
close to x0. If τF,x0 > 0, F is said to be open at a linear rate near the point x0.

Proposition 3.4. Assume that F is differentiable at x0 ∈ U , and let y ∈ Y with y 6=
F (x0). Then:

|∇fy|(x0) ≥ τDF (x0) ≥ τF,x0 .
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Proof. Given ε > 0, we let ρε > 0 be such that:

‖F (x)− F (x0)−DF (x0)(x− x0)‖ ≤ ε‖x− x0‖ for all x ∈ B̄ρε(x0) ⊂ U . (13)

We establish the first inequality, where τDF (x0) is defined as in (7), and for which we may
assume that τDF (x0) > 0. Let 0 < τ < τDF (x0), let then ε > 0 be such that τ + ε < τDF (x0),
and let u ∈ B̄X be such that

DF (x0)(u) = −(τ + ε)
F (x0)− y

‖F (x0)− y‖
∈ (τ + ε)B̄Y ,

according to the definition of τDF (x0). Then, for 0 < t ≤ min
{

ρε,
‖F (x0)−y‖

τ+ε

}

, we have:

fy(x0 + tu)− fy(x0)

t
=

‖F (x0 + tu)− y‖ − ‖F (x0)− y‖
t

≤ ‖F (x0)− y + tDF (x0)(u)‖ − ‖F (x0)− y‖
t

+ ε = −τ ,

so that:

|∇fy|(x0) ≥ lim sup
t↘0

fy(x0)− fy(x0 + tu)

t
≥ τ ,

and the conclusion follows.

For the second inequality, we may assume that τF,x0 > 0, so let 0 < τ < τF,x0 , and let
ρ0 > 0 be such that (12) is satisfied with V0 := B̄ρ0(x0). Let z ∈ τB̄Y , and ε > 0 be fixed.
Let then 0 < ρ ≤ min{ρ0, ρε}. Since F (x0) + ρz ∈ B̄τρ(F (x0)), we find x ∈ B̄ρ(x0) such
that F (x0) + ρz = F (x), and (13) yields:

‖z −DF (x0)(x̃)‖ ≤ ε ,

where x̃ :=
x− x0

ρ
∈ B̄X . Since ε > 0 is arbitrary, we obtain that z ∈ DF (x0)(B̄X), and

since z is arbitrary in τB̄Y , that τ̄DF (x0) ≥ τ (where, of course, τ̄DF (x0) is defined as in
(8)). Thus, τ̄DF (x0) ≥ τF,x0 , and the conclusion follows from Theorem 3.2.

For x0 ∈ U such that F (U) is a neighborhood of F (x0), we denote by τ ′F,x0
the supremum

of the nonnegative reals τ such that for some neighborhoods V of x0 and W of F (x0), we
have:

‖F (x)− y‖ ≥ τd(x, F−1(y)) for all (x, y) ∈ V ×W (14)

(since F−1(y) 6= ∅ for all y in some neighborhood of F (x0), τ
′
F,x0

is well-defined). On
the other hand, if F (U) is not a neighborhood of F (x0), we set τ ′F,x0

:= 0. If τ ′F,x0
> 0,

F is said to be metrically regular near the point x0. The following proposition is just
a nonlinear, local (and, in fact, purely metric) version of the afore-mentioned equality
τA = τ ′A (see Remark 3.9 (c) for a comment).

Proposition 3.5. τF,x0 = τ ′F,x0
.



D. Azé, J.-N. Corvellec / Variational Methods in Classical Open Mapping ... 485

Proof. Assume (first) that τ ′F,x0
> 0. Let 0 < τ < τ ′F,x0

, let then ε > 0 be such that
τ +ε < τ ′F,x0

, and let V and W be neighborhoods of x0 and F (x0), respectively, such that:

‖F (x)− y‖ ≥ (τ + ε)d(x, F−1(y)) for all (x, y) ∈ V ×W .

Let r > 0 be such that B(τ+1)r(F (x0)) ⊂ W , and let 0 < ρ0 ≤ r be such that Bρ0(x0) ⊂ V
and F (Bρ0(x0)) ⊂ B̄r(F (x0)). Then, if x ∈ V0 := Bρ0(x0), if 0 < ρ < ρ0 − ‖x− x0‖, and
if y ∈ B̄τρ(F (x)), it is readily verified that (x, y) ∈ V ×W , so that:

d(x, F−1(y)) ≤ ‖F (x)− y‖
τ + ε

< ρ ,

which shows that y ∈ F (B̄ρ(x)). Thus, τF,x0 ≥ τ , and we conclude that τF,x0 ≥ τ ′F,x0
.

Conversely, assume that τF,x0 > 0. Let 0 < τ < τF,x0 , and let ρ0 > 0 be such that
(12) holds with V0 := B̄2ρ0(x0). Let then V and W be neighborhoods of x0 and F (x0),
respectively, such that:

V ⊂ B̄ρ0(x0) and ‖F (x)− y‖ ≤ τρ0 for all (x, y) ∈ V ×W .

Let (x, y) ∈ V × W be such that F (x) 6= y and set ρ :=
‖F (x)− y‖

τ
∈ ]0, ρ0]. Then,

B̄ρ(x) ⊂ B̄2ρ0(x0) and y ∈ B̄τρ(F (x)), so that we find x′ ∈ B̄ρ(x) such that y = F (x′).
Thus:

‖F (x)− y‖ = τρ ≥ τ‖x− x′‖ ≥ d(x, F−1(y)) ,

which shows that τ ′F,x0
≥ τ , and we conclude that τ ′F,x0

≥ τF,x0 .

Recall now that F is said to be strictly differentiable at x0 ∈ U if F is differentiable at
x0 and if, for every ε > 0 there exists ρε > 0 such that F −DF (x0) is ε-Lipschitzian on
B̄ρε(x0), that is:

‖F (x)− F (x′)−DF (x0)(x− x′)‖ ≤ ε‖x− x′‖ for all x, x′ ∈ B̄ρε(x0) . (15)

(This is the case if F is differentiable near x0 and DF is continuous at x0.)

Theorem 3.6. Assume that F is strictly differentiable at x0. Then, τDF (x0) = τF,x0 =
τ ′F,x0

.

Proof. We need only show, taking Propositions 3.4 and 3.5 into account, that:

τDF (x0) > 0 =⇒ τ ′F,x0
≥ τDF (x0) .

Let 0 < τ < τDF (x0), let ε > 0 be such that τ + ε < τDF (x0), and let ρε > 0 be such that
(15) holds. Let y ∈ Y be fixed, and let x ∈ Bρε(x0) be such that F (x) 6= y. Then, arguing
exactly as in the first part of the proof of Proposition 3.4, but with x0 replaced by x, and

with 0 < t ≤ min
{

ρε − ‖x− x0‖, F (x)−y
τ+ε

}

, we obtain that |∇fy|(x) ≥ τ . Letting 2ρ := ρε

thus yields:

inf
B2ρ(x0)∩[fy>0]

|∇fy| ≥ τ . (16)
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Consider now a neighborhood V of x0, and a neighborhood W of F (x0), such that V ⊂
Bρ(x0) and fy(x) < τρ for all (x, y) ∈ V ×W . Thanks to (16), we may apply Theorem 2.9
for each y ∈ W to obtain that [fy≤0] = F−1(y) 6= ∅ and:

‖F (x)− y‖ ≥ τd(x, F−1(y)) for all (x, y) ∈ V ×W .

Thus, τ ′F,x0
≥ τ , and the conclusion follows.

Theorem 3.6 readily yields the so-called Lusternik-Graves theorem: if F is strictly differ-
entiable at x0 and ifDF (x0) is onto, so that τDF (x0) > 0 according to the Banach-Schauder
theorem, then F is open at a linear rate near x0, or, equivalently, F is metrically regular
near x0. (This is indeed a “modernÔ version of the original results of Lusternik and Graves
[19, 14], see Remark 3.9 (a) below.) Observe that, conversely, if F is only assumed to be
differentiable at x0, and is open at a linear rate near x0, then DF (x0) is onto, as follows
from the second inequality in Proposition 3.4. Of course, Theorem 3.6 shows that if F is
strictly differentiable at x0, then F is open at a linear rate near x0 if and only if DF (x0) is
onto, which provides a nonlinear (hence local) analogue of the Banach-Schauder theorem.
Such a statement was already derived by Dontchev in [10] through a different approach,
namely, as a consequence of a stability result of the openness at a linear rate property,
for locally closed set-valued maps between Banach spaces.

Remark 3.7. Under the assumption of Theorem 3.6, and as a corollary, it can be estab-
lished that DF (x0) is an isomorphism if and only if there exists a neighborhood V of x0

such that F (V ) is a neighborhood of F (x0), F is injective on V , and both F : V → F (V )
and F−1 : F (V ) → V are Lipschitz continuous.

Before proceeding with a few concluding remarks, let us mention the following local
estimate for the openness (or metric regularity) constant of F :

Theorem 3.8. Assume that F is differentiable in a neighborhood of x0 ∈ U . Then:

τF,x0 = τ0 := lim inf
x→x0

τDF (x) = lim inf
x→x0

(

inf
‖y∗‖∗=1

‖DF ∗(x)(y∗)‖∗
)

.

(where DF ∗(x) is the adjoint of DF (x)).

Proof. As already observed, we have τF,x ≥ τF,x0 for x close enough to x0, while τDF (x) ≥
τF,x if F is differentiable at x, according to Proposition 3.4. Thus, τ0 ≥ τF,x0 . Conversely,
we may assume that τ0 > τ > 0. Let ρ > 0 be such that F is differentiable on B2ρ(x0) ⊂ U
and τDF (x) ≥ τ for every x ∈ B2ρ(x0). Thanks to Proposition 3.4, we have |∇fy|(x) ≥ τ
for every x ∈ B2ρ(x0) and every y ∈ Y such that F (x) 6= y, that is: (16) holds. Then, like
in the proof of Theorem 3.6, we obtain that τ ′F,x0

≥ τ , so that τF,x0 = τ ′F,x0
≥ τ0. For the

last equality, just recall (9).

Remark 3.9. (a) Let X and Y be Banach spaces, A : X → Y be linear and continuous,
U be a neighborhood of x0 ∈ X, F : U → Y be continuous, and δ > 0 be such that:

‖F (x′)− F (x)− A(x′ − x)‖ ≤ δ‖x′ − x‖ for every x, x′ ∈ U .

Then, arguing as in Theorem 3.6 shows that:

τ ′F,x0
= τF,x0 ≥ τA − δ .
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Indeed, we may assume that τA > δ, and considering τ > 0 with τA > τ + δ, the same
argument with DF (x0) replaced by A and ε replaced by δ, shows that (16) holds for
any ρ > 0 such that B̄2ρ(x0) ⊂ U . So, if τA > δ, we obtain in particular that given
0 < τ < τA − δ, there exists ρ0 > 0 such that for 0 < ρ ≤ ρ0 and y ∈ B̄ρτ (x0), there exists
x ∈ B̄ρ(x0) such that F (x) = y. This statement corresponds to Graves’ formulation of his
result, as was recalled by Dontchev in [10], and involving no differentiability assumption
on F .

(b) It is clear (from the proof) that the first inequality in Proposition 3.4 holds, assuming
only that F is GÝateaux-differentiable at x0. Consequently, we also get, for example,
τF,x0 ≥ τ0 in Theorem 3.8, assuming only GÝateaux-differentiability of F (which is [16,
Corollary 1.6]). Similarly, most if not all sufficient conditions for local metric regularity
that can be found in the literature follow from the method presented here, based on the
use of the strong slope. Indeed, as mentioned in the introduction, Theorem 3.6 affords
considerable generalization, involving closed set-valued maps F between complete metric
spaces, see, e.g., [4], especially Theorem 5.3 therein, dealing with the characterization of
local metric regularity for such mappings, in terms of estimates of the strong slope for
functions of the type of the fy’s. Such estimates in turn translate, for example and in a
Banach space context, into estimates for the so-called coderivative of F (see [20, 4]), of
which Theorem 3.8 is a special case.

(c) The fact that openness at a linear rate — also called covering (near a given point) —
and metric regularity are equivalent notions, was established in a fairly general setting
(set-valued maps between normed spaces) in the papers of Borwein and Zhuang [8] and
Penot [21], but the underlying properties had been in use long before (see, e.g., [18]). As
a matter of fact (see [8, 21]), these notions are indeed equivalent to a third one, namely,
J.-P. Aubin’s pseudo-Lipschitz property for the inverse (set-valued) map [2], called the
Aubin property by Dontchev and Rockafellar in [11] and known as such since then. We
observe that traditionally, the constant τ appearing in (14) is written on the other side
of the inequality, so that the “best openness and metric regularity constantsÔ were often
considered as mutually inverse. We believe it is preferable to adopt our formulation (and
proceed in order to get equality of the best constants, as in Proposition 3.5), because
it is what comes out naturally from the abstract results, starting with the variational
principle. This also suggests that the notion, yielding the theory , of metric regularity (we
note that the terminology is due to Penot [21]), should prevail over that of openness at a
linear rate.
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