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We study extended notions for sums of monotone operators and for precompositions of monotone op-
erators with continuous linear mappings. First, we establish some new properties related to the notion
of extended sum recently proposed by Revalski and Théra, among them the monotonicity of this sum
provided the operators involved are maximal monotone. Then, we show that the equivalence which exists
between usual sums and compositions remains valid also for the extended operations. This allows us
to obtain some known and new results for extended compositions via the corresponding properties of
extended sums.
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1. Introduction

Since the very beginning of the study of monotone operators, an important question to in-
vestigate has been what is the operator obtained by summing up (in the usual Minkowski
sense) two (or more) maximal monotone operators. Such a sum is always a monotone
operator, but not necessarily a maximal one. This phenomenon is well known, for exam-
ple, when one considers the sum of subdifferentials of proper convex lower semicontinuous
functions: without additional assumptions this sum may not be maximal (equivalently,
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may be strictly smaller than the subdifferential of the sum of the functions). The inves-
tigation of this issue has been developed in two directions: the first one has been to find
appropriate sufficient conditions under which the sum of two maximal monotone opera-
tors is maximal monotone – see, e.g., [18, 25] and the references therein; the second one
has consisted in searching for possible notions of generalized sums of operators which are
more likely to be maximal than the usual sum. Such attempts have been made in [11, 12]
(for example, the so-called parallel sum) and more recently in [1], where the authors intro-
duced and studied the concept of variational sum of monotone operators in Hilbert spaces
based on the Yosida regularization of the operators involved. The latter notion naturally
extends to the case of reflexive spaces ([21]). For example, it turned out that, in such
a setting, the variational sum of subdifferentials of proper convex lower semicontinuous
functions is always (without any qualification condition) a maximal monotone operator.

Another concept of generalized sum, called extended sum, was proposed in [20, 21]. It
was based on the notion of enlargement of monotone operators (see below the precise
definitions) and works in any Banach space. The extended sum of maximal monotone
operators has turned out to be maximal monotone in some cases where the usual sum
is not necessarily maximal – for instance, again, in the case of subdifferentials of convex
functions.

Closely related (and in a certain sense equivalent) to the operation of sum of monotone
operators is the precomposition of monotone operators with continuous linear mappings.
Here we observe the same phenomenon as in the sum problem: the precomposition of a
maximal monotone operator with a continuous linear mapping is monotone but not neces-
sarily maximal monotone. Not surprisingly, the two directions of investigations mentioned
above for the sum of operators have been also explored for the composition problem –
see, e.g., [14, 23] for sufficient conditions and [7, 15, 17] for generalized compositions.

Let us recall that there is a sort of equivalence between the operations of (usual) sum and
composition: any precomposition of a (maximal) monotone operator with a continuous
linear mapping can be expressed as a sum of (maximal) monotone operators and, vice
versa, the sum of (maximal) monotone operators can be given the form of precomposition
of a (maximal) monotone operator with a continuous linear mapping.

The aim of this paper is twofold: after some preliminary notions and results in Section 2,
we study first, in Section 3, the extended sum of monotone operators. We establish some
new properties of this sum, among them the fact that it is always monotone, provided
both operators are maximal. This allows to derive easily some known results about the
extended sum, originally proved in a direct way. The question of coincidence of the
usual and the extended sum under qualification conditions is also studied in this section.
Then, in Section 4, we show that the equivalence between the operations of usual sums
and compositions described above fully extends to the operations of extended sums and
compositions. This allows one to obtain known and new results about compositions from
the companion ones for sums of operators.

2. Preliminary notions and results

Throughout X will denote a real Banach space and X∗ its continuous dual. With slight
abuse of notation we will use the same symbol ‖·‖ for the norm in X and X∗. As usual, w∗

will stand for the weak star topology in X∗. The pairing between X and X∗ is designated
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by 〈·, ·〉.
Given a set-valued operator T : X ⇒ X∗ its graph is the set

Gr(T ) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ Tx}.

The projection of the graph of T on X is the domain DomT of T

DomT := {x ∈ X : Tx 6= ∅},

and the projection on X∗ is its range R(T )

R(T ) :=
⋃

{Tx : x ∈ DomT}.

A set-valued operator T : X ⇒ X∗ is said to be monotone if it satisfies:

〈y∗ − x∗, y − x〉 ≥ 0 for every two pairs (x, x∗), (y, y∗) ∈ Gr(T ).

The monotone operator T : X ⇒ X∗ is called maximal monotone if its graph is not
contained properly in the graph of any other monotone operator between X and X∗.
Equivalently, a monotone operator T is maximal monotone if every pair (y, y∗) which is
monotonically related to Gr(T ) (i.e. 〈x∗ − y∗, x− y〉 ≥ 0 for any (x, x∗) ∈ Gr(T )) belongs
to Gr(T ). It is easily seen that every maximal monotone operator has convex w∗-closed
values in X∗ and a norm closed graph in X ×X∗.

Among the best known examples of maximal monotone operators are the subdifferentials
of proper convex lower semicontinuous functions. Let f : X → R ∪ {+∞} be a convex
extended real-valued function in X. Recall that f is proper if its effective domain dom f =
{x ∈ X : f(x) < +∞} is nonempty. Given ε ≥ 0, the ε-subdifferential ∂εf of f at x ∈ X
is the set:

∂εf(x) := {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉 − ε for every y ∈ X}.

The case ε = 0 gives the subdifferential of f at x, which is denoted by ∂f(x). If f is
proper convex and lower semicontinuous, then for any ε > 0 we have ∂εf(x) 6= ∅ for each
x ∈ dom f , while ∂εf(x) = ∅ if x /∈ dom f . On the contrary, the subdifferential ∂f does
not have to be nonempty at each point of the domain of f . A classical result of Rockafellar
[24] asserts that the subdifferential of any proper convex lower semicontinuous function
f : X → R ∪ {+∞} on a Banach space X is a maximal monotone operator.

Motivated by the above notion of ε-subdifferential, a concept of enlargement for an arbi-
trary monotone operator T : X ⇒ X∗ was proposed: given ε > 0, let T ε : X ⇒ X∗ be
defined as follows:

T εx := {x∗ ∈ X∗ : 〈y∗ − x∗, y − x〉 ≥ −ε for every (y, y∗) ∈ Gr(T )}. (1)

This operator was mentioned in [13] without study. A systematic investigation of its
properties has been done in a series of papers by Burachik et al. – see, e.g., [3, 4, 5, 27].
It is immediately seen from the definition that T ε has always convex w∗-closed values and
that it is really an extension of T because of the monotonicity of T . Moreover, T ε1 ⊂ T ε2 ,
provided 0 ≤ ε1 ≤ ε2. It is also worth noting that T is maximal monotone if and only if
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T = T 0 =
⋂

ε>0 T
ε. In the particular case of the subdifferential of a proper convex lower

semicontinuous function f one has ∂εf(x) ⊂ ∂εf(x) and the inclusion can be strict (for
example, for f(x) = x2/2, x ∈ R, see, e.g., [13, 3]).

Further, to any monotone operator T : X ⇒ X∗, we associate the Fitzpatrick function
ϕT : X ×X∗ → R ∪ {+∞} defined by

ϕT (x, x
∗) := sup

(y,y∗)∈Gr(T )

(〈y∗, x〉 − 〈y∗, y〉+ 〈x∗, y〉) = sup
(y,y∗)∈Gr(T )

(〈y∗ − x∗, x− y〉) + 〈x∗, x〉.

This function introduced by Simon Fitzpatrick in [6, Definition 3.1] has turned out to be a
very convenient and useful tool in monotone operator theory (see, e.g., [2, 26, 27]). Clearly,
ϕT is proper, convex and lower semicontinuous. Moreover, ϕT verifies the following nice
properties: for any ε ≥ 0,

x∗ ∈ T εx ⇐⇒ ϕT (x, x
∗) ≤ ε+ 〈x∗, x〉,

and, if T is maximal monotone (see [6]), then ϕT is the minimal convex function such
that

〈x∗, x〉 ≤ ϕT (x, x
∗) ∀ (x, x∗) ∈ X ×X∗, and 〈x∗, x〉 = ϕT (x, x

∗) ∀ (x, x∗) ∈ Gr(T ).

Using these properties one obtains:

Proposition 2.1. Let T : X ⇒ X∗ be a monotone operator.

(1) If prX denotes the usual projection of X ×X∗ on X, then

prX domϕT =
⋃

ε>0

DomT ε;

(2) ([5, 27]) For T maximal monotone and ε ≥ 0, the enlargement T ε satisfies:

〈x∗ − y∗, x− y〉 ≥ −4ε ∀ (x, x∗), (y, y∗) ∈ Gr(T ε).

Remark 2.2. An operator T : X ⇒ X∗ is called ε-monotone, ε ≥ 0, if

〈x∗ − y∗, x− y〉 ≥ −ε ∀ (x, x∗), (y, y∗) ∈ Gr(T ).

This class of operators was introduced and studied by Veselý [31], who showed that any
such operator is locally bounded on the interior of its domain DomT (loc. cit., Theorem
1 and Corollary 1). In particular, by Proposition 2.1(2) any enlargement T ε, ε ≥ 0, of a
maximal monotone operator T is locally bounded on the interior of its domain DomT ε.

The next two propositions give examples of monotone operators T which cannot be “ε-
enlargedÔ, or, said differently, which are “stronglyÔ maximal monotone in the sense that
T = T ε for any ε ≥ 0. These examples will be helpful in the sequel.

If L ⊂ X is a linear subspace, we denote by L⊥ the annihilator of L,

L⊥ := {x∗ ∈ X∗ : for all x ∈ L, 〈x∗, x〉 = 0},

and by NL : X ⇒ X∗ the normal cone mapping to L,

NL(x) := L⊥, for x ∈ L, NL(x) := ∅, for x 6∈ L,

equivalently, Gr(NL) = L× L⊥.
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Proposition 2.3. Let L ⊂ X be a closed linear subspace. Then N ε
L = NL for any ε ≥ 0.

Proof. Let (v, v∗) ∈ Gr(N ε
L), i.e.,

〈u∗ − v∗, u− v〉 ≥ −ε, ∀ (u, u∗) ∈ Gr(NL) = L× L⊥.

Letting u = 0 in this inequality gives 〈u∗, v〉 ≤ 〈v∗, v〉+ε for all u∗ ∈ L⊥, hence 〈u∗, v〉 = 0
for all u∗ ∈ L⊥, that is v ∈ L. Letting u∗ = 0 gives 〈v∗, v − u〉 ≥ −ε for all u ∈ L, hence
〈v∗, u〉 = 0 for all u ∈ L, showing that v∗ ∈ L⊥.

Recall that a linear operator T : DomT → X∗ defined on a linear subspace DomT ⊂ X
is said to be anti-symmetric (or skew) if for every x ∈ DomT one has 〈Tx, x〉 = 0. In
particular, every such T is monotone. When DomT is dense in X, we define (as in [19])
DomT ∗ ⊂ X∗∗ to be the set

DomT ∗ := {x∗∗ ∈ X∗∗ : DomT 3 y 7→ 〈x∗∗, T y〉 is continuous}.

Since DomT is dense, for every x∗∗ ∈ DomT ∗ there is a unique continuous linear func-
tional T ∗x∗∗ ∈ X∗ characterized by the identity

〈T ∗x∗∗, y〉 = 〈x∗∗, T y〉, for all y ∈ DomT.

The linear operator T ∗ : DomT ∗ → X∗ thus defined is called the adjoint of T . In the
following proposition (which extends [19, Lemma 4.4]), we view X as a subspace in X∗∗.

Proposition 2.4. Let T : DomT → X∗ be linear and anti-symmetric with dense domain
DomT . Then, DomT ∗∩X = prX domϕT and T ε = −T ∗|DomT ε for every ε ≥ 0. Further,
T = T ε for every ε ≥ 0 if and only if DomT = DomT ∗∩X. In particular, if DomT = X,
then T = T ε for every ε ≥ 0.

Proof. Let Ýx denote the canonical image of x ∈ X in X∗∗. We claim that for ε ≥ 0,

(x, x∗) ∈ Gr(T ε) ⇐⇒ 〈x∗, x〉 ≥ −ε and T ∗Ýx = −x∗. (2)

Indeed, let (x, x∗) ∈ Gr(T ε). Then, for all y ∈ DomT , 〈x∗ − Ty, x − y〉 ≥ −ε. In
particular, 〈x∗, x〉 ≥ −ε. Moreover, since 〈Ty, y〉 = 0, the former inequality is equivalent
to

〈x∗, x〉 − 〈Ty, x〉 − 〈x∗, y〉 ≥ −ε, ∀ y ∈ DomT,

and since DomT is a linear subspace, we derive that

〈Ty, x〉+ 〈x∗, y〉 = 0, ∀ y ∈ DomT.

Now this equality shows that the linear operator DomT 3 y 7→ 〈Ty, x〉 is continuous,
hence Ýx ∈ DomT ∗ and T ∗Ýx = −x∗. Conversely, let (x, x∗) be such that T ∗Ýx = −x∗ and
〈x∗, x〉 ≥ −ε. Then, for all y ∈ DomT , 〈Ty, x〉 = 〈T ∗Ýx, y〉 = 〈−x∗, y〉, hence

〈x∗ − Ty, x− y〉 = 〈x∗, x〉 − 〈Ty, x〉 − 〈x∗, y〉+ 〈Ty, y〉 = 〈x∗, x〉 ≥ −ε,

showing that (x, x∗) ∈ T ε. This completes the proof of (2).
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It follows from (2) that if x ∈ DomT ε, then x ∈ DomT ∗ ∩ X, and, conversely, if x ∈
DomT ∗ ∩ X, then x ∈ DomT ε for some ε > 0, so DomT ∗ ∩ X =

⋃

ε>0DomT ε =
prX domϕT by Proposition 2.1. It is also clear from (2) that if x ∈ DomT ε, then T εx =
−T ∗Ýx.

Further, suppose that DomT ∗ ∩X = DomT and let x∗ ∈ T εx. Then, x∗ = −T ∗Ýx, so x ∈
DomT ∗∩X = DomT , hence, for all y ∈ DomT we have 〈−T ∗Ýx, y〉 = −〈Ty, x〉 = 〈Tx, y〉,
because T is anti-symmetric. This implies that x∗ = −T ∗Ýx = Tx, for DomT is dense.
Thus, T εx = Tx. Conversely, if T = T ε for every ε ≥ 0, then DomT =

⋃

ε≥0DomT ε =
DomT ∗ ∩X. The proof is complete.

3. Extended sum of monotone operators

It is evident that given two proper convex lower semicontinuous functions f, g : X →
R ∪ {+∞}, the Minkowski sum of the subdifferentials of f and g is contained in the
subdifferential of the sum f + g. This inclusion is, in general, strict without additional
assumptions. However, the concept of ε-subdifferential allows to have an exact formula
for the subdifferential of the sum as it was shown by Hiriart-Urruty and Phelps (other
representations of the subdifferential of the sum of convex functions can be found in
[1, 8, 10, 16, 21, 28, 29]):

Theorem 3.1. ([9]) Let f, g : X → R∪{+∞} be two proper convex lower semicontinuous
functions. Then for every x ∈ dom f ∩ dom g one has:

∂(f + g)(x) =
⋂

ε>0

∂εf(x) + ∂εg(x)
w∗

,

where the notation A
w∗

means the closure of a set A ⊂ X∗ with respect to the weak star
topology in X∗.

Let now T1, T2 : X ⇒ X∗ be monotone operators. Their usual (Minkowski) sum (T1 +
T2)(x) = T1x+T2x, x ∈ X, is always a monotone operator with domain DomT1∩DomT2.
But this sum is not necessarily maximal monotone, when T1 and T2 are maximal monotone
– a classical situation where this lack of maximality occurs is the case of subdifferentials
of convex functions. Thus, attempts for finding a notion of generalized sum of monotone
operators have been done as, e.g., in [1, 11, 12]. Motivated by the above theorem of Hiriart-
Urruty and Phelps, a concept of extended sum, based on the notion of enlargement of a
monotone operator, was proposed in [20, 22]:

Definition 3.2. ([20, 22]) Let T1, T2 : X ⇒ X∗ be monotone operators. The extended
sum of T1 et T2 at the point x ∈ X is defined by the formula:

(T1 +
ext

T2)(x) =
⋂

ε>0

T ε
1x+ T ε

2x
w∗

.

Obviously, the extended sum of two monotone operators is commutative and contains
their usual sum. In general, the extended sum need not be monotone as the following
simple example shows:
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Example 3.3. Let X = R and consider the operators T1, T2 defined by: T1x = 0, if x = 0
and T1x = ∅ otherwise, and T2x = x = ∂(1

2
x2), x ∈ R. Then

T ε
1x =







[− ε
x
,+∞), if x > 0

(−∞,+∞), if x = 0
(−∞,− ε

x
], if x < 0,

while it is known that (see, e.g., [13, 3]) T ε
2x = [ x− 2

√
ε, x+ 2

√
ε ] for any x ∈ R. Thus,

we obtain that

(T1 +
ext

T2)(x) =







[x,+∞ ), if x > 0
(−∞,+∞), if x = 0
(−∞, x], if x < 0.

The latter operator is easily seen to be non monotone.

However, if both operators are maximal monotone, then the extended sum is always
monotone:

Proposition 3.4. Let T1, T2 : X ⇒ X∗ be maximal monotone. Then T1 +
ext

T2 is mono-

tone.

Proof. Let (x, x∗), (y, y∗) ∈ Gr(T1 +
ext

T2) and fix some ε > 0. Since x∗ ∈ T ε
1x+ T ε

2x
w∗

and y∗ ∈ T ε
1 y + T ε

2 y
w∗

there are nets {u∗
x,α} ⊂ T ε

1x and {v∗x,α} ⊂ T ε
2x such that

u∗
x,α + v∗x,α

w∗
−→ x∗ (3)

and {u∗
y,α} ⊂ T ε

1 y and {v∗y,α} ⊂ T ε
2 y so that

u∗
y,α + v∗y,α

w∗
−→ y∗ (4)

Applying Proposition 2.1(2) we have that for any α

〈u∗
y,α − u∗

x,α, y − x〉 ≥ −4ε and 〈v∗y,α − v∗x,α, y − x〉 ≥ −4ε.

Thus, by summing up we obtain that for every α

〈(u∗
y,α + v∗y,α)− (u∗

x,α + v∗x,α), y − x〉 ≥ −8ε.

Passing to the limit and using (3) and (4) yield

〈y∗ − x∗, y − x〉 ≥ −8ε.

Since ε > 0 was arbitrary, we may conclude that

〈y∗ − x∗, y − x〉 ≥ 0,

which shows that T1 +
ext

T2 is monotone. The proof is completed.

The above property allows us to obtain readily several results from [20, 22] which have
been proved in a direct way. Namely, we have the following corollaries.
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Corollary 3.5 ([20, 22]). Let T1, T2 : X ⇒ X∗ be maximal monotone. If T1 + T2 is
maximal monotone, then T1 + T2 = T1 +

ext
T2.

The proof of this corollary is obvious since the extended sum contains the usual one.
Example 3.11 below shows that the converse in Corollary 3.5 is not true.

Much more important is the next result which shows that without any qualification con-
dition the subdifferential of the sum of two proper convex lower semicontinuous functions
is equal to the extended sum of their subdifferentials. This provides a class of operators
for which the extended sum is always maximal monotone while the usual one may not be
maximal.

Corollary 3.6 ([20, 22]). Let f, g : X → R ∪ {+∞} be proper convex lower semicon-
tinuous functions such that dom f ∩ dom g 6= ∅. Then, for any x ∈ X

∂(f + g)(x) = (∂f +
ext

∂g)(x)

Proof. It follows from Theorem 3.1 that ∂f +
ext

∂g contains ∂(f + g). Now, because the

operators ∂f and ∂g are maximal monotone, ∂f +
ext

∂g is monotone by Proposition 3.4,

hence it must be equal to ∂(f + g) since the latter operator is maximal monotone.

The next result shows that the usual and extended sum coincide under a qualification
condition of Robinson-Rockafellar type. Recall that a subsetA ⊂ X is said to be absorbing
in X (denoted by 0 ∈ coreXA, or simply 0 ∈ coreA) if for any h ∈ X there is t > 0 with
th ∈ A.

Theorem 3.7. Let T1, T2 : X ⇒ X∗ be maximal monotone operators. Suppose that

0 ∈ core (prX domϕT1 − prX domϕT2) . (5)

Then:

(1) For any ε ≥ 0 and x ∈ X, T ε
1x+ T ε

2x is w∗-closed,

(2) T1 + T2 = T1 +
ext

T2.

Proof. (1) Let ε ≥ 0 and x ∈ Dom (T ε
1 +T ε

2 ) = DomT ε
1 ∩DomT ε

2 . Since the set T
ε
1x+T ε

2x
is convex, by the Krein-Šmulian theorem it is sufficient to show that if {x∗

α} ⊂ T ε
1x+T ε

2x

is a net such that {‖x∗
α‖} is bounded by some K > 0 and x∗

α
w∗
−→ x∗, then x∗ ∈ T ε

1x+T ε
2x.

Take such a net and for each α let u∗
α ∈ T ε

1x and v∗α ∈ T ε
2x be so that x∗

α = u∗
α + v∗α.

We claim that {u∗
α} (and hence, {v∗α} as well) is bounded. In fact, according to the Banach-

Steinhaus theorem, this amounts to showing that for every h ∈ X the net {〈u∗
α, h〉} is

bounded from above. So, let h ∈ X. Our qualification assumption produces t > 0,
u ∈ prX domϕT1 , and v ∈ prX domϕT2 such that th = u − v. Then, using Proposition
2.1(1), take λ > ε, u∗ ∈ T λ

1 u, and v∗ ∈ T λ
2 v. Observe that u∗

α ∈ T λ
1 x and v∗α ∈ T λ

2 x, so
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from Proposition 2.1(2) we derive that

〈u∗
α, th〉 = 〈u∗

α, u− v〉 = 〈u∗
α, u− x〉+ 〈u∗

α, x− v〉
= 〈u∗

α, u− x〉+ 〈v∗α, v − x〉+ 〈x∗
α, x− v〉

≤ 4λ+ 〈u∗, u− x〉+ 4λ+ 〈v∗, v − x〉+K‖x− v‖,

proving that the net {〈u∗
α, h〉} is bounded from above as required.

The net {u∗
α} being bounded, by the Banach-Alaoglu theorem there exists a subnet {u∗

αβ
}

which is w∗-convergent to some ū∗ ∈ X∗. Since T ε
1x is w∗-closed we have ū∗ ∈ T ε

1x. The
weak star convergence of x∗

α to x∗ implies that v∗αβ
is also w∗-convergent to some v̄∗ ∈ T ε

2x.
Thus, passing to the limit, we obtain x∗ = ū∗ + v̄∗ ∈ T ε

1x + T ε
2x, which completes the

proof of the first assertion.

(2) Let x∗ ∈ (T1 +
ext

T2)(x). It follows from the first assertion that, for every k ∈ N,

x∗ = u∗
k + v∗k where u∗

k ∈ T
1/k
1 (x) and v∗k ∈ T

1/k
2 (x).

Proceeding as above, for any h ∈ X we can find t > 0, λ > 1, (u, u∗) ∈ Gr(T λ
1 ), and

(v, v∗) ∈ Gr(T λ
2 ) such that, for every k ∈ N,

〈u∗
k, th〉 ≤ 4λ+ 〈u∗, u− x〉+ 4λ+ 〈v∗, v − x〉+ 〈x∗, x− v〉,

showing that the sequence {〈u∗
k, h〉} is bounded from above. Hence, there exist subnets

{u∗
kα
} and {v∗kα} such that ukα

w∗
−→ x∗

1 and vkα
w∗
−→ x∗

2 for some x∗
1, x

∗
2 ∈ X∗. Now, since

u∗
k verifies

〈u∗
k − y∗, x− y〉 ≥ −1

k
for all (y, y∗) ∈ Gr(T1),

passing to the limit yields

〈x∗
1 − y∗, x− y〉 ≥ 0 for all (y, y∗) ∈ Gr(T1),

from which we derive that (x, x∗
1) ∈ Gr(T1), because T1 is maximal monotone. Similarly,

we have (x, x∗
2) ∈ Gr(T2). Thus, x ∈ DomT1 ∩ DomT2 and x∗ = x∗

1 + x∗
2 ∈ (T1 + T2)(x),

which completes the proof of the second assertion.

Remark 3.8. (a) Assertion (1) in Theorem 3.7 is analogue to a result of Thibault [28]
dealing with ε-subdifferentials of convex functions. The case ε = 0 in Assertion (1) is
considered in [30] with a different (a priori stronger) qualification condition.

(b) In case X is reflexive, Assertion (2) follows from a recent result of Simons-Zălinescu
[26, Theorem 5.5] stating that, under a qualification condition weaker than (5), the (usual)
sum T1 + T2 is maximal monotone; so, the usual and extended sums must coincide by
Corollary 3.5.

As a consequence of the preceding results, we obtain the exact sum rule for subdifferentials
under the Robinson-Rockafellar condition:

Corollary 3.9. Let f, g : X → R ∪ {+∞} be proper convex lower semicontinuous func-
tions. If 0 ∈ core (dom f − dom g), then ∂f + ∂g = ∂(f + g).
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Proof. For any proper convex lower semicontinuous function h and any ε > 0, we have
domh = Dom ∂εh ⊂ Dom ∂εh ⊂ prX domϕ∂h, hence the Robinson-Rockafellar condition
implies the qualification condition (5). The result then follows by combining Theorem 3.7
with Corollary 3.6.

The final result of this section, together with the example which follows, shows that
we may have coincidence of the usual and extended sums, without having neither the
maximality of the sum nor the qualification condition (5) satisfied.

Proposition 3.10. For i = 1, 2, let Ti : DomTi ⊂ X → X∗ be a linear anti-symmetric
maximal monotone mapping with dense domain DomTi. Then T1 + T2 = T1 +

ext
T2.

Proof. Let x∗ ∈ (T1 +
ext

T2)(x). By Proposition 2.4, for every ε > 0, the set T ε
1x + T ε

2x

is the singleton {−T ∗
1 Ýx − T ∗

2 Ýx} with 〈−T ∗
i Ýx, x〉 ≥ −ε, for i = 1, 2. Therefore, we have

x∗ = −T ∗
1 Ýx − T ∗

2 Ýx with 〈−T ∗
i Ýx, x〉 ≥ 0, for i = 1, 2. It follows that, for i = 1, 2, it holds

(using also the definition of T ∗ and the anti-symmetry of Ti)

〈−T ∗
i Ýx− Ty, x− y〉 ≥ 0, ∀ y ∈ DomTi.

The maximality of Ti now implies that x ∈ DomTi and −T ∗
i Ýx = Tix, hence x∗ = T1x +

T2x.

The following example (built by using an example from Phelps, [18, p. 29]) provides two
operators T1 and T2 verifying the conditions of Proposition 3.10 with T1+T2 not maximal
monotone and (5) not verified.

Example 3.11. Let X be the Hilbert space l2 × l2 with the usual scalar product and
norm and identify X∗ with X. Let DomT := D ×D with

D := {{xn}n∈N ⊂ l2 : {2nxn}n∈N ∈ l2},

and let T : DomT → X be defined by

T ({xn}, {yn}) := ({2nyn},−{2nxn}).

Then T1 := T and T2 := −T are linear anti-symmetric with common dense domain
DomT . We show that they are maximal monotone. By Proposition 2.4, it suffices to
check that DomT = DomT ∗. Let v = (v1, v2) ∈ DomT ∗. Then,

〈Tz, v〉 = 〈z, T ∗v〉, ∀ z ∈ DomT.

In particular, for z := (en, 0) ∈ DomT and z := (0, en) ∈ DomT , where {en} is the usual
basis in l2, we obtain that, for every n ∈ N,

〈T (en, 0), v〉 = 〈(en, 0), T ∗v〉 and 〈T (0, en), v〉 = 〈(0, en), T ∗v〉.

Hence, we have the following relations for the coordinates of vi and (T ∗v)i, i = 1, 2:

−2nv2,n = (T ∗v)1,n, 2nv1,n = (T ∗v)2,n, n = 1, 2, . . .
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These equalities show that v ∈ D × D = DomT (and T ∗v = −Tv). This proves that
DomT ∗ ⊂ DomT , whence DomT ∗ = DomT . Thus, T1 and T2 are maximal monotone,
so, by Proposition 3.10, T1 +

ext
T2 = T1+T2. Observe, however, that T1+T2 is not maximal

monotone, since T1+T2 ≡ 0 and Dom (T1+T2) = DomT 6= X. The qualification condition
(5) is not verified either, by the result of Simons-Zălinescu mentioned in Remark 3.8 (this
can also be checked directly: since by Proposition 2.4, prX domϕTi

= DomT ∗
i = DomT ,

for i = 1, 2, the condition (5) amounts to 0 ∈ core (DomT − DomT ) = coreDomT , or,
equivalently, to X = R+DomT = DomT , which is not true).

4. Precompositions of monotone operators

Let T : X ⇒ X∗ be a monotone operator in the Banach space X and let A : Y → X be a
continuous linear operator between the Banach spaces Y and X. Denoting, as usual, by
A∗ the adjoint of A which acts between X∗ and Y ∗, it is easily seen that the composition
A∗TA : Y ⇒ Y ∗ is a monotone operator with domain Dom (A∗TA) = A−1(DomT )
(the latter is supposed always nonempty in the sequel). Such kind of operators appear,
for example, in partial differential equations in divergence form or in some variational
inequalities arising in mathematical economics (see, e.g., [14, 23, 15]). Without additional
assumptions on T and A, the composition A∗TA need not be maximal monotone.

It is known that such compositions could be used to express sums of operators and vice
versa, sums can be used to obtain compositions. Indeed, let T1, T2 : X ⇒ X∗ be two
monotone operators. Define A : X → X ×X by Ax = (x, x) and T : X ×X ⇒ X∗ ×X∗

by T (x, y) = T1x × T2y. One easily sees that T is monotone (and maximal if T1, T2 are
maximal) and, moreover, T1 + T2 = A∗TA.

Conversely, suppose we are given a monotone operator T : X ⇒ X∗ and a continuous
linear operator A : Y → X, where X and Y are Banach spaces. Take Y ×X with some
usual product norm and consider the operators NA, ˜T : Y ×X ⇒ Y ∗ ×X∗ defined by

{

NA := NGr(A), the normal cone mapping to the closed linear subspace Gr(A),
˜T (y, x) := {0} × Tx, for (y, x) ∈ Y ×X.

Observe that NA is maximal monotone with domain Gr(A), and that ˜T is (maximal)
monotone provided T is so, with domain Y ×DomT . It is easily verified that

NA(y, Ay) = {(A∗x∗,−x∗) : x∗ ∈ X∗}, ∀ y ∈ Y, (6)

and that
y∗ ∈ A∗TAy ⇐⇒ (y∗, 0) ∈ (NA + ˜T )(y, Ay), (7)

or, more generally (in fact, equivalently),

y∗ + A∗x∗ ∈ A∗TAy ⇐⇒ (y∗, x∗) ∈ (NA + ˜T )(y, Ay). (8)

The above scheme shows that in a certain sense the operations of sums of monotone
operators and precompositions of monotone operators with continuous linear mappings
are equivalent. Therefore, it is not surprising that the results concerning either sums or
compositions are similar, and often, mutually deducible. The main object of this section
is to show that this kind of equivalence holds also for the extended notions related to
these operations.
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First, we have to introduce the notion of extended composition based on the same idea
as for the extended sum. Such a notion was studied for subdifferentials by Fitzpatrick
and Simons [7] and in a slightly different form by Penot [17] (for another type of ex-
tended composition, in the setting of reflexive Banach spaces and based on the Yosida
regularization of the operator T , see [15]).

Definition 4.1. The extended composition of a continuous linear operator A : Y → X

and a monotone operator T : X ⇒ X∗ is the operator (A∗TA)ext(y) =
⋂

ε>0A
∗T εAy

w∗

.

Note that (A∗TA)ext is indeed an extension of A∗TA. The following theorem shows that
the equivalence in (8) relating the usual operations of composition and sum is also true
for ε-enlargements (ε ≥ 0) and for the extended operations.

Theorem 4.2. Let T : X ⇒ X∗ be monotone and let A : Y → X be linear and continu-
ous. Then:

(1) For any ε ≥ 0, we have: y∗ + A∗x∗ ∈ A∗T εAy ⇐⇒ (y∗, x∗) ∈ (NA + ˜T ε)(y, Ay).

(2) Consequently: y∗ + A∗x∗ ∈ (A∗TA)ext(y) ⇐⇒ (y∗, x∗) ∈ (NA +
ext

˜T )(y, Ay).

Proof. (1) By Proposition 2.3, N ε
A = NA and, as easy computations show, for every

(y, x) ∈ Y×X, ˜T ε(y, x) = {0}×T εx. Therefore, if y∗+A∗x∗ ∈ A∗T εAy, thenAy ∈ DomT ε

and y∗ + A∗x∗ = A∗v∗ for some v∗ ∈ T εAy. Hence, using (6),

(y∗, x∗) = (A∗v∗−A∗x∗, x∗−v∗+v∗) = (A∗(v∗−x∗), x∗−v∗)+(0, v∗) ∈ (NA+ ˜T ε)(y, Ay).

Conversely, if (y∗, x∗) ∈ (NA+ ˜T ε)(y, Ay), by (6) there exist v∗ ∈ T εAy and u∗ ∈ X∗ such
that (y∗, x∗) = (A∗u∗,−u∗ + v∗). This entails y∗ +A∗x∗ = A∗u∗ +A∗v∗ −A∗u∗ = A∗v∗ ∈
A∗T εAy, completing the proof of Assertion (1).

(2) Let y∗ + A∗x∗ ∈ (A∗TA)ext(y) and fix ε > 0. By Definition 4.1, there exists a net

{v∗α} ⊂ T εAy such that A∗v∗α
w∗
−→ y∗ + A∗x∗. By Assertion (1), we have

(A∗v∗α − A∗x∗, x∗) ∈ (N ε
A + ˜T ε)(y, Ay), for each α,

so, passing to the limit, we get

(y∗, x∗) ∈ (N ε
A + ˜T ε)(y, Ay)

w∗

,

and since ε > 0 was arbitrary we conclude that (y∗, x∗) ∈ (NA +
ext

˜T )(y, Ay).

Conversely, let (y∗, x∗) ∈ (NA +
ext

˜T )(y, Ay) and fix ε > 0. By Definition 3.2, there exists

a net {(y∗α, x∗
α)} ⊂ (N ε

A + ˜T ε)(y, Ay) such that (y∗α, x
∗
α)

w∗
−→ (y∗, x∗). Since N ε

A = NA, by
Assertion (1), we have

y∗α + A∗x∗
α ∈ A∗T εAy, for each α,

so, passing to the limit and using the fact that A∗ is continuous from the weak star
topology in X∗ to the weak star topology in Y ∗, we get

y∗ + A∗x∗ ∈ A∗T εAy
w∗

,
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and since ε > 0 was arbitrary, we conclude that y∗ + A∗x∗ ∈ (A∗TA)ext(y).

With Theorem 4.2 in hand, it is straightforward to pass from a result on extended sum
to its companion result on extended composition. Here are some examples.

Proposition 4.3. Let T : X ⇒ X∗ be maximal monotone and A : Y → X be linear and
continuous. Then (A∗TA)ext is monotone.

Proof. Let y∗i ∈ (A∗TA)ext(yi), i = 1, 2. By Theorem 4.2, (y∗i , 0) ∈ (NA +
ext

˜T )(yi, Ayi),

i = 1, 2. Since T is maximal, the same is true for ˜T , hence, by Proposition 3.4, NA +
ext

˜T

is monotone. Therefore,

〈y∗1 − y∗2, y1 − y2〉 = 〈(y∗1, 0)− (y∗2, 0), (y1, Ay1)− (y2, Ay2)〉 ≥ 0,

proving that (A∗TA)ext is monotone.

As we did for sums, we derive from Proposition 4.3 that the usual composition and
the extended one coincide if the former is maximal monotone (an example analogue to
Example 3.11 shows that the converse is not true):

Corollary 4.4. Let T : X ⇒ X∗ be maximal monotone and A : Y → X be linear and
continuous. If A∗TA is maximal monotone, then A∗TA = (A∗TA)ext.

The “extended composition version" of Corollary 3.6 reads as follows:

Corollary 4.5 ([7]). Let f : X → R ∪ {+∞} be a proper convex lower semicontinuous
function and A : Y → X be a continuous linear operator with R(A) ∩ dom f 6= ∅. Then

∂(f ◦ A) = (A∗∂fA)ext.

Proof. Let T := ∂f . Then, for (y, x) ∈ Y ×X, ˜T (y, x) = {0} × ∂f(x) = ∂F (y, x) where
F : Y ×X → R ∪ {+∞} is given by F (y, x) := f(x). It is easily seen (and well known,
see, e.g., [9]) that

y∗ ∈ ∂(f ◦ A)(y) ⇐⇒ (y∗, 0) ∈ ∂(δGr(A) + F )(y, Ay), (9)

where δGr(A) is the indicator function of Gr(A), so that ∂δGr(A) = NA. By Corollary 3.6,

∂(δGr(A) + F ) = NA +
ext

˜T . Putting this in (9) and using Theorem 4.2 we get

y∗ ∈ ∂(f ◦ A)(y) ⇐⇒ (y∗, 0) ∈ (NA +
ext

˜T )(y, Ay) ⇐⇒ y∗ ∈ (A∗∂fA)ext(y),

which completes the proof.

The above result shows a typical situation when the usual (pointwise) composition of a
maximal monotone operator with a continuous linear operator is not necessarily maximal
monotone, while their extended composition is always maximal, without any qualification
condition.

As a further example, we write down the companion of Theorem 3.7:
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Theorem 4.6. Let T : X ⇒ X∗ be a maximal monotone operator and let A : Y → X be
linear and continuous. Suppose that

0 ∈ coreX(R(A)− prX domϕT ). (10)

Then:

(1) For any ε ≥ 0 and y ∈ Y , A∗T εAy is w∗-closed,

(2) A∗TA = (A∗TA)ext.

Proof. Easy computations show that (10) is equivalent to

Gr(A)− Y × prX domϕT is absorbing in Y ×X. (11)

Moreover, it follows from Proposition 2.1 and Proposition 2.3 that

Gr(A) = DomNA = prY×X domϕNA

and that

Y × prX domϕT =
⋃

ε>0

(Y ×DomT ε) =
⋃

ε>0

Dom ˜T ε = prY×X Domϕ
˜T .

Hence, (11) is equivalent to

prY×X domϕNA
− prY×X domϕ

˜T is absorbing in Y ×X. (12)

Applying Theorem 3.7, we get that

for any ε ≥ 0 and (y, x) ∈ Y ×X, NA(y, x) + ˜T ε(y, x) is w∗-closed, (13)

and
NA + ˜T = NA +

ext

˜T . (14)

Now, Theorem 4.2 and (7) say that (13) and (14) are indeed equivalent to Assertion (1)
and Assertion (2), respectively.

Combining Theorem 4.6 with Corollary 4.5, we obtain the following well known result:

Corollary 4.7. Let f : X → R ∪ {+∞} be proper convex lower semicontinuous and let
A : Y → X be linear and continuous. If 0 ∈ core (R(A)−dom f), then A∗∂fA = ∂(f ◦A).

Coming back to our program in this section, it remains to show that, symmetrically,
extended sums can be viewed as extended compositions, as it is the case for the usual
operations. This is the object of the next result.

Theorem 4.8. Let T1, T2 : X ⇒ X∗ be maximal monotone. Define A : X → X ×X as
Ax := (x, x) and T : X ×X ⇒ X∗ ×X∗ as T (x, y) := T1x× T2y. Then:

(1) For any ε ≥ 0 and x ∈ X, A∗T εAx ⊂ T ε
1x+ T ε

2x ⊂ A∗T 2εAx,

(2) For any x ∈ X, (T1 +
ext

T2)(x) = (A∗TA)ext(x).
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Proof. (1) We show first that for any ε ≥ 0 and x, y ∈ X, the following chain of inclusions
is true:

T ε(x, y) ⊂ T ε
1x× T ε

2 y ⊂ T 2ε(x, y). (15)

Indeed, let (x∗, y∗) ∈ T ε(x, y). By the definition of T ε we have:

〈(x∗, y∗)− (v∗1, v
∗
2), (x, y)− (v1, v2)〉 ≥ −ε, ∀ ((v1, v2), (v∗1, v∗2)) ∈ Gr(T ),

which is equivalent to:

〈x∗ − v∗1, x− v1〉+ 〈y∗ − v∗2, y − v2〉 ≥ −ε, ∀ (vi, v∗i ) ∈ Gr(Ti), i = 1, 2. (16)

If (x, x∗) ∈ Gr(T1) by putting (v1, v
∗
1) = (x, x∗) we see that

〈y∗ − v∗2, y − v2〉 ≥ −ε, ∀ (v2, v∗2) ∈ Gr(T2).

If (x, x∗) /∈ Gr(T1) by the maximal monotonicity of T there exists (v1, v
∗
1) ∈ Gr(T1) with

〈x∗ − v∗1, x− v1〉 < 0,

hence from the equation (16) we have again

〈y∗ − v∗2, y − v2〉 ≥ −〈x∗ − v∗1, x− v1〉 − ε ≥ −ε, ∀ (v2, v∗2) ∈ Gr(T2).

Therefore, (y, y∗) ∈ Gr(T ε
2 ). Following the same argument we obtain also (x, x∗) ∈ Gr(T ε

1 ).
Consequently, we have the first inclusion from (15).

Further, let x∗ ∈ T ε
1x and y∗ ∈ T ε

2 y. By the definition of enlargement we have

〈x∗ − v∗1, x− v1〉 ≥ −ε, ∀ (v1, v∗1) ∈ Gr(T1)

and
〈y∗ − v∗2, y − v2〉 ≥ −ε, ∀ (v2, v∗2) ∈ Gr(T2).

By adding these two inequalities we obtain

〈(x∗, y∗)− (v∗1, v
∗
2), (x, y)− (v1, v2)〉 ≥ −2ε, for all ((v1, v2), (v

∗
1, v

∗
2)) ∈ Gr(T ),

i.e., (x∗, y∗) ∈ T 2ε(x, y). Therefore, (15) is true.

Now using (15), for any x ∈ X we have

A∗T εAx ⊂ A∗(T ε
1x× T ε

2x) ⊂ A∗T 2εAx,

from which Assertion (1) follows since A∗(T ε
1x× T ε

2x) = T ε
1x+ T ε

2x.

(2) Assertion (1) yields that for any x ∈ X,

⋂

ε>0

A∗T εAx
w∗

⊂
⋂

ε>0

T ε
1x+ T ε

2x
w∗

⊂
⋂

ε>0

A∗T 2εAx
w∗

,

from which we conclude that (T1 +
ext

T2)(x) = (A∗TA)ext(x).
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It is immediate from Theorem 4.8 that the maximality of the extended sum is equivalent to
the maximality of its representation as extended composition. As expected, the situation
here again is symmetric: the maximality of the extended composition is equivalent to
the maximality of its representation as extended sum. Details are given in the following
proposition.

Proposition 4.9. Let T : X ⇒ X∗ be maximal monotone and let A : Y → X be linear
and continuous. Then, (A∗TA)ext is maximal monotone if and only if NA +

ext

˜T is maximal

monotone.

Proof. Assume that (A∗TA)ext is maximal. Let ξ∗ := (v∗, u∗) ∈ Y ∗ × X∗ and ξ :=
(v, u) ∈ Y ×X be such that

〈ξ∗ − ζ∗, ξ − ζ〉 ≥ 0, ∀ (ζ, ζ∗) ∈ Gr(NA +
ext

˜T ). (17)

We have to show that ξ∗ ∈ (NA +
ext

˜T )(ξ).

First, fix ζ ∈ Dom (NA+ ˜T ) ⊂ Gr(A) and β∗ ∈ ˜T (ζ). Then, for any α∗ ∈ Gr(A)⊥ = NA(ζ),

we can use ζ∗ := α∗ + β∗ ∈ (NA + ˜T )(ζ) in (17) to obtain

〈ξ∗, ξ − ζ〉 − 〈β∗, ξ − ζ〉 ≥ 〈α∗, ξ − ζ〉 = 〈α∗, ξ〉, ∀α∗ ∈ Gr(A)⊥.

We derive that 〈α∗, ξ〉 = 0 for all α∗ ∈ Gr(A)⊥, hence ξ ∈ Gr(A), that is u = Av.

Next, take ζ := (y, Ay) and ζ∗ := (y∗, 0) for y∗ ∈ (A∗TA)ext(y). According to Theorem

4.2, we have ζ∗ ∈ (NA +
ext

˜T )(ζ). So, we can use ζ, ζ∗ in (17) to obtain

〈(v∗, u∗)− (y∗, 0), (v, Av)− (y, Ay)〉 ≥ 0, ∀ (y, y∗) ∈ Gr(A∗TA)ext.

Expanding the pairing, we get

〈v∗ − y∗, v − y〉+ 〈u∗, Av − Ay〉 ≥ 0, ∀ (y, y∗) ∈ Gr(A∗TA)ext,

and finally, using the definition of the adjoint operator,

〈v∗ + A∗u∗ − y∗, v − y〉 ≥ 0, ∀ (y, y∗) ∈ Gr(A∗TA)ext.

From the maximality of (A∗TA)ext we then derive that v∗ +A∗u∗ ∈ (A∗TA)ext(v), which

means that (v∗, u∗) ∈ (NA +
ext

˜T )(v, u) by Theorem 4.2 again.

Conversely, assume that NA +
ext

˜T is maximal and let (z, z∗) ∈ Y × Y ∗ be such that

〈z∗ − y∗, z − y〉 ≥ 0, ∀ (y, y∗) ∈ Gr(A∗TA)ext.

According to Theorem 4.2, this is equivalent to

〈z∗ − y∗ − A∗x∗, z − y〉 ≥ 0, ∀ ((y, Ay), (y∗, x∗)) ∈ Gr(NA +
ext

˜T ),
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or,

〈(z∗, 0)− (y∗, x∗), (z, Az)− (y, Ay)〉 ∀ ((y, Ay), (y∗, x∗)) ∈ Gr(NA +
ext

˜T ).

From the maximality of NA +
ext

˜T we conclude that (z∗, 0) ∈ NA +
ext

˜T (z, Az), hence

z∗ ∈ (A∗TA)ext(z), by Theorem 4.2. This completes the proof.
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(eds.), Lecture Notes in Economics and Mathematical Systems 477, Springer, Berlin (1999)
229–246.
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