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We give a generalization of the classical Helly’s theorem on intersection of convex sets in RN for the case
of manifolds of nonpositive curvature. In particular, we show that if any N + 1 sets from a family of
closed convex sets on N -dimensional Cartan-Hadamard manifold contain a common point, then all sets
from this family contain a common point.

1. Introduction

The classical Helly’s theorem on intersection of convex sets in finite-dimensional Euclidean
space RN , along with Carathéodory’s and Radon’s theorems, is one of the important
results in combinatorial convex geometry. It claims (see [13, 9] for the precise statement)
that, if for a family {Ca}a∈A of convex sets any N +1 sets have a common point, then all
of the sets Ca have a common point. Note that in the case when the index set A is not
finite we should assume that sets Ca are closed and at least one of them is bounded.

This paper contains a generalization of the Helly’s theorem for the case of convex sets on
a Riemannian manifold M of nonpositive curvature. Since the traditional proofs of the
Helly’s theorem in RN rely heavily on the linear structure of Euclidean space they cannot
be used in our setting.

Our proof uses a variational argument to establish solvability (see [6, 7]) of some nons-
mooth inequality and exploits convexity of distance functions for convex sets on manifolds
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of nonpositive curvature. It is based on the classical Carathéodory’s theorem for convex
hulls of sets. The first use of this theorem for the proof of Helly’s theorem in RN was
suggested by Rademacher and Shoenberg in [23], later Eggleston established that Helly’s
and Carathéodory’s theorems are equivalent in RN [12]. We should also mention a paper
[24] by Rockafellar which relates some generalization of Helly’s theorem to solvability of
system of convex functions on Rn. Excellent surveys of Helly’s theorem and related results
can be found in [9, 11].

When M = RN our proof is rather straightforward and we present it below to illustrate
the main idea. To simplify the exposition we assume that all sets are compact and are
contained in some bounded set. In the rest of the introduction we discuss how some of the
recently developed tools in nonsmooth and variational analysis on smooth manifolds [18,
19, 20] can be used to provide a similar proof of Helly’s theorem for general Riemannian
manifolds of nonpositive curvature.

Theorem 1.1. Let {Ca}a∈A be a family of compact convex subsets of RN with ∪a∈ACa

bounded. Suppose that, any N + 1 sets Ca have a common point. Then all of the sets Ca

have a common point.

Proof. Define
f = sup

a∈A
dCa ,

where dCa(x) = inf{‖x − c‖ : c ∈ Ca} is the distance function to the set Ca. Then f is
convex on RN and Lipschitz with Lipschitz constant 1 (since all the distance functions dCa

have the same properties). Without loss of generality we assume that ∪a∈ACa ⊂ BR0(0)
for some positive R0, where

BR(x) := {y ∈ RN : ‖y − x‖ < R}

denotes the open ball centered at x with radius R.

Then for sufficiently large R
min
RN

f = min
BR(0)

f,

and the minimum is attained at some point x ∈ BR(0).

If f(x) = 0 then x ∈
⋂

a∈ACa and theorem is proven. We consider the nontrivial case
when f(x) = 2r > 0 and choose ε ∈ (0, r/2(1+R)). Since f attains its minimum at x we
have and f is convex

0 ∈ ∂Ff(x) = ∂f(x).

Here ∂ and ∂F signify the convex and Fréchet subdifferentials, respectively.

Using the representation formula for a Fréchet subgradient of the supremum function
from [21] and Carathéodory’s theorem we conclude that there exist a1, . . . , aN+1 ∈ A,
nonnegative numbers λ1, . . . , λN+1 with

∑N+1
n=1 λn = 1, xn ∈ Bε(x) with dCan

(xn) >
f(x) − ε and x∗

n ∈ ∂FdCan
(xn) = ∂dCan

(xn) such that the subgradient 0 of f at x is

approximately represented as
∑N+1

n=1 λnx
∗
n. More precisely,

‖
N+1
∑

n=1

λnx
∗
n‖ < ε. (1)
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By the assumption of the theorem there exists y such that

y ∈
N+1
⋂

n=1

Can .

Observing that, ‖x∗
n‖ ≤ 1 for n = 1, . . . , N + 1 (due to te Lipschitzness of the distance

function with the constant 1) and

〈x∗
n, y − xn〉 ≤ dCan

(y)− dCan
(xn)

(due to convexity of dCan
) we have

〈x∗
n, y − x〉 = 〈x∗

n, y − xn〉+ 〈x∗
n, xn − x〉

≤ dCan
(y)− dCan

(xn) + ε

= −dCan
(xn) + ε < −2r + 2ε. (2)

Combining (1) and (2) we obtain

0 ≤
N+1
∑

n=1

λn〈x∗
n, y − x〉+ ε‖y − x‖

≤ −2r + 2ε+ ε2R < −r,

a contradiction.

To implement a similar argument for an N -dimensional Riemannian manifold M of non-
positive curvature we consider the concepts of convex sets and convex functions on such
manifolds. A detailed exposition of these concepts can be found in [4, 5, 10, 27]. While
an estimate similar to that in (2) still holds, the vector y − x should be replaced by the
vector field associated with the geodesic connecting x and y. More subtle fact is that in
a setting of the Riemannian manifold the subgradients x∗

n belong to different tangential
spaces Txn(M) and, therefore, cannot be directly compared as in (1). A general framework
for handling the representation of subgradients of sup-envelope functions (and other sub-
differential calculus on manifolds) was suggested in [18, 19, 20]. In this paper we develop
a particular form of such a representation which is needed for implementing the estimate
in the proof of Theorem 1.1 in an N -dimensional Riemannian manifold M of nonposi-
tive curvature. Thus, besides deriving Helly’s intersection theorem in an N -dimensional
Riemannian manifold M of nonpositive curvature, the proof that we present here also
serves as a demonstration on how recent developments in nonsmooth analysis on smooth
manifolds in combination with convexity can be used to establish generalizations of some
classical theorems for convex sets in RN for manifolds.

The remainder of the paper is arranged as follows: in the next section we introduce no-
tation and preliminaries on smooth and Riemannian manifolds, elements of nonsmooth
analysis on such manifolds and convexity on Riemannian manifolds of nonpositive cur-
vature; in Section 3 we establish a more precise version of the estimate for the Fréchet
subdifferential of sup-envelope function; and our main theorems and their proofs are con-
tained in Section 4; some open problems are discussed in the concluding Section 5.
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2. Preliminaries

2.1. Smooth manifolds

Let M be an N -dimensional C∞ manifold (paracompact Hausdorff space) with a C∞

atlas {(Uα, ψα)}a∈A. For each α, the N components (x1
α, ..., x

N
α ) of ψα represent a local

coordinate system on (Uα, ψα).

A function g : M → R is Cr at m ∈ M if m ∈ Uα and g ◦ ψ−1
α is a Cr function in a

neighborhood of ψα(m). Here r is a nonnegative integer or ∞. As usual C0 represents
the collection of continuous functions on M . It is well known that this definition is
independent of the local coordinate systems. If g is Cr at all m ∈ M , we say g is Cr on
M . The collection of all Cr functions on M is denoted by Cr(M). A map v : Cr(M) → R
is called a tangent vector ofM at m provided that, for any f, g ∈ Cr(M), (1) v(λf+µg) =
λv(f) + µv(g) for all λ, µ ∈ R and (2) v(f · g) = v(f)g(m) + f(m)v(g).

The collection of all the tangent vectors ofM at m forms an (N -dimensional) vector space
and is denoted by Tm(M). A mapping X : M →

⋃

m∈M Tm(M) is called a vector field
provided that X(m) ∈ Tm(M). A vector field X is Cr at m ∈ M provided so is X(g)
for any g ∈ C∞(M). If a vector field X is Cr for all m ∈ M we say it is Cr on M . The
collection of all Cr vector fields on M is denoted by V r(M).

In particular, if (U, ψ) is a local coordinate neighborhood with m ∈ U and (x1, ..., xN)
is the corresponding local coordinate system on (U, ψ) then ( ∂

∂xn )m, n = 1, ..., N defined

by ( ∂
∂xn )mg = ∂g◦ψ−1

∂xn (ψ(m)) belong to V ∞(M) and constitute a basis of Tm(M). Let g
be a C1 function at m, the differential of g at m, dg(m), is an element of T ∗

m(M), and is
defined by

dg(m)(v) = v(g) ∀v ∈ Tm(M).

Let M1 and M2 be C
∞ manifolds. Consider a map φ : M1 → M2. Then for every function

g ∈ C∞(M2), φ induces a function φ∗g on M1 defined by φ∗g = g◦φ. A map φ : M1 → M2

is called Cr at m ∈ M1 (on S ⊂ M1) provided that so is φ∗g for any g ∈ C∞(M2). Let
φ : M1 → M2 be a C1 map and let m ∈ M1 be a fixed element. Define, for v ∈ Tm(M1)
and g ∈ C∞(M2), ((φ∗)mv)(g) = v(φ∗g). Then (φ∗)m : Tm(M1) → Tφ(m)(M2) is a linear
map. The dual map of (φ∗)m is denoted by φ∗

m. It is a map from T ∗
φ(m)(M2) → T ∗

m(M1)

and has the property that, for any g ∈ C1(M2), φ
∗
mdg(φ(m)) = d(φ∗g)(m).

2.2. Riemannian manifolds

Let M be a C∞ manifold. Recall that a mapping g : T (M) × T (M) → R is a C∞

Riemannian metric if

(1) for each m, gm(v, u) is an inner product on Tm(M);

(2) if (U, ψ) is a local coordinate neighborhood around m with local coordinate system
(x1, ..., xN), then gij(m) := gm(

∂
∂xi ,

∂
∂xj ) ∈ C∞(M).

One can check that (2) is independent of local coordinate systems. A manifoldM together
with the Riemannian metric g is called a Riemannian manifold.

Let (M, g) be a Riemannian manifold. For each m ∈ M , the Riemannian metric induces
an isomorphism between Tm(M) and T ∗

m(M) by

v∗ = gm(v, ·) (〈v∗, u〉 = gm(v, u), ∀u ∈ Tm(M)).
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Then we define norms on Tm(M) and T ∗
m(M) by

‖v∗‖2 = ‖v‖2 = gm(v, v).

The following generalized Cauchy inequality is crucial: for any v∗ ∈ T ∗
m(M) and u ∈

Tm(M),
〈v∗, u〉 ≤ ‖v∗‖‖u‖.

Let γ : [0, 1] → M be a C1 curve. The length of γ is

l(γ) =

∫ 1

0

‖γ′(s)‖ds.

Let m1,m2 ∈ M . Denote the collection of all C1 curves joining m1 and m2 by C(m1,m2).
Then the distance between m1 and m2 is defined by

d(m1,m2) := inf{l(γ) : γ ∈ C(m1,m2)}.

The distance between a point m ∈ M and a set S ⊂ M is defined by dS(m) :=
inf{d(m,m′) : m′ ∈ S}. It is not hard to check that

|dS(m1)− dS(m2)| ≤ d(m1,m2). (3)

For any two points m1 and m2 of a connected Riemannian manifold there exists a smooth
curve γ connecting them and satisfying l(γ) = d(m1,m2). Such minimal length curve is
called a geodesic. Clearly it can be parametrized in many different ways. We consider
only the canonical parametrization γ(s), s ∈ [0, 1], such that ‖γ′(s)‖ is constant on [0, 1]
and γ(0) = m1,γ(1) = m2.

It is easy to see that for this canonical parametrization of a geodesic γ we have

‖γ′(s)‖ = d(m1,m2) and d(m1, γ(s)) = sd(m1,m2) for any s ∈ [0, 1].

2.3. Nonsmooth analysis on smooth manifolds

The distance function from points to sets will play an important role in our subsequent
discussion. In general, such functions are nonsmooth. Now we briefly discuss the basic
concepts of subdifferential calculus of nonsmooth functions on smooth manifolds [18, 19,
20] used in this paper. They are developments of the corresponding theory in Banach
spaces (see books [3, 6, 7, 8, 22, 25]). For an extended-valued function f :→ R ∪ {+∞}
the domain of f is defined by dom(f) := {m ∈ M : f(m) < ∞}.
Definition 2.1. Let f : M → R ∪ {+∞} be an extended-valued lower semicontinuous
function. We define the Fréchet-subdifferential of f at m ∈ dom(f) by

∂Ff(m) := {dg(m) : g ∈ C1(M) and f − g attains a local minimum at m}.

Elements of the Fréchet-subdifferential are called Fréchet-subgradients.

It follows immediately from the subgradient definition that if function f attains a local
minimum at the point m̄ on M then

0 ∈ ∂Ff(m̄). (4)

Later we’ll use the following important chain rule. Its proof can be found in [18, 19].
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Theorem 2.2. Let f : M → R ∪ {+∞} be a lower semicontinuous function. Suppose
that (U, ψ) is a local coordinate neighborhood and m ∈ U . Then

∂Ff(m) = ψ∗
m∂F (f ◦ ψ−1)(ψ(m)).

2.4. Convexity on manifolds of nonpositive curvature

Let M be a Riemannian manifold. We recall that a subset K of M is called convex if for
any points m1 and m2 in K there exists a unique geodesic (minimal curve) γ connecting
them which is contained in K. Let K be a convex subset of a Riemannian manifold
M . A function f : K → R is called convex if for any points m1,m2 ∈ K and geodesic
γ : [0, 1] → K connecting them, the function f ◦ γ : [0, 1] → R is convex, namely, we have
for any s1, s2 ∈ [0, 1], α ∈ [0, 1]

f(γ((1− α)s1 + αs2)) ≤ (1− α)f(γ(s1)) + αf(γ(s2)). (5)

For a set C ⊂ M its closed convex hull is defined as the intersection of all closed convex
sets containing C. It is clear that, in general, the convex hull of C on the manifold can
be empty. It is well known that in the case when M = RN the convex hull of any set C is
nonempty and it is compact if C is compact (due to Carathéodory’s theorem). However,
we don’t know of any analogue to this result for closed convex hulls on general manifolds
and we need to introduce the following property for a convex set K on M .

Definition 2.3. Let K be a convex subset of a Riemannian manifold M . We say that
K satisfies the (CC)-condition if for any finite set {m1,m2, . . . ,mn} ⊂ K, its convex hull
is compact.

Clearly, any compact convex set satisfies the (CC)-condition. An example of a manifold
M which convex subsets satisfy the (CC)-condition is given by the Cartan-Hadamard
manifold.

Recall that a complete simply connected N -dimensional Riemannian manifold M of non-
positive curvature is called Cartan-Hadamard. Due to the Cartan-Hadamard theorem
[4, 10], such manifolds are convex and for any convex subset C of M the distance function
dC(m) is convex. In particular, it implies that any closed ball with a finite radius r

Br(m̄) := {m : d(m̄,m) ≤ r}

is also a convex compact set. Consider the finite set C := {m1, . . . ,mK}. It is obvious
that C is contained in the ball Br(m1) of finite radius

r := max
2≤n≤K

d(m1,mn).

It follows from the convexity of balls in Cartan-Hadamard manifolds that the convex hull
of C is compact. Thus Cartan-Hadamard manifolds satisfy the (CC)-condition.

Let K ⊂ M be convex and let γm1m2 : [0, 1] → M denotes the unique geodesic connecting
points m1 and m2 from K: γm1m2(0) = m1 and γm1m2(1) = m2. For a fixed m̄ ∈ K we
consider the vector field

vm̄(m) := γ′
m̄m(1). (6)



Y. S. Ledyaev, J. S. Treiman, Q. J. Zhu / Helly’s Intersection Theorem on ... 791

It is obvious that
‖vm̄(m)‖ = d(m̄,m).

The next Proposition follows from the uniqueness of geodesics in convex sets and from
the continuous dependence of solutions of the geodesic equation on initial data.

Proposition 2.4. Let K be a convex subset of a Riemannian manifold M . Then, for
any function g ∈ C∞(M) the function (m, m̄) → vm̄(m)(g) is continuous at any m 6= m̄
on K.

Our generalization of Helly’s theorem is valid for Riemannian manifolds of nonnegative
curvature.

It is known [4] that manifolds of nonpositive curvature have the following property: for
any convex set K and two geodesics γ1 and γ2 from [0, 1] to K, the function

s → d(γ1(s), γ2(s))

is convex.

This fact is used to show the well-known fact that the distance function to a closed convex
set is convex.

Lemma 2.5. Let M be a Riemannian manifold with nonpositive curvature, K ⊂ M be
convex and C be a closed convex subset of K. Then the distance function dC : W → R is
convex on K.

Proof. Consider m1,m2 ∈ W and let m′
1,m

′
2 ∈ C be their projections on C, that is,

d(mn,m
′
n) = dC(mn), n = 1, 2. Then, for any s ∈ [0, 1],

dC ◦ γm1m2(s) ≤ d(γm1m2(s), γm′
1m

′
2
(s))

≤ (1− s)d(γm1m2(0), γm′
1m

′
2
(0)) + sd(γm1m2(1), γm′

1m
′
2
(1))

= (1− s)dC(m1) + sdC(m2)

= (1− s)dC ◦ γm1m2(0) + sdC ◦ γm1m2(1).

It is easy to see that this inequality implies convexity of dC on K.

For any convex function f the subdifferential of f at m̄ ∈ int dom f defined by

∂f(m̄) = {ξ ∈ T ∗
m(M) : f(m)− f(m̄) ≥ 〈ξ, γ′

m̄m(0)〉,∀m ∈ M},

is nonempty, convex and compact [27]. An element ξ ∈ ∂f(m) is called a subgradient of
f at m. Our next lemma show that for a convex function the subdifferential contains the
Fréchet subdifferential.

Lemma 2.6. Let M be a Riemannian manifold with nonpositive curvature and let f be
a convex function. Then for any m ∈ int dom f we have

∂Ff(m̄) ⊂ ∂f(m̄).

Proof. Let ξ ∈ ∂Ff(m̄). Then there exists g ∈ C1(M) with dg(m̄) = ξ such that f − g
attains a minimum 0 at m̄. Since f is convex, for any m and s ∈ (0, 1]

f(m)− f(m̄) ≥ f(γm̄m(s))− f(m̄)

s
≥ g(γm̄m(s))− g(m̄)

s
. (7)
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Taking limits in (7) as s → 0+ we have

f(m)− f(m̄) ≥ f ′(m̄; γ′
m̄m(0)) ≥ 〈dg(m̄), γ′

m̄m(0)〉 = 〈ξ, γ′
m̄m(0)〉.

It follows that ξ ∈ ∂f(m̄).

3. Subdifferentials of sup-envelopes

We now develop an estimate for subgradients of sup-envelopes of Lipschitz functions
on smooth Riemannian manifolds. This is an important subject that has been studied
extensively [2, 14, 17, 21, 26] in different settings. In Euclidean space RN our result
below is a combination of the estimate for the subgradient of a sup-envelope function
in [21] and Carathéodory’s theorem, which asserts that any convex combination can be
represented as a convex combination of N + 1 vectors. The result in [21] actually applies
to sup-envelops of lower semicontinuous functions and the corresponding generalization
to arbitrary smooth manifolds has been discussed in [18]. Here we trade the more general
setting in [18] for a better estimate.

Let fa : M → R, a ∈ A be a family of Lipschitz functions with the same Lipschitz constant
L and let

f(m) := sup
a∈A

fa(m)

be the sup-envelope of {fa}a∈A. We want to establish an estimate for the Fréchet subdif-
ferential of f in terms of the subdifferential of functions fa. For this we need the following
definition.

Definition 3.1. Let M be a C∞ manifold. We say a set W ⊂ V 0(M) is locally uniformly
bounded and equicontinuous around m if there exists a local coordinate neighborhood
(U, ψ) of m such that {ψ∗v : v ∈ W} is uniformly bounded and equicontinuous on U .

It is not hard to see that this definition is independent of the local coordinate neighbor-
hoods.

We will also need the following set

Gδ,U(m̄) := {(m, a) ∈ U × A : fa(m) ≥ f(m̄)− δ}

defined for positive δ and a neighborhood U of m̄. Note that when M is a Riemannian
manifold we can consider a neighborhood U = Bδ(m̄) := {m ∈ M : d(m, m̄) < δ}. The
set Gδ,U(m̄) plays a role of a set of approximate solutions in maximizing a → fa(m̄).

Theorem 3.2. Let M be a C∞ Riemannian manifold and let fa : M → R, a ∈ A be a
family of Lipschitz functions with a uniform Lipschitz constant. Define

f(m) := sup
a∈A

fa(m).

Suppose that ξ ∈ ∂Ff(m) and W ⊂ V (M) is locally uniformly bounded and equicontinuous
around m. Then for any ε > 0 there exist convex coefficients {λn}N+1

n=1 , points (mn, an) ∈
Gε,Bε(m) and subgradients ξn ∈ ∂Ffan(mn) such that

|〈ξ, v〉m −
N+1
∑

n=1

λn〈ξn, v〉mn| < ε, ∀v ∈ W.
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Proof. Choose a local coordinate system (U, ψ) with m ∈ U ⊂ Bε(m) such that W is
uniformly bounded and equicontinuous on U . Define ha = fa ◦ ψ−1 and h = f ◦ ψ−1.
Then h = supa∈A ha. Since ψ is a diffeomorphism and {fa}a∈A and f are Lipschitz with
a uniform Lipschitz constant there exists a constant L > 0 such that h and {ha}a∈A are
Lipschitz with this same Lipschitz constant L. Moreover, {ψ∗v = (v1, . . . , vn) : v ∈ W} is
uniformly bounded and equicontinuous on U . Choose η < ε such that Bη(m) ⊂ U and
for any m′,m′′ ∈ Bη(m) and any v ∈ W ,

‖(ψ∗)m′v − (ψ∗)m′′v‖ <
ε

2L
.

Denote x = ψ(m) and x∗ = ψ∗
mξ. Then, by Lemma 2.2, x∗ ∈ ∂Fh(x). Choose

ε′ <
ε

2 sup{‖(ψ∗)mv‖ : m ∈ U}

such that Bε′(x) ⊂ ψ(Bη(m)). It follows that (x, a) ∈ Gε′,Bε′ (x)
implies (ψ−1(x), a) ∈

Gε,Bη(m). Applying the subdifferential representation of [21] in RN combined with Cara-
théodory’s theorem we can conclude that there exist convex coefficients {λn}N+1

n=1 , points
(xn, an) ∈ Gε,Bε′ (x)

and subgradients x∗
n ∈ ∂Fhan(xn) such that

‖x∗ −
N+1
∑

n=1

λnx
∗
n‖ < ε′.

Let mn = ψ−1(xn) and ξn = ψ∗
mn

x∗
n. Then mn ∈ Bε(m), ξn ∈ ∂Ffan(mn) and, for any

v ∈ W ,

|〈ξ, v〉m −
N+1
∑

n=1

λn〈ξn, v〉mn|

= |〈ψ∗
mx

∗, v〉m −
N+1
∑

n=1

λn〈ψ∗
mn

x∗
n, v〉mn|

= |〈x∗, (ψ∗)mv〉 −
N+1
∑

n=1

λn〈x∗
n, (ψ∗)mnv〉|

= |〈x∗ −
N+1
∑

n=1

λnx
∗
n, (ψ∗)mv〉+

N+1
∑

n=1

λn〈x∗
n, (ψ∗)mv − (ψ∗)mnv〉|

= ‖x∗ −
N+1
∑

n=1

λnx
∗
n‖‖(ψ∗)mv‖+

N+1
∑

n=1

λn‖x∗
n‖‖(ψ∗)mv − (ψ∗)mnv‖ < ε.

4. The Main Results

We now state and prove our main theorem that generalizes Helly’s intersection theorem
on the intersection of convex sets on Riemannian manifolds with nonpositive curvature.
We start with a special case.
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Theorem 4.1. Let M be an N-dimensional C∞ Riemannian manifold of nonpositive
curvature. Suppose that there exist an open convex set K, a convex compact set C ⊂ K
and a family of convex closed sets Ca ⊂ C, a ∈ A, such that any intersection of N + 1
sets Ca

∩N+1
n=1 Can (8)

is nonempty. Then the intersection of all Ca is also nonempty, i.e.,

∩a∈ACa 6= ∅.

Proof. Define

f = sup
a∈A

dCa .

Then f is convex and finite on K. Also f is continuous, in fact, Lipschitz with a Lipschitz
constant 1 on M . Consider the problem

minimize f on the set C.

Due to the compactness of C there exists a minimizer m̄ ∈ C.

Using the exact penalization method in [6], we conclude that m̄ is also a solution of the
problem

minimize f + 2dC on the open set K.

If f(m̄) = 0 then m̄ ∈
⋂

a∈ACa. We consider the nontrivial case when f(m̄) = f(m̄) +
2dC(m̄) = 2r > 0.

Choose δ > 0 such that for any c ∈ C, Bδ(c) ⊂ K and m ∈ Bδ(m̄) one has that
f(m) + 2dC(m) > r > 0. Further choose ε ∈ (0,min(δ/2, r)). Since m̄ minimizes f + 2dC
on K and m̄ is interior point of K we have 0 ∈ ∂F (f + 2dC)(m̄).

For each c ∈ C define a vector field vc by vc(m) = γ′
cm(1). Note that, for c 6= m, vc(m) is

continuous in both c and m by Proposition 2.4.

Since C is compact, W = {vc : c ∈ C\Bδ(m̄)} ⊂ V 0(M) is locally uniformly bounded and
equicontinuous on Bε(m̄).

Using the estimate from Theorem 3.2 for the subgradient of the sup-envelope function

f + 2dC = sup
a∈A

(dCa + 2dC),

we conclude that there exist indices a1, . . . , aN+1 ∈ A, nonnegative numbers λ1, . . . , λN+1

with
∑N+1

n=1 λn = 1, points mn ∈ Bε(m̄) with (dCan
+ 2dC)(mn) > (f + 2dC)(m̄) − ε and

subgradients

ξn ∈ ∂F (dCan
+ 2dC)(mn) ⊂ ∂(dCan

+ 2dC)(mn)

satisfying, for any v ∈ W ,

‖
N+1
∑

n=1

λn〈ξn, v〉‖ < ε. (9)
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By the assumption of the theorem we have

N+1
⋂

n=1

Can 6= ∅.

Letting c be an element of this intersection and v = vc ∈ W , we have

−〈ξn, v〉 ≤ (dCan
+ 2dC)(c)− (dCan

+ 2dC)(mn)

= −(dCan
+ 2dC)(mn) < −2r + ε < −r. (10)

Combining (9) and (10), we have

−ε < −
N+1
∑

n=1

λn〈ξn, v〉 < −r,

a contradiction.

Now we can prove our main result. It says that the condition that all Ca belong to a
convex compact set in Theorem 4.1 can be relaxed to they belong to a convex set satisfying
the (CC)-condition and one of them is compact.

Theorem 4.2. Let M be an N-dimensional C∞ Riemannian manifold with nonpositive
curvature and let K be an open convex subset of M satisfying the (CC)-condition. Let
{Ca}a∈A be a family of closed convex subsets of K and let at least one of them be compact.
Suppose that, for any N + 1 elements a1, . . . , aN+1 ∈ A,

N+1
⋂

n=1

Can 6= ∅.

Then
⋂

a∈A

Ca 6= ∅.

Proof. Since one of the sets Ca is compact we need only show that for any finite subset
F ⊂ A, ∩a∈FCa 6= ∅.
Without loss of generality we may assume that A itself is a finite set and A = {a1, a2, . . . ,
aJ} with J > N + 1. (There is nothing to prove if J ≤ N + 1. For each of the subsets
{aj1 , . . . , ajN+1} of A, select

mj1,...,jN+1 ∈
N+1
⋂

n=1

Cajn

and consider the convex hull C of the set of all these points

C := conv{mj1,...,jN+1 : {aj1 , . . . , ajN+1} ⊂ A}.

Then the family of convex compact sets

{Ka = Ca ∩ C : a ∈ A}
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satisfies the assumption of Theorem 4.1. In fact, ∪a∈AKa ⊂ C and for any {aj1 , . . . , ajN+1}
⊂ A},

mj1,...,jN+1 ∈
N+1
⋂

n=1

Kajn
.

It follows from Theorem 4.1 that

∅ 6=
⋂

a∈A

Ka ⊂
⋂

a∈A

Ca.

Since any convex subset of a Cartan-Hadamard manifold satisfies the (CC)-condition we
have

Corollary 4.3. Let M be an N-dimensional C∞ Cartan-Hadamard manifold. Let {Ca}a∈A
be a family of closed convex subsets of M and at least one of them is compact. Suppose
that, for any N + 1 elements a1, . . . , aN+1 ∈ A,

N+1
⋂

n=1

Can 6= ∅.

Then
⋂

a∈A

Ca 6= ∅.

Proof. Let K = M in Theorem 4.2.

5. Conclusion

There are two open problems related to the variant of the Helly’s intersection theorem in
this paper.

The first is related to the (CC)-condition for a convex subset K of M . We recall that an
Euclidean space RN satisfies this (CC)-condition and that fact follows from Carathédory’s
theorem.

Let [m1,m2] denote the unique geodesic connecting m1 and m2 in K. On the set of all
subsets A,B ⊂ K consider the following operator H

H(A,B) := {m : m ∈ [m1,m2],m1 ∈ A,m2 ∈ B}.

Consider the sequence of sets

H0(C) := C, Hn(C) := H(C,Hn−1(C)) n = 1, . . . .

Note that when M = RN the Carathéodory’s theorem is equivalent to the fact that the
convex hull of C coincides with HN(C). Is this true for a general Riemannian manifold
with nonpositive curvature?

Conjecture 5.1. Let X be some subset of the convex set K from the N-dimensional
manifold with nonpositive curvature then the convex hull of X coincides with the set
HN(X).



Y. S. Ledyaev, J. S. Treiman, Q. J. Zhu / Helly’s Intersection Theorem on ... 797

Note that if Conjecture 5.1 is valid then K satisfies (CC)-condition.

The second open problem concerns Klee’s generalization of Helly’s theorem when inter-
section of any N +1 sets contains a translate of the compact convex set T . The following
conjecture, to some extent, imitates the result by Klee [16].

Conjecture 5.2. Let M be an N-dimensional simply connected smooth manifold with
nonpositive curvature. Suppose there exists a nonnegative r, a convex set K and a family
of convex closed sets Ca ⊂ K, a ∈ A such that for any intersection of N + 1 sets Can,
some y,

B̄(y, r) ⊂ ∩N+1
n=1 Can , (11)

and in the case of the infinite index set A let at least one set Ca be compact. If K satisfies
(CC)-condition then for some point z

B̄(z, r) ⊂ ∩a∈ACa.
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