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The aim of the paper is to extend to the setting of uniformly convex Banach spaces the results obtained for
prox-regular sets in Hilbert spaces. Prox-regularity of a set C at a point x ∈ C is a variational condition
related to normal vectors and which is common to many types of sets. In the context of uniformly convex
Banach spaces, the prox-regularity of a closed set C at x is shown to be still equivalent to the property
of the distance function dC to be continuously differentiable outside of C on some neighbourhood of x.
Additional characterizations are provided in terms of metric projection mapping. We also examine the
global level of prox-regularity corresponding to the continuous differentiability of the distance function
dC over an open tube of uniform thickness around the set C.
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The differentiability of the distance function dC to a nonempty closed subset C of a Banach
space X and the single valuedness of the metric projection mapping PC are longstanding
subjects of study. For a convex set C, the differentiability of d2C and the single valuedness
and continuity of PC on the whole space X are well known in smooth Banach spaces. In
the finite dimensional Euclidean case, Motzkin [36] seems to be the first to prove that
a nonempty closed set C is convex if and only if its metric projection mapping PC is
single-valued everywhere. In the Hilbert setting, Klee [29] proved that for weakly closed
sets C, the convexity of C is also characterized in this way. The characterization in the
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Hilbert setting of the convexity of a norm closed set C by the metric projection mapping
PC being single-valued and norm-to-weak continuous is due to Asplund [1]. When the
dual space of X is rotund, Vlasov [46] extended in some sense Asplund’s result by showing
that a norm closed set C of X is convex if and only if the metric projection mapping is
single-valued and norm-to-norm continuous. See also [45] for the case of approximately
compact sets.

Using the original result by S. Fitzpatrick [27] reducing the differentiability of dC to its
GÝateaux directional derivability in a certain key direction, Borwein, Fitzpatrick and Giles
[6] characterized closed convex sets C of a Banach space X with rotund dual as closed sets
C for which the distance function dC is GÝateaux differentiable onX\C with ‖∇GdC(x)‖ =
1 for all x ∈ X \ C. This result of Fitzpatrick will be stated below as a theorem (see
Theorem 4.4) because of its importance.

In order to extend the Steiner polynomial formula concerning the n-dimensional measure
of the r-neighbourhood (with respect to the Euclidean norm) of a closed convex subset
or a compact C2-submanifold of Rn to a much larger class of sets, Federer [26] introduced
the concept of subsets of Rn with positive reach. For a nonempty closed set C ⊂ Rn,
denoting by Unp(C) the set of all points x ∈ Rn for which C contains a unique nearest
point to x, Federer defined its reach (that he denoted by reach(C)) as the largest r
(possibly +∞) such that {x ∈ Rn : 0 < dC(x) < r} ⊂ Unp(C). Then, he declared C to be
positively reached whenever reach(C) > 0 and established, among other results, that dC is
continuously differentiable on the set {x ∈ Rn : 0 < dC(x) < reach(C)}. Note that Federer
also worked, for a fixed point x̄ ∈ C with reach(C, x̄), i.e., the supremum of all r > 0
such that the open ball centered at x̄ with radius r is included in Unp(C). Considering,
in Hilbert space, the concept of p-convex set C of Degiovanni, Marino and Tosques [21],
Canino [12] established that on a suitable open neigbourhood of C the metric projection
mapping PC is single-valued and locally Lipschitz continuous. Staying on the global level
in Hilbert space, Clarke, Stern and Wolenski [16] introduced and studied the proximally
smooth sets. Such sets correspond to closed sets C for which the distance function dC is
continuously differentiable on an open tube around C of the type

UC(r) := {u ∈ X : 0 < dC(u) < r}

for some r > 0. In view of Federer’s result recalled above, in finite dimensions those
sets are positively reached and vice versa. Clarke, Stern and Wolenski characterized, in
Hilbert space, proximal smooth sets in several interesting ways, in particular in terms of
proximal normals and proximal mapping PC . They also provided (in finite dimensions)
a detailed analysis of locally Lipschitz continuous functions for which the epigraph is
proximally smooth. Another previous interesting result was obtained by Shapiro [42] on
the local level, in the Hilbert setting. He proved, for a closed set C and a point x ∈ C,
that the metric projection mapping PC is single-valued on a neighbourhood of x whenever
the distance to the general Boulingand contingent cone to C satisfies a property refered
to as the Shapiro property by Poliquin, Rockafellar and Thibault [39].

On the local level, in the study of sets C for which dC is locally differentiable and its
consequences for the metric projection mapping PC , Poliquin, Rockafellar and Thibault
[39] recently made advance in the Hilbert setting with a different point of view, by mak-
ing the link with the local property of C called prox-regularity. This property has been
introduced as a new important regularity in variational analysis by Poliquin and Rock-
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afellar [38]. They defined this concept for functions and for sets, and studied it in the
finite dimensional setting. Rich geometric implications and characterizations of such a
concept were obtained by Poliquin, Rockafellar and Thibault. In their work [39], they
relied, in Hilbert space, on the prox-regularity of a closed set C at x ∈ C and character-
ized it in terms of dC and PC , e.g. dC being continuously differentiable outside of C on a
neighbourhood of x or PC being single-valued and norm-to-weak continuous on this same
neighbourhood. They also gave a subdifferential characterization of such sets with the
normal cone to C. Coming back to the global level, they showed that proximally smooth
sets are exactly uniformly prox-regular sets and provided new insights on those sets.

Our main aim is to extend the scope of those results to the more general setting of
uniformly convex Banach spaces (e.g. lp, L

p and W p
m with 1 < p < ∞) and to find their

analogues in the context of such spaces. We will rely on a property that we introduce,
analogous to the prox-regularity.

The paper is organized as follows. In Section 2 we give the necessary notation and pre-
liminaries. In Section 3 we consider the definition and the first properties of prox-regular
sets on a uniformly convex Banach space X. We also introduce related definitions for
functions and for set-valued mappings. Section 4 is devoted to the study of properties of
local Moreau envelopes of functions on X. In Section 5 we establish several characteriza-
tions of prox-regular sets in X (see Theorem 4.9) extending in this way the results of [39].
In the final Section 6 we use some techniques developed in the previous sections to obtain
in Theorem 5.2 various results similar to the characteristic Theorem 4.9 but on the global
level of proximally smooth sets. So, with Theorems 4.9 and 5.2 we extend several results
of [26], [12], [16], [39], and [17].

1. Notation and preliminaries

We begin by recalling some of the properties of uniformly convex Banach spaces which
can be found in [23, 11, 2, 22].

For a Banach space X the following are equivalent:

(X1) X has an equivalent uniformly convex norm ‖.‖, i.e., such that its modulus of con-
vexity

δ‖.‖(ε) := inf
{

1−
∥

∥

∥

x+y

2

∥

∥

∥ : ‖x‖ = ‖y‖ = 1, ‖x−y‖≥ε
}

satisfies δ‖.‖(ε)>0 for all ε∈]0, 2].
(X2) X has an equivalent uniformly convex norm ‖.‖ with modulus of convexity of power

type q, i.e., for some k > 0 one has δ‖.‖(ε) ≥ kεq, for all ε ∈]0, 2]. From Dvoretzky’s
theorem necessarily q ≥ 2.

(X3) X has an equivalent uniformly smooth norm ‖.‖, i.e., such that its modulus of
smoothness

ρ‖.‖(τ) :=
1

2
sup {‖x+ y‖+ ‖x− y‖ − 2 : ‖x‖ = 1, ‖y‖ ≤ τ}

satisfies limτ↓0
ρ‖.‖(τ)

τ
= 0.

(X4) X has an equivalent uniformly smooth norm ‖.‖ with modulus of smoothness of
power type s, i.e., such that for some c > 0 one has ρ‖.‖(τ) ≤ cτ s for all τ ≥ 0. From
Dvoretzky’s theorem necessarily 1 < s ≤ 2.
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(X5) X has an equivalent norm which is both uniformly convex and uniformly smooth
and which has moduli of convexity and smoothness of power type.

It is well-known (see [23, 32, 33]) that all Hilbert spaces H and the Banach spaces lp,
Lp, and W p

m (1 < p < ∞) all are (for their usual norms) uniformly convex and uniformly
smooth with moduli of convexity and smoothness of power type. More precisely, for
ε ∈]0, 2] and τ ≥ 0

δH(ε) = 1−
√

1− (1/4)ε2 ≥ ε2/4,

δlp(ε) = δLp(ε) = δW p
m
(ε) =

{ p−1
8
ε2 + o(ε2) > p−1

8
ε2, 1 < p < 2,

1−
[

1−
(

ε
2

)p]1/p
>1

p

(

ε
2

)p
, p ≥ 2,

ρH(τ) = (1 + τ 2)1/2 − 1 < τ,

ρlp(τ) = ρLp(τ) = ρW p
m
(τ) =

{

(1 + τ p)1/p − 1 < 1
p
τ p, 1 < p < 2,

p−1
2
τ 2 + o(τ 2) < p−1

2
τ 2, p ≥ 2.

Throughout all the paper we will work in a uniformly convex Banach space X which is
equipped with an equivalent norm ‖.‖ that satisfies (X5). Such a norm is a Kadec norm,

i.e., it satisfies the property that whenever xn
w−→

n→∞
x with ‖xn‖ −→

n→∞
‖x‖, then xn

‖.‖−→
n→∞

x.

Let q and s be the power types of moduli of convexity and smoothness of ‖.‖, respectively.
Then X∗ is also uniformly convex and its dual norm has modulus of convexity of power
type q∗ = s(s − 1)−1 and modulus of smoothness of power type s∗ = q(q − 1)−1. We
will denote by B the closed unit ball of X, and by B[x, r] (resp. B(x, r)) the closed (resp.
open) ball with center x and radius r. The mapping J : X → X∗ defined by

J(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖.‖x‖, ‖x∗‖ = ‖x‖}

is generally called the normalized duality mapping. Let us put together, in the context of
uniformly convex Banach space X satisfying (X5), some of its properties that we will use
throughout the paper (see [13]):

(J) The mapping J : X → X∗ is single-valued, bijective and norm-to-norm uniformly
continuous on bounded sets, J(λx) = λJ(x) for all λ ∈ R, ‖J(x)‖ = ‖x‖, and
J(x) = ∇1

2
‖.‖2(x) for all x ∈ X.

An analogous property (J∗) holds for the normalized duality mapping J∗ : X∗ → X.
Moreover, J∗ = J−1.

It is known (see e.g. [47]), that for r > 0 there exist positive constants Kr, K
′
r such that

〈J(x)− J(y), x− y〉 ≥ Kr‖x− y‖q, ∀x, y ∈ rB, (1)

‖J(x)− J(y)‖ ≤ K ′
r‖x− y‖s−1, ∀x, y ∈ rB. (2)

The space X×R will be endowed with the norm ||| · ||| given by |||(x, r)||| =
√

‖x‖2 + r2. So,
for the normalized duality mapping JX×R : X × R → X∗ × R associated with the norm
||| · |||, one has the equality

JX×R(x, r) = (J(x), r). (3)
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Recall that a normed vector space (Y, ‖ · ‖) is rotund or strictly convex provided for any
y, y′ ∈ Y with ‖y‖ = ‖y′‖ = 1 and y 6= y′ one has ‖1

2
(y + y′)‖ < 1. According to (X1),

the uniform convexity holds when this inequality is fulfilled in some uniform way. Recall
(see for example [22]) that the strict convexity of the norm ‖ · ‖ is equivalent to require
for any non zero y, y′ ∈ Y , y 6= y′ the equality

‖y + y′‖ = ‖y′‖+ ‖y‖ (4)

to entail y′ = µy for some µ > 0.

We will need the following elementary result concerning nearest points of a closed subset
C to a point in Y . It can be found in Hilbert space for example in [15, p. 4]. It must also
be known in the general strictly convex setting but we did not find it in the literature.
Recall that for any u ∈ Y the notation PC(u) means the set of all nearest points of C to
the point u.

Lemma 1.1. Let (Y, ‖ · ‖) be a strictly convex normed vector space, C be a closed subset
of Y and u /∈ C. Assume that PC(u) 6= ∅. Then for any p ∈ PC(u) and any t ∈]0, 1], one
has PC(u+ t(p− u)) = {p}.

Proof. The case t = 1 being obvious, we may suppose t ∈]0, 1[. Putting ut := u+ t(p−u)
we have

‖ut − p‖ = ‖u+ t(p− u)− p‖ = (1− t)‖u− p‖ = (1− t)dC(u).

Further, for any y ∈ C,

‖ut − y‖ = ‖u+ t(p− u)− y‖ ≥ ‖u− y‖ − t‖u− p‖
≥ dC(u)− t‖u− p‖
= (1− t)dC(u)

= ‖ut − p‖,

and hence p ∈ PC(ut).
Suppose that there exists pt 6= p with pt ∈ PC(ut). Then setting y = pt in the above
sequence of inequalities we obtain

dC(ut) = ‖ut − pt‖ = ‖u− pt + t(p− u)‖ ≥ ‖u− pt‖ − t‖u− p‖
≥ dC(u)− t‖u− p‖
= ‖ut − p‖ = dC(ut).

All the last inequalities are then equalities and hence

‖u− pt‖ = dC(u) (5)

and
‖u− pt‖ = ‖u− pt + t(p− u)‖+ ‖t(u− p)‖.

Further, obviously t(u − p) 6= 0, and one also has u − pt + t(p − u) 6= 0 since ‖u − pt +
t(p− u)‖ ≥ (1− t)dC(u). So, because of the rotundity, the last equality above entails (see
(4)) that there exists µ > 0 with

u− pt + t(p− u) = µt(u− p),
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that is,
u− pt = t(µ+ 1)(u− p). (6)

Using (5) and taking the norm of both members of (6) yield dC(u) = t(µ + 1)dC(u) and
since dC(u) > 0 we have t(µ + 1) = 1. Putting this value in (6) gives pt = p, which
completes the proof.

For a set C ⊂ X we will denote by clC its norm closure in X. A vector p ∈ X is
said to be a proximal normal vector to C at x ∈ clC (see [8]) if there are u 6∈ clC and
r > 0 such that p = r−1(u − x) and ‖u − x‖ = dC(u). It is known according to Lau
theorem [30] that in any reflexive Banach space endowed with a Kadec norm, the set of
those points which have a nearest point to any fixed closed subset is a dense set. In the
appropriately renormed space X we are working in, the above property holds and hence
there are proximal normal vectors at any point of some dense subset of the boundary of
C. Observe that the proximal normality of a non-zero p ∈ X to C at x ∈ clC corresponds
to the existence of some r > 0 such that x ∈ PclC(x + rp). The cone of all such vectors
p, together with the origin, will be denoted by NC(x).

The concept is local in the sense that for any u 6∈ clC and any closed ball V := B[x, β]
centered at x ∈ clC such that ‖u − x‖ = dC∩V (u) one has u − x ∈ NC(x). Indeed, put
ρ := dC∩V (u) > 0 and ut := x+ t(u−x) for any fixed positive t < min(1, β

2ρ
). Observe first

that ut ∈ intV according to the inequality t < β
2ρ

and hence ut 6∈ clC because otherwise

one would get ut ∈ cl (C ∩ V ) and

‖ut − u‖ = (1− t)‖u− x‖ < dC∩V (u)

which would be a contradiction. Further ‖ut − x‖ = tρ and, on the one hand, for any
y ∈ C ∩ V one can write

‖ut − y‖ = ‖u+ (1− t)(x− u)− y‖ ≥ ‖u− y‖ − (1− t)‖u− x‖ ≥ tρ = ‖ut − x‖.

On the other hand, for any y ∈ C \ V one has

‖ut − y‖ ≥ ‖y − x‖ − ‖ut − x‖ > β − t‖u− x‖ = β − tρ > tρ = ‖ut − x‖,

the last inequality being due to the choice of t. So ‖ut − x‖ = dC(ut) and hence by the
definition of NC(x) we have

u− x = t−1(ut − x) ∈ NC(x). (7)

A functional p∗ ∈ X∗ is said to be a proximal normal functional to C at x ∈ clC (see
[8]) if there are u 6∈ clC, r > 0 such that p∗ = r−1J(u − x) and ‖u − x‖ = dC(u). Or,
equivalently, a non-zero p∗ ∈ X∗ is a proximal normal functional to C at x ∈ clC if there
exists r > 0 such that x ∈ PclC(x+ rJ∗(p∗)). The cone of all such functionals p∗, together
with the origin, will be denoted by N∗

C(x). One easily verifies that if p ∈ NC(x), then
J(p) ∈ N∗

C(x), and that if p∗ ∈ N∗
C(x), then J∗(p∗) ∈ NC(x). Hence, NC(x) and N∗

C(x)
completely determine each other.

A functional x∗ ∈ X∗ is said to be a Fréchet normal functional (see [8]) to C at x if for any
ε > 0 there exists a neighbourhood Uε of x such that the inequality 〈x∗, x′−x〉−ε‖x′−x‖ ≤
0 holds for all x′ ∈ C ∩ Uε.
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As the norm of our space X is Fréchet differentiable away from the origin, it is not difficult
to verify that for any closed subset C ⊂ X and any x ∈ clC, any proximal normal
functional to C at x is also a Fréchet normal functional to C at x (see [8], Corollary 3.1).

Let f : X → R ∪ {+∞} be a lower semicontinuous (lsc) function. By definition, the
effective domain of f is the set dom f := {x ∈ X : f(x) < +∞} and the epigraph of f is
the set epi f := {(x, r) ∈ X × R : f(x) ≤ r}. Let x ∈ dom f . We say that p∗ ∈ X∗ is a
proximal subgradient of f at x if (p∗,−1) is a proximal normal functional to the epigraph
of f at (x, f(x)). The proximal subdifferential of f at x, denoted by ∂pf(x), consists of
all such functionals. Thus, we have p∗ ∈ ∂pf(x), if and only if, (p∗,−1) ∈ N∗

epi f (x, f(x)).
The functional x∗ ∈ X∗ is said to be a Fréchet subgradient of f at x if (x∗,−1) is a
Fréchet normal functional to the epigraph of f at (x, f(x)). The Fréchet subdifferential
of f at x, denoted by ∂Ff(x), consists of all such functionals. If x 6∈ dom f then all
subdifferentials of f at x are empty, by convention. It is known that for a lsc function f
on a reflexive Banach space with a Kadec and Fréchet differentiable norm (in particular,
on X), the set dom ∂pf is dense in dom f (see [9], Theorem 7.1). Moreover, from what
we saw above, ∂pf(x) ⊂ ∂Ff(x) for all x ∈ X. The Fréchet subgradients are known (see
[28]) to have an analytical characterization in the sense that x ∈ ∂Ff(x), if and only

if, lim inf
y→x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖

≥ 0. When ∂Ff(x) 6= ∅, one says that f is Fréchet

subdifferentiable at the point x.

As usual, we will denote by ψC the indicator function of a closed set C ⊂ X, i.e., ψC(y) = 0
if y ∈ C and ψC(y) = +∞ otherwise. It is easily checked that ∂pψC(x) = N∗

C(x) for any
x ∈ C.

Like for the proximal normal cone in Hilbert space (see [16] and [10]) one can express, in
our uniformly convex space X, the proximal normal functional cone to C in terms of the
proximal subdifferential of dC . We denote by B∗ the closed unit ball of X∗ and by C(ρ)
the ρ-enlargement of the set C, i.e., C(ρ) := {u ∈ X : dC(u) ≤ ρ}.
Proposition 1.2. For any closed subset C of X and any x ∈ C,

∂pdC(x) = N∗
C(x) ∩ B∗.

Proof. The inclusion x∗ ∈ ∂pdC(x) means (x∗,−1) ∈ N∗
epi dC

(x, 0), or equivalently, for
any t > 0 small enough,

inf
(y,λ)∈epi dC

{‖x+ tv − y‖2 + (−t− λ)2} = t2‖v‖2 + t2, (8)

where v = J∗(x∗). This entails that

inf
y∈C

{‖x+ tv − y‖2} = t2‖v‖2,

hence v ∈ NC(x). Further (8) ensures for all y ∈ X that

‖x+ tv − y‖2 + 2tdC(y) + d2C(y) ≥ t2‖v‖2

and since −2tJ(v) = ∇(−‖ · ‖2)(tv), for each ε > 0 there exists some positive number
r < ε such that for all y ∈ B[x, r]

2t〈−J(v), x− y〉 ≤ ε‖x− y‖+ 2tdC(y) + d2C(y)
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and taking the inequality dC(y) ≤ ‖x− y‖ into account we see that

2t〈−J(v), x− y〉 ≤ (ε+ 2t+ ‖x− y‖)‖x− y‖ ≤ (2ε+ 2t)‖x− y‖.

This easily yields ‖v‖ = ‖ − J(v)‖ ≤ 1 and hence x∗ ∈ N∗
C(x) ∩ B∗.

Take conversely x∗ ∈ N∗
C(x) ∩ B∗. Put v = J∗(x∗) and choose t > 0 small enough that

d2C(x+ tv) = t2‖v‖2. Then

inf
y∈X

{‖x+ tv − y‖2 + (t+ dC(y))
2} = inf

ρ≥0
h(ρ),

where h(ρ) := infy∈C(ρ){‖x+ tv − y‖2 + (t+ ρ)2}. Obviously we have the equality h(ρ) =
d2C(ρ)(x+ tv) + (t+ ρ)2. Consider two cases:

– If dC(x+ tv) ≤ ρ, then h(ρ) = (t+ ρ)2 ≥ t2 + d2C(x+ tv).

– If dC(x+ tv) > ρ, using Lemma 3.1 in [10] or Lemma 5.3 in Section 6, we have dC(ρ)(x+
tv) = dC(x+ tv)− ρ and thus,

h(ρ) = d2C(x+ tv) + t2 + 2ρ[ρ+ t− dC(x+ tv)] ≥ d2C(x+ tv) + t2.

The last estimation comes from the fact that ‖v‖ ≤ 1.
Finally, making use of the above inequalities and of the equality d2C(x + tv) = t2‖v‖2 we
obtain

inf
y∈X

{‖x+ tv − y‖2 + (t+ dC(y))
2} = t2‖v‖2 + t2,

which entails that (v,−1) is in Nepi dC (x, 0) or, in other words, that x∗ ∈ ∂pdC(x).

2. Prox-regular sets

The concept of prox-regularity was introduced for functions from Rn into R ∪ {+∞}
by Poliquin and Rockafellar in [38], extending the class of primal lower nice (pln) func-
tions previously considered by Poliquin in [37]. The class of pln functions considerably
enlarged the scope of functions that possess, like convex functions, good properties as
regards regularization, integrability or subdifferential determination, generalized second-
order behavior etc, see [37, 31, 5, 34] and the references therein. The introduction of
prox-regular functions in [38] has been motivated by the study of second-order properties
of some non convex functions. A subset of Rn is defined to be prox-regular in [38] when
its indicator function is prox-regular. The concept of prox-regularity of sets has then been
studied and developed in Hilbert space in [39] by Poliquin, Rockafellar and Thibault who
showed in particular its rich geometric implications.

The prox-regularity property for a closed set C is, like for functions, local and directional,
concerning a point x ∈ C and a direction p ∈ NC(x). If the property holds for all possible
proximal normal vectors to C at x, the set is said to be prox-regular at x. Considering
the prox-regularity at a point, Poliquin, Rockafellar and Thibault [39] showed it to be a
localization of Federer’s positive reach concept (see [26]) or proximal smoothness property
of Clarke, Stern and Wolenski [16]. The localization of the mentioned behavior is made
clear by the fact that the authors showed in [39] the equivalence of the prox-regularity of
a set C, of the local single valuedness and continuity of the metric projection mapping
PC , and of the local C1 regularity of the square distance function d2C to C among other



F. Bernard, L. Thibault, N. Zlateva / Characterizations of Prox-Regular Sets in ... 533

characterizations. Their approach allowed them to retreive also the important global level
results of [16].

Before extending the above concepts to uniformly convex spaces, we must point out that,
in addition to Federer’s study of Steiner polynomial formula (see [26]) and Canino’s work
related to geodesics, the first strong applications of proximal smoothness of sets to Control
theory has been provided by Clarke, Ledyaev, Stern and Wolenski [15]. For other recent
applications to evolution problems with moving sets putting in light the amenability of
prox-regular and proximally smooth sets, we refer to [24, 43].

Our extension of the definition of a prox-regular set to our setting will use the duality
mapping as follows, in order to find striking characterizations of prox-regularity like in
the Hilbert space setting.

Definition 2.1. A closed set C ⊂ X is called prox-regular at x ∈ C for p∗ ∈ N∗
C(x) if

there exist ε > 0 and r > 0 such that for all x ∈ C and for all p∗ ∈ N∗
C(x) with ‖x−x‖ < ε

and ‖p∗− p∗‖ < ε the point x is a nearest point of {x′ ∈ C : ‖x′−x‖ < ε} to x+ rJ∗(p∗).
The set C is prox-regular at x if this property holds for all p∗ ∈ N∗

C(x).

The following proposition shows that the prox-regularity concept for subsets of X in fact
does not depend on any direction. The first part of its proof reproduces ideas of the proof
of Proposition 1.2 in [39].

Proposition 2.2. A closed set C ⊂ X is prox-regular at x, if and only if, it is prox-
regular at x for p∗ = 0. If the closed set C is prox-regular at x for p∗ = 0 with ε and r,
then for all x ∈ C with ‖x− x‖ < ε and for all p∗ ∈ N∗

C(x) with ‖p∗‖ ≤ ε

0 ≥ 〈J [J∗(p∗)− r−1(x′ − x)], x′ − x〉, ∀x′ ∈ C with ‖x′ − x‖ < ε. (9)

Proof. Obviously, if C is prox-regular at x for all p∗ ∈ N∗
C(x) then it is so for p∗ = 0.

To establish the converse, let us assume that C is prox-regular at x for p∗ = 0 with ε > 0
and r > 0. Take any p∗ ∈ N∗

C(x) with p∗ 6= 0, and set ε′ := min{ε/2, ‖p∗‖/2}. For x ∈ C
and p∗ ∈ N∗

C(x) with ‖x− x‖ < ε′ and ‖p∗ − p∗‖ < ε′ we have that

ε

2‖p∗‖
‖p∗‖ ≤ ε

2‖p∗‖
[‖p∗ − p∗‖+ ‖p∗‖] ≤ ε

2‖p∗‖
ε′ +

ε

2
≤ ε

4
+

ε

2
< ε.

We may rewrite the latter as ‖ εp∗

2‖p∗‖ − 0‖ < ε. By prox-regularity of C at x for 0, we have

that x is a nearest point of {x′ ∈ C : ‖x′ − x‖ < ε} to x+ rJ∗
(

εp∗

2‖p∗‖

)

= x+ rε
2‖p∗‖J

∗(p∗).

This means that C is prox-regular at x for p∗ with constants ε′ and r′ = rε
2‖p∗‖ .

To prove the second claim, we suppose that C is prox-regular at x for p∗ = 0 with ε and r.
Fix any x ∈ C with ‖x− x‖ < ε and any p∗ ∈ N∗

C(x) with 0 < ‖p∗‖ < ε. By definition, x
is a nearest point of {x′ ∈ C : ‖x′ − x‖ < ε} to x+ rJ∗(p∗), that is,

‖x+ rJ∗(p∗)− x‖ ≤ ‖x+ rJ∗(p∗)− x′‖, ∀x′ ∈ C with ‖x′ − x‖ < ε.

Setting p := J∗(p∗) we rewrite the latter as

r‖p‖ ≤ ‖x− x′ + rp‖, ∀x′ ∈ C with ‖x′ − x‖ < ε. (10)
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Since J(u) is the derivative of 1
2
‖.‖2 at u, we have for all t > 0 and all x′ that

γ := 〈J [J∗(p∗)− r−1(x′ − x)], x′ − x〉 = 〈J(p− r−1(x′ − x)), x′ − x〉
≤ [2t]−1{‖p− r−1(x′ − x) + t(x′ − x)‖2 − ‖p− r−1(x′ − x)‖2}.

In particular for t = r−1

γ ≤ r

2
{‖p‖2 − ‖p− r−1(x′ − x)‖2} =

r

2
{‖p‖2 − r−2‖x− x′ + rp‖2}

=
1

2r

{

(r‖p‖)2 − ‖x− x′ + rp‖2
}

.

Taking (10) into account we deduce that γ ≤ 0 for all x′ ∈ C with ‖x′ − x‖ < ε,
which is (9). The case ‖p∗‖ = ε is obtained via a limit process and hence the proof is
complete.

In what follows, saying that C is prox-regular at x with ε and r we will mean that the
constants ε and r are taken from prox-regularity of C at x for p∗ = 0. It is clear that if
the closed set C is prox-regular at x for p∗ = 0 with some positive constants ε and r then
it is so for any constants 0 < ε′ ≤ ε and 0 < r′ ≤ r.

The notion corresponding to the inequality (9) in the case of functions is introduced in
the following Definition 2.3. Let us note that another definition is considered in [4], using
the “proximal-typeÔ estimation with the square of the norm as in Poliquin-Rockafellar
[38] instead of (11). In the Hilbert setting, the definition given below is equivalent to that
in [38] or [4] for the large subclass of (pln) functions. The concept of pln functions has
been developed in Poliquin [37] in Rn and the case of Hilbert space has been studied in
[31]. See also the references in [4], where it was shown that in uniformly convex Banach
spaces endowed with a smooth norm with modulus of convexity of power type q = 2, the
Moreau envelopes of prox-regular functions enjoy various remarkable properties.

We will see in the next section that the J-plr concept introduced in Definition 2.3 below
for functions also yields, concerning their Moreau envelopes, various important properties
which have their own interest. Recall that the context here is broader than in [4] since the
power of the modulus of convexity is any q ≥ 2. These properties applied to the indicator
functions of sets will be among the keys of the development of our study.

Definition 2.3. A lsc function f : X → R ∪ {+∞} is J-primal lower regular (J-plr) at
x ∈ dom f if there exist positive constants ε and r such that

f(y) ≥ f(x) + 〈J [J∗(p∗)− t(y − x)], y − x〉 (11)

for all x, y ∈ B(x, ε), all p∗ ∈ ∂pf(x), and all t such that ‖p∗‖ ≤ εrt.

It is easily seen that if f is J-plr at x with some positive constants ε and r then it is so
for any constants 0 < ε′ ≤ ε and 0 < r′ ≤ r. If the lsc function f is J-plr at x ∈ dom f
with positive constants ε and r, one can derive that

〈J [J∗(p∗)− t(y − x)]− J [J∗(q∗)− t(x− y)], y − x〉 ≤ 0 (12)

for all x, y ∈ B(x, ε), for all p∗ ∈ ∂pf(x), q
∗ ∈ ∂pf(y), and all t such that max{‖p∗‖, ‖q∗‖}

≤ εrt. This is the analog of the hypomonotonicity of certain truncations of ∂pf that
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characterizes pln functions in Hilbert spaces: see [37], [31], [5] and the references therein.
The hypomonotonicity is no more appropriate in our setting and therefore we introduce
the following closely related concept, that we call J-hypomonotonicity.

Definition 2.4. A set-valued mapping T : X ⇒ X∗ is said to be J-hypomonotone of
degree t ≥ 0 if for any (xi, x

∗
i ) ∈ gphT := {(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)}, i = 1, 2, one

has
〈J [J∗(x∗

1)− t(x2 − x1)]− J [J∗(x∗
2)− t(x1 − x2)], x2 − x1〉 ≤ 0.

Throughout, we will denote by DomT the domain of the set-valued mapping T : X ⇒ X∗,
i.e., DomT := {x ∈ X : T (x) 6= ∅}. We will also use the following concept of truncation
of a set-valued mapping, as in [5].

Definition 2.5. Let T : X ⇒ X∗ be a set-valued mapping and let ε > 0 and t ≥ 0. Then
its ε, t-truncation at a point x ∈ X is the set-valued mapping Tx,ε,t defined by

gphTx,ε,t := {(x, x∗) ∈ gphT : ‖x− x‖ < ε, ‖x∗‖ ≤ t}.

Without ambiguity, Tx,ε,t will be denoted simply by Tt.

So, by (12) we see that if f is J-plr at x with ε and r, then (∂pf)x,ε,εrt is J-hypomonotone
of degree t for any t ≥ 0. We are not far from sets since the next proposition shows that
the prox-regularity of a set C entails the J-plr property of its indicator function ψC . The
equivalence will be obtained later in Theorem 4.9, as well as the equivalence with the
J-hypomonotonicity of a certain truncation of the normal cone N∗

C .

It will be convenient, for any σ ≥ 0, to denote below by N∗σ
C the set-valued mapping N∗

C

truncated with σB∗, i.e.,

N∗σ
C (x) := N∗

C(x) ∩ σB∗ for all x. (13)

Proposition 2.6. If the closed set C ⊂ X is prox-regular at x ∈ C with ε and r, then
the indicator function ψC of C is J-plr at x, and hence (12) yields, for any t ≥ 0, the
J-hypomonotonicity of degree t on B(x̄, ε) of the set-valued mapping N∗σ

C , where σ := εrt.

Proof. As C is prox-regular at x for p∗ = 0 with ε > 0 and r > 0, from Proposition 2.2
we have

ψC(x
′) ≥ ψC(x) + 〈J [J∗(p∗)− r−1(x′ − x)], x′ − x〉,

whenever x′ ∈ B(x, ε), x ∈ C ∩B(x, ε), and ‖p∗‖ ≤ ε with p∗ ∈ N∗
C(x). We have already

seen in Section 2 that p∗ ∈ N∗
C(x) if and only if p∗ ∈ ∂pψC(x). If p∗ ∈ N∗

C(x) and
‖p∗‖ ≤ εrt, then r−1t−1p∗ ∈ N∗

C(x) with ‖r−1t−1p∗‖ ≤ ε, hence

ψC(x
′) ≥ ψC(x) + 〈J [J∗(r−1t−1p∗)− r−1(x′ − x)], x′ − x〉,

ψC(x
′) ≥ ψC(x) + 〈J [J∗(p∗)− t(x′ − x)], x′ − x〉,

which means that the function ψC is J-plr at x. The proof is complete.

We will need another result concerning J-hypomonotone set-valued mappings. It will be
one of the key steps of our development of the proof of Theorem 3.5. First recall that
a set-valued mapping T : X ⇒ X∗ is bounded when its range T (X) := ∪x∈XT (x) is a
bounded set in X∗.
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Lemma 2.7. Let T : X ⇒ X∗ be a bounded set-valued mapping which is J-hypomonotone
of degree r. Then for any r > 2r we have that (I+r−1J∗ ◦T )−1 is a single-valued mapping
on its domain which is 1

q
-Hölder continuous on its intersection with any bounded subset.

Proof. Let us denote by µ any upper bound of {‖z‖ : z ∈ T (x), x ∈ DomT}. For any
r > 2r and ρ > 0, take xi ∈ Dom (I + r−1J∗ ◦ T )−1 with ‖xi‖ ≤ ρ, i = 1, 2. Choose any
yi ∈ (I + r−1J∗ ◦ T )−1(xi), i.e., J [r(xi − yi)] ∈ T (yi), i = 1, 2. Hence ‖xi − yi‖ ≤ µ/r. By
assumption, for any t ≥ r,

0 ≥ 〈J{J∗(J [r(x1 − y1)])− t(y2 − y1)} − J{J∗(J [r(x2 − y2)])− t(y1 − y2)}, y2 − y1〉
0 ≥ 〈J(rx1 − ty2 + (t− r)y1)− J(rx2 − ty1 + (t− r)y2), y2 − y1〉.

Now for any λ ∈]0, 1[ such that λr
2
> r, replacing t in the above inequality by rtλ where

tλ := λ/2 we obtain

0 ≥〈J(x1 − tλy2 − (1− tλ)y1)− J(x2 − tλy1 − (1− tλ)y2), x1 − x2 + (1− 2tλ)(y2 − y1)〉
+ 〈J(x1 − tλy2 − (1− tλ)y1)− J(x2 − tλy1 − (1− tλ)y2), x2 − x1〉 := (I) + (II).

Note also that

‖x1 − tλy2 − (1− tλ)y1‖ ≤ (1− tλ)‖x1 − y1‖+ tλ‖x1 − y2‖
≤ (1− tλ)‖x1 − y1‖+ tλ(‖x1 − x2‖+ ‖x2 − y2‖)
≤ (1− tλ)

µ
r
+ tλ(2ρ+

µ
r
) ≤ γ,

where γ := ρ + µ
r
, and similarly ‖x2 − tλy1 − (1− tλ)y2‖ ≤ γ. A first estimation of (I) is

obtained by using (1), that is,

(I) ≥ Kγ‖x1 − x2 + (1− 2tλ)(y2 − y1)‖q.

To proceed further in the estimation, we need to consider two cases.

The first case is when (1−2tλ)‖y1−y2‖ > ‖x1−x2‖. In that case, we need to estimate below
‖a−b‖q when ‖a‖ > ‖b‖. Since ‖a−b‖ ≥ ‖a‖−‖b‖ > 0, we derive ‖a−b‖q ≥ [‖a‖−‖b‖]q =
‖a‖q

[

1− ‖b‖
‖a‖

]q

. This leads us to consider the real-valued function g(s) = [1 − s]q + qs

on the interval s ∈ [0, 1[. As the derivative g′(s) = −q[1 − s]q−1 + q is non-negative on
this interval, the function g is non-decreasing on [0, 1[ and then g(s) ≥ g(0) = 1 for all
s ∈ [0, 1[. Finally, [1− s]q ≥ 1− qs for s ∈ [0, 1[. We conclude that

‖a− b‖q ≥ ‖a‖q
[

1− ‖b‖
‖a‖

]q

≥ ‖a‖q
[

1− q
‖b‖
‖a‖

]

= ‖a‖q − q‖a‖q−1‖b‖.

Using the latter we continue to estimate (I) by

(I) ≥ Kγ[(1− 2tλ)
q‖y1 − y2‖q − q(1− 2tλ)

q−1‖y1 − y2‖q−1‖x1 − x2‖]
≥ γ1‖y1 − y2‖q − γ2‖x1 − x2‖,

where γ1, γ2 are some nonnegative constants, depending on λ. On the other hand,

(II) ≥ −‖J(x1 − tλy2 − (1− tλ)y1)− J(x2 − tλy1 − (1− tλ)y2)‖.‖x2 − x1‖
≥ −K ′

γ‖x1 − x2 + (1− 2tλ)(y2 − y1)‖s−1.‖x2 − x1‖
≥ −γ3‖x2 − x1‖,
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where we used (2) for the second estimation, and γ3 is some nonnegative constant de-
pending on λ. Finally, 0 ≥ (I) + (II) ≥ γ1‖y1 − y2‖q − (γ2 + γ3)‖x1 − x2‖ and hence for
some constant γ′ > 0 that depends on λ,

‖y1 − y2‖ ≤ γ′‖x1 − x2‖1/q.

The second case is when (1 − 2tλ)‖y1 − y2‖ ≤ ‖x1 − x2‖. Observing that ‖x1 − x2‖ ≤
(2ρ)1−

1
q ‖x1 − x2‖

1
q , we see that in both cases we have that ‖y1 − y2‖ ≤ γ′′‖x1 − x2‖1/q for

some constant γ′′ > 0, so (I + r−1J∗ ◦ T )−1
is a single-valued mapping on its domain and

it is 1
q
-Hölder continuous on the intersection of its domain with the set ρB.

3. Local Moreau envelopes

Several properties of d2C and PC will be derived from corresponding ones (with their own
interest) concerning the so-called local Moreau envelope of a function. Here we will give
the definition and properties of local Moreau envelopes. Let f : X → R ∪ {+∞} be a lsc
function and W ⊂ X be a nonempty closed subset where f is bounded from below and
finite at some point. The local Moreau envelope of index λ > 0 of f (relative to W ), is
defined as

eλ,Wf(x) := inf
y∈W

{

f(y) +
1

2λ
‖x− y‖2

}

. (14)

We fix W with the above property and we will write, when there is no risk of confusion,
eλf instead of eλ,Wf. Note that the infimum in (14) may be seen as taken over all X for
the function f̃ given by f̃(x) = f(x) if x ∈ W and f̃(x) = +∞ otherwise. It is easy to
see that the functions eλf are everywhere defined and Lipschitz on bounded subsets. As
usual we will consider the set

Pλf(x) := {y ∈ W : eλf(x) = f(y) +
1

2λ
‖x− y‖2}.

Whenever there exists some pλ(x) ∈ Pλf(x) one has by [19]

∂F eλf(x) ⊂ {λ−1J(x− pλ(x))} ∩ ∂F f̃(pλ(x)), (15)

hence Pλf(x) is either empty or a singleton thanks to the one-to-one property of the
mapping J. We know by Theorem 11 of [7] that the infimum is attained whenever x
is a point of Fréchet subdifferentiability of eλf. Denoting by Gλ the subset of X where
eλf is Fréchet subdifferentiable, we obtain for any x ∈ Gλ that Pλf(x) = {pλ(x)} and
∂F eλf(x) = {λ−1J(x− pλ(x))}. Note that Gλ is dense in X according to the result in [35]
and [40] concerning the density of subdifferentiability points.
When Pλf(x) = {pλ(x)} is a singleton, we will write sometimes Pλf(x) in the place of
pλ(x).

In the proof of the next lemma we follow an idea due to Borwein and Giles from [7]. The
lemma will be used in the proof of Proposition 4.3.

Lemma 3.1. Let f : X → R ∪ {+∞} be a lsc function bounded from below on W and
with W ∩ dom f 6= ∅. Then the following assertions are equivalent:

(a) ∂F eλf(x) 6= ∅;
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(b) eλf is Fréchet differentiable at x.

Further, in the case of (a) or (b), ∇F eλf(x) = λ−1J(x− pλ(x)).

Proof. Obviously (b) implies (a). Now suppose that (a) holds. As we have seen above,
Pλf(x) is single-valued with a unique element pλ(x) and ∂F eλf(x) = {λ−1J(x− pλ(x))}.
Then, for any ε > 0 there exists some δ > 0 such that for any t ∈]0, δ[ and for any y ∈ B

〈λ−1J(x− pλ(x)), ty〉 ≤ eλf(x+ ty)− eλf(x) + εt,

hence,
t−1[eλf(x+ ty)− eλf(x)]− 〈λ−1J(x− pλ(x)), y〉 ≥ −ε. (16)

At the same time, taking δ smaller if necessary and using the definition of eλf and the
fact that the function 1

2
‖ · ‖2 is Fréchet differentiable with

J(x− pλ(x)) = ∇(
1

2
‖ · ‖2)(x− pλ(x)),

we have for any y ∈ B

eλf(x+ ty)− eλf(x) ≤ f(pλ(x)) +
1

2λ
‖x+ ty − pλ(x)‖2 − f(pλ(x))−

1

2λ
‖x− pλ(x)‖2

≤ 〈λ−1J(x− pλ(x)), ty〉+ εt,

i.e.,
t−1[eλf(x+ ty)− eλf(x)]− 〈λ−1J(x− pλ(x)), y〉 ≤ ε. (17)

Combining (16) and (17) we obtain the Fréchet differentiability of eλf at x as well as the
equality ∇F eλf(x) = λ−1J(x− pλ(x)).

The differentiability of the Moreau envelopes is also related to their regularity. This
connection given by the equivalence between assertions (a) and (b) of the next lemma
will be needed in Proposition 4.3. The lemma also establishes in view of Theorem 3.5 the
differentiability of eλf under the single valuedness and continuity of Pλf . Before giving its
statement, let us recall that a function f is Fréchet regular at x provided ∂Ff(x) = ∂Cf(x),
where ∂C stands for the Clarke subdifferential.

Lemma 3.2. Under the assumptions of Lemma 3.1, for any open subset U of X, the
equivalences (a) ⇔ (b) and (c) ⇔ (d) hold for the following properties:

(a) eλf is Fréchet regular on U ;

(b) eλf is Fréchet differentiable on U and its Fréchet derivative ∇F eλf : U → X∗ is
norm-to-weak∗ continuous;

(c) eλf is continuously Fréchet differentiable on U (and hence (a) and (b) hold);

(d) Pλf is a single-valued norm-to-norm continuous mapping on U.

In any one of these cases, eλf is Fréchet differentiable on U with ∇F eλf(x) = λ−1J(x−
Pλf(x)).

Proof. (a) ⇒ (b): If ∂F eλf = ∂Ceλf on U , then we have that ∂F eλf(x) 6= ∅ for any x ∈ U
and, hence, eλf is Fréchet differentiable on U from Lemma 3.1. Moreover, ∂Ceλf(x) =
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{∇F eλf(x)} for any x ∈ U , and by the norm-to-weak∗ upper semicontinuity of ∂Ceλf we
have that ∇F eλf is norm-to-weak∗ continuous.

(b) ⇒ (a): Conversely, if eλf is Fréchet differentiable and norm-to-weak∗ continuous on
U , we have that ∂F eλf(x) = {∇F eλf(x)} = ∂Leλf(x) for any x ∈ U , where for a locally
Lipschitz continuous function g : X → R the limiting subdifferential ∂Lg is defined as the
weak∗ sequential outer limit

w∗ − lim sup
y→x

∂Fg(y) := {w∗ − limx∗
n : x∗

n ∈ ∂Fg(xn), xn → x}. (18)

By Mordukhovich and Shao [35], we know that ∂Cg(x) = co ∗∂Lg(x), where co ∗ denotes
the weak∗ closed convex hull in X∗. Thus, we obtain that ∂F eλf(x) = ∂Ceλf(x) for x ∈ U ,
which is the assertion (a).
(c) ⇒ (d): The continuous differentiability of eλf on U implies via Lemma 3.1 the single
valuedness and norm-to-norm continuity of Pλf , i.e., the implication holds.
(d) ⇒ (c): Assume now that Pλf is a single-valued norm-to-norm continuous mapping
on U . This continuity property along with (15) and (18) gives ∂Ceλf(x) = {λ−1J(x −
Pλf(x))} which entails that eλf is GÝateaux differentiable on U with∇Geλf(x) = λ−1J(x−
Pλf(x)). The norm-to-norm continuity of Pλf once again yields the existence of∇F eλf as
well as its norm-to-norm continuity on U . The proof of the lemma is then complete.

In the remainder of this section, we fix a point x ∈ dom f and ρ > 0 such that f is bounded
from below over B[x, 4ρ] and hence we also fix W = B[x, 4ρ]. Note that according to the
lower semicontinuity of f one always has some ρ > 0 with the desired property. So
it is natural to write eλ,ρ,xf(x) in place of eλ,Wf(x) and when x and ρ with the above
mentioned properties are fixed, it will be convenient to keep as above for index only λ
since this will not cause any confusion.

By the useful localization lemma (see [44], Lemma 4.2), there exists some λ0 > 0 such
that for all λ ∈]0, λ0]

Pλf(x) ⊂ B(x, 3ρ) for all x ∈ U := B(x, ρ). (19)

So, for any x ∈ U ∩Gλ the unique element pλ(x) of Pλf(x) belongs to B(x, 3ρ) and then
by (15)

∇F eλf(x) = λ−1J(x− pλ(x)) ∈ ∂Ff(pλ(x)) ∀x ∈ U ∩Gλ (20)

and moreover

‖x− pλ(x)‖ ≤ ‖x− x‖+ ‖x− pλ(x)‖ < ρ+ 3ρ = 4ρ. (21)

In fact, we can make (20) more precise by proving in the following lemma that the stronger
inclusion ∇F eλf(x) ∈ ∂pf(pλ(x)) holds for x ∈ U ∩Gλ.

Lemma 3.3. For any λ ∈]0, λ0], x ∈ U ∩ Dom Pλ, and pλ(x) ∈ Pλf(x), we have that
λ−1J(x− pλ(x)) ∈ ∂pf(pλ(x)). In other words, for any x ∈ U and any λ ∈]0, λ0],

Pλf(x) ⊂ (I + λJ∗ ◦ ∂pf)−1(x).
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Proof. Fix any 0 < λ ≤ λ0, x ∈ U ∩DomPλ, and pλ(x) ∈ Pλf(x). Then,

f(pλ(x)) + (2λ)−1‖x− pλ(x)‖2 ≤ f(y) + (2λ)−1‖x− y‖2, ∀y ∈ W,

that is,

(2λ)−1‖x− pλ(x)‖2 − (2λ)−1‖x− y‖2 ≤ f(y)− f(pλ(x)), ∀y ∈ W.

Since pλ(x) ∈ B[x, 3ρ] the last inequality holds true in particular for all y ∈ B[pλ(x), ρ].
Let us set p := λ−1(x− pλ(x)). From the last inequality we have

2−1λ‖p‖2 − (2λ)−1‖x− y‖2 ≤ f(y)− f(pλ(x)), ∀y ∈ B[pλ(x), ρ],

which entails

λ2

2
‖p‖2 − 1

2
‖λp+ pλ(x)− y‖2 ≤ λ[f(y)− f(pλ(x))], ∀y ∈ B[pλ(x), ρ],

or,

λ2‖p‖2 − ‖λp+ pλ(x)− y‖2 ≤ 2λ[β − f(pλ(x))],

∀(y, β) ∈ epi f with y ∈ B[pλ(x), ρ].

Adding λ2 to both sides yields

λ2‖p‖2 − ‖λp+ pλ(x)− y‖2 + λ2 ≤ 2λ[β − f(pλ(x))] + λ2,

∀(y, β) ∈ epi f with y ∈ B[pλ(x), ρ],

and using the inequality 2λ[β − f(pλ(x))] + λ2 ≤ [β − f(pλ(x)) + λ]2 we obtain that

λ2‖p‖2 + λ2 ≤ ‖λp+ pλ(x)− y‖2 + [β − f(pλ(x)) + λ]2,

∀(y, β) ∈ epi f with y ∈ B[pλ(x), ρ].

So, we obtain that for all (y, β) ∈ epi f with y ∈ B[pλ(x), ρ]

|||λ(p,−1)|||≤|||(pλ(x), f(pλ(x)))+λ(p,−1)−(y, β)|||.

By (7) this inequality entails that (p,−1) ∈ Nepi f (pλ(x), f(pλ(x))), which gives (see Sec-
tion 2) that J(p) ∈ ∂pf(pλ(x)). This means that

λ−1J(x− pλ(x)) ∈ ∂pf(pλ(x)),

which entails the inclusion of the lemma.

Remark 3.4. (a) In the case when the lsc function f is the indicator function ψC of a
non-empty closed set C, the above conclusions hold for W = X and any λ > 0 or for
ρ = +∞, any x ∈ C, and any λ > 0. Further with ρ = +∞ one has eλf(x) =

1
2λ
d2C(x)

and Pλf(x) = PC(x) for all x ∈ X.
(b) Still with f = ψC , for any x ∈ C, any ρ ∈]0,+∞[, and any λ > 0 one has eλf(x) =
1
2λ
d2C∩W (x) and Pλf(x) = PC∩W (x) for all x ∈ X.

But for any x ∈ B[x, 2ρ] and any y ∈ C \W ,

‖x− y‖ ≥ ‖y − x‖ − ‖x− x‖ > 4ρ− 2ρ = 2ρ ≥ ‖x− x‖ ≥ dC∩W (x).

Hence, for x ∈ B[x, 2ρ], dC∩W (x) = dC(x) and PC∩W (x) = PC(x). Therefore, eλf(x) =
1
2λ
d2C(x) and Pλf(x) = PC(x) for any x ∈ U := B(x, ρ).
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Recall that a function g is of class C1,α on an open set U ⊂ X when it is differentiable on
U and the derivative ∇g is locally α-Hölder continuous on U.

Theorem 3.5. Let f : X → R ∪ {+∞} be a lsc function which is J-plr at x ∈ dom f
with positive real numbers ε and r, such that ε < 1 < 1

r
. Let ρ ∈]0, rε

16
] be fixed in such a

way that f is bounded from below on B[x, 4ρ]. Then there exists λ0 > 0 such that for any
λ ∈]0, λ0] the map x 7→ Pλf(x) is single-valued on U := B(x, ρ) with, for some constant
γ ≥ 0,

‖pλ(x)− pλ(x
′)‖ ≤ γ‖x− x′‖

1
q , ∀x, x′ ∈ U, (22)

where pλ is given by Pλf(y) = {pλ(y)} for any y ∈ U. Moreover, for each λ ∈]0, λ0] the
function eλf is of class C1,α on U with α := q−1(s− 1) and ∇eλf(x) = λ−1J(x− pλ(x))
for all x ∈ U .

Proof. Let λ0 be given by the analysis of (19) above for ρ fixed as in the statement of the
theorem. We will work with arbitrary fixed λ ∈]0, λ0]. Put c := rε and Tct := (∂pf)x,ε,ct
for any t ≥ 0. The proof is divided in three steps.

Step 1. Let us prove that Pλf is 1
q
-Hölder continuous on U ∩DomPλf.

We have from Definition 2.4 and from (12) that the set-valued mapping Tct is J-hypomono-
tone of degree t for any t ≥ 0. Hence, for tλ := c/(4λ), the set-valued mapping Ttλ is J-
hypomonotone of degree r := 1/(4λ). As λ−1 > 2r, Lemma 2.7 entails that (I+λJ∗◦Ttλ)

−1

is a single-valued mapping on its domain and this mapping is 1
q
-Hölder continuous on the

intersection of its domain with any bounded subset of X. From Lemma 3.3, we have that
Pλf(x) ⊂ (I + λ∂pf)

−1(x) for any x ∈ U . We claim that we even have

Pλf(x) ⊂ (I + λJ∗ ◦ Ttλ)
−1(x) for any x ∈ U. (23)

Indeed, fixing any x ∈ U ∩DomPλf and pλ(x) ∈ Pλf(x), we know that pλ(x) ∈ B[x; 3ρ].
So ‖pλ(x)− x‖ < ε, and

‖λ−1J(x− pλ(x))‖
≤ λ−1‖x− pλ(x)‖ ≤ λ−1(‖x− x‖+ ‖x− pλ(x)‖) ≤ 4ρλ−1 ≤ (cλ−1)/4 = tλ.

Hence, as also λ−1J(x− pλ(x)) ∈ ∂pf(pλ(x)), we have that λ
−1J(x− pλ(x)) ∈ Ttλ(pλ(x)),

which proves the claim. Therefore we obtain that Pλf is a single-valued 1
q
-Hölder contin-

uous mapping on U ∩ DomPλf , that is, there exists some constant γ ≥ 0 such that for
all x, x′ ∈ U ∩DomPλf

‖pλ(x)− pλ(x
′)‖ ≤ γ‖x− x′‖

1
q . (24)

Step 2. Let us prove that U ⊂ DomPλf.
The proof now is similar to that of [3] or [4]. Take any x ∈ U and fix some integer k ≥ 1
with B(x, 1/k) ⊂ U . According to the density of the Fréchet subdifferentiability points
of eλf, for any integer n ≥ k there exists some point xn ∈ Gλ ∩ B(x, 1/n). By (24), for
any integers n,m ≥ k,

‖pλ(xn)− pλ(xm)‖ ≤ γ‖xn − xm‖
1
q .

Hence, (pλ(xn))n is a Cauchy sequence. Denote by zλ its limit. By the definition of pλ(xn)
we have

f(pλ(xn)) +
1

2λ
‖xn − pλ(xn)‖2 ≤ f(y) +

1

2λ
‖xn − y‖2, ∀y ∈ W.
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Since f is lsc, the latter implies

f(zλ) +
1

2λ
‖x− zλ‖2 ≤ f(y) +

1

2λ
‖x− y‖2, ∀y ∈ W.

This means that zλ ∈ Pλf(x), which yields U ∩ DomPλf = U. Hence (24) holds for all
x, x′ ∈ U and, through step 1, Pλf is a single-valued 1

q
-Hölder continuous mapping on U .

Then by Lemma 3.2, the envelope eλf is continuously Fréchet differentiable on U with
∇F eλf(x) = λ−1J(x′ − pλ(x)) for any x ∈ U .

Step 3. We will prove that eλf is of class C1,α on U with α = q−1(s − 1). Let us take
any x, x′ ∈ U and, for r := 4ρ, use (2) to estimate

‖∇F eλf(x)−∇F eλf(x
′)‖ = λ−1‖J(x− pλ(x))− J(x′ − pλ(x

′))‖
≤ λ−1K ′

r‖x− pλ(x)− x′ + pλ(x
′)‖s−1 ≤ λ−1K ′

r[‖x− x′‖+ ‖pλ(x)− pλ(x
′)‖]s−1

≤ λ−1K ′
r[‖x− x′‖+ γ‖x− x′‖

1
q ]s−1 ≤ λ−1K ′

r(1 + γ)s−1‖x− x′‖
s−1
q ,

where the third inequality is due to (22) and the last one to the fact that ‖x − x′‖ < 1.
The proof of the theorem is then complete.

We now state in the next proposition the relation obtained between the proximal mappings
and some truncations of the subdifferential of a J-plr function.

Proposition 3.6. Under the assumptions of Theorem 3.5, one has for all λ ∈]0, λ0] and
x ∈ U

Pλf(x) = (I + λJ∗ ◦ Ttλ)
−1(x),

where tλ := εr/(4λ) and Ttλ := (∂pf)x,ε,tλ.

Proof. The inclusion of the first member in the second one is (23) of Theorem 3.5, and
the reverse one follows from the inclusion U ⊂ DomPλf established in step 2 of the same
proof since (I + λJ∗ ◦ Ttλ)

−1 is at most single-valued as we saw in step 1 above.

In the next corollary and throughout the paper (like for Pλf(x)), when PC(x) = {p(x)}
is a singleton, we will make no distinction between PC(x) and p(x).

Corollary 3.7. Let C ⊂ X be a non-empty closed set such that its indicator function ψC

is J-plr at x ∈ C with positive real numbers ε and r satisfying ε < 1 < 1
r
. Then for ρ = εr

16

the mapping x 7→ PC(x) is single-valued on U = B(x, ρ) and for some constant γ ≥ 0

‖PC(x)− PC(x
′)‖ ≤ γ‖x− x′‖

1
q , ∀x, x′ ∈ U. (25)

Further, the function d2C is of class C1,α on U with α = q−1(s − 1) and ∇d2C(x) =
2J(x− PC(x)) for all x ∈ U.

Corollary 3.8. Under the assumptions of Corollary 3.7, we have that

PC(x) = (I + J∗ ◦N∗σ
C )−1(x) ∀x ∈ U,

where σ := εr/4 and the set-valued mapping N∗σ
C is defined by (13).
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Proof. Taking ρ = εr
16

as in the statement of Corollary 3.7, since r < 1 it is easily checked
for T := ∂pψC that for all x ∈ U = B(x, ρ)

(I + J∗ ◦ Tx,ε, εr4
)−1(x) = (I + J∗ ◦N∗εr/4

C )−1(x).

So it suffices to apply Proposition 3.6 with λ = 1 to f = ψC , keeping in mind Remark
3.4(b).

4. Characterizations of prox-regular sets

In this section we will give different characterizations of prox-regularity of a set.

Lemma 4.1. Let C ⊂ X be a closed subset. Then the single valuedness and norm-to-
weak continuity of the projection mapping PC over an open set U imply its norm-to-norm
continuity on U .

Proof. Let un
‖.‖−→

n→∞
u and PC(un) w−→

n→∞
PC(u). From the Lipschitz continuity of the dis-

tance function, ‖un − PC(un)‖ = dC(un) −→
n→∞

dC(u) = ‖u − PC(u)‖. By the Kadec

property of the norm, PC(un) ‖.‖−→
n→∞

PC(u).

The following proposition establishes that the continuity of the metric projection mapping
to a closed set C is equivalent to the continuous differentiability of the distance function
dC , as shown in the Hilbert setting in [39], where it is proved that those properties
characterize the prox-regularity of a set in a Hilbert space. Its proof follows directly from
Lemma 3.2 with f = ψC .

Proposition 4.2. Let C ⊂ X be a closed set and U ⊂ X be an open set. Then the
following are equivalent:

(a) PC is single-valued and norm-to-norm continuous on U ;

(b) d2C is of class C1 on U .

In fact these properties are equivalent to the only Fréchet subdifferentiability of the dis-
tance function as we can see from the following proposition.

Proposition 4.3. For any closed set C ⊂ X and any open set U of X the following are
equivalent:

(a) dC is continuously differentiable on U \ C;

(b) ∂FdC(x) is non-empty for all x ∈ U ;

(c) ∂Fd
2
C(x) is non-empty at all points x in U ;

(d) dC is Fréchet differentiable on U \ C;

(e) dC is Fréchet regular on U \ C;

(f) dC is GÝateaux differentiable on U \ C with ‖∇GdC(x)‖ = 1 for all x ∈ U \ C.

Proof. (a) ⇒ (b) is obvious since one always has 0 ∈ ∂FdC(u) for any u ∈ C.
(b) ⇒ (c) follows from the fact that for any x∗ ∈ ∂FdC(x), one has 2dC(x)x

∗ ∈ ∂Fd
2
C(x)

according to Lemma 3.9 in [39].
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(c) ⇒ (d): By Lemma 3.1 and Remark 3.4(a) we have that d2C is Fréchet differentiable on
U , hence so is dC on U \ C.
(d) ⇒ (a): It is clear that (d) entails (b) and hence (c). From Lemma 3.1 and Remark
3.4(a) we get the Fréchet differentiability of d2C on U . The latter implies that PC is
single-valued on U and that

∇Fd2C(x) = 2J(x− PC(x)) for any x ∈ U. (26)

So, it remains to prove the norm-to-norm continuity of PC over U and we will obtain that

of ∇Fd2C . Take any x0 ∈ U , and U 3 xn
‖.‖−→

n→∞
x0. Then we also have that

‖xn − PC(xn)‖ = dC(xn) −→
n→∞

dC(x0) = ‖x0 − PC(x0)‖,

which entails that the sequence (PC(xn))n is bounded. Taking if necessary a subsequence,

we may suppose that PC(xn) w−→
n→∞

z for some z ∈ X. As ‖x0−PC(xn)‖ −→
n→∞

‖x0−PC(x0)‖,

having in mind the Kadec property of the norm, it suffices to prove that

‖x0 − z‖ = ‖x0 − PC(x0)‖ (27)

to get that PC(xn) ‖.‖−→
n→∞

z, and hence that z ∈ C. Then, using (27) and the fact that

PC(x0) is single-valued, we will have that PC(x0) = {z}, so PC is norm-to-norm continuous
at x0. To this end, following an idea of Borwein and Giles from [7], let us set t2n :=
‖x0 − PC(xn)‖2 − d2C(x0). If tn = 0 then PC(xn) = PC(x0) due to the single-valuedness
of PC , and there would be nothing to prove if this equality holds for infinitely many n,
so we may suppose that tn > 0 for any integer n. Fix any ε > 0. From the Fréchet
differentiability of d2C at x0 it follows that

〈∇Fd2C(x0), PC(xn)− x0〉 ≤ d2C(x0 + tn(PC(xn)− x0))− d2C(x0)

tn
+

ε

4

≤ ‖x0 + tn(PC(xn)− x0)− PC(xn)‖2 − d2C(x0)

tn
+

ε

4

≤ (1− tn)
2‖x0 − PC(xn)‖2 − d2C(x0)

tn
+

ε

4

and hence for n large enough

〈∇Fd2C(x0), PC(xn)− x0〉 ≤ ‖x0 − PC(xn)‖2 − d2C(x0)

tn
− 2‖x0 − PC(xn)‖2 +

ε

2

= tn − 2‖x0 − PC(xn)‖2 +
ε

2

≤ −2d2C(x0) + ε.

Passing to the limit, we obtain 〈∇Fd2C(x0), x0 − z〉 ≥ 2d2C(x0), or,

〈2J(x0 − PC(x0)), x0 − z〉 ≥ 2‖x0 − PC(x0)‖2,
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which entails that ‖x0 − z‖ ≥ ‖x0 − PC(x0)‖. Since ‖xn − PC(xn)‖ ≤ ‖xn − PC(x0)‖,
one has that lim inf

n→∞
‖xn − PC(xn)‖ ≤ lim

n→∞
‖xn − PC(x0)‖, and hence, by the weak lower

semicontinuity of the norm, one gets ‖x0 − z‖ ≤ ‖x0 − PC(x0)‖. Finally, ‖x0 − z‖ =
‖x0 − PC(x0)‖, that is, (27), and hence the implication (d) ⇒ (a) holds.
The implications (e) ⇒ (d) and (a) ⇒ (e) follow from Lemma 3.2 and the equivalence
(d) ⇔ (f) is a direct consequence of Theorem 2.4 of Fitzpatrick [27]. The proof of the
proposition is then complete.

In addition to Proposition 4.3 we state the following theorem providing a weak derivability
condition on dC under which PC is continuous, supposing it is nonempty-valued. It
is a direct consequence of Theorem 2.4 in Fitzpatrick [27] as observed in Corollary 2 of
Borwein, Fitzpatrick and Giles [6]. Note that in those works, the framework is beyond the
uniform convexity. Further, Fitzpatrick’s important condition of Fréchet differentiability
concerns general functions and not merely the distance functions. The result of the
theorem will be used in the proof of Theorem 4.9.

Recall that, for v ∈ X, a function f : X → R has a GÝateaux directional derivative at a
point x in the full direction v provided that the limit limt→0 t

−1[f(x + tv) − f(x)] exists
and is finite.

Theorem 4.4. Let C ⊂ X be a closed set and x ∈ X\C be such that PC(x) 6= ∅. If dC has
a GÝateaux directional derivative at x in the full direction x− p(x) for some p(x) ∈ PC(x),
then dC is Fréchet differentiable at x.

Another interest of this result will appear in the proof of Theorem 5.10.

We now proceed to establish two lemmas. The first one is a key result proved in [39,
Lemma 3.3] in the Hilbert context. The proof is valid in our setting, and we sketch the
main parts below.

Lemma 4.5. Let C be a closed subset of X. Assume that dC is Fréchet differentiable on
a neighbourhood of a point u /∈ C. Then there exists δ > 0 such that whenever u ∈ B(u, δ)
and PC(u) = x, there exists some t > 0 such that the point ut := u+ t(u− x) likewise has
PC(ut) = x.

Proof. By Propositions 4.3 and 4.2, there exists ε > 0 such that PC is single-valued and
norm-to-norm continuous on B(u, 2ε), with dC continuously Fréchet differentiable on this
ball as well. For each u ∈ B(u, ε) and each t > 0 put ut := u + t(u − PC(u)). Following
the proof of Lemma 3.3 in [39], we find out some positive numbers δ < ε and s < 1 such
that for all u ∈ B(u, δ) one has dC(u) ≥ δ, sdC(u) < δ and dC(us) > dC(u). Fix now
u ∈ B(u, δ) and consider the closed set D := {w ∈ X : dC(w) ≥ dC(us)}. As u /∈ D,

according to Lau’s theorem (see [30]) there is a sequence D 63 yn ‖.‖−→
n→∞

u with PD(yn) 6= ∅.

Choosing wn ∈ PD(yn) we have dC(wn) = dC(us) (because wn is a boundary point of D).
For all n large enough, wn ∈ B(u, 2δ) since

‖yn − wn‖ = dD(yn) ≤ ‖yn − us‖ −→
n→∞

‖u− us‖ = s‖u− PC(u)‖ = sdC(u) < δ. (28)

Consequently dC is Fréchet differentiable at wn and by (26) we have

∇FdC(wn) = J(wn − PC(wn))/dC(wn) and ‖∇FdC(wn)‖ = 1.
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Therefore, the half-space E := {v ∈ X : 〈−∇FdC(wn), v〉 ≤ 0} gives the Clarke tangent
cone to D at wn (see [14]) and hence its negative polar cone −[0,∞[∇FdC(wn) is the
Clarke normal cone to D at wn. The nonzero functional J(yn−wn) being a proximal nor-
mal functional toD at wn, it belongs to the Clarke normal cone toD at wn. Consequently,
there exists some λn > 0 such that J(yn − wn) = −λn∇FdC(wn) which entails

yn − wn = −λn(wn − PC(wn))/dC(wn) and λn = ‖yn − wn‖.

For n large enough, we have by (28) that λn < δ and hence

λn < δ ≤ dC(u) < dC(us) = dC(wn).

It follows that for αn := λn/dC(wn) we have αn ∈]0, 1[ and yn = (1− αn)wn + αnPC(wn).
Hence, PC(yn) = PC(wn) and

λn = ‖yn − wn‖ = dC(wn)− dC(yn) = dC(us)− dC(yn).

Putting tn :=
αn

1− αn

=
dC(us)− dC(yn)

dC(yn)
, we obtain wn = yn + tn(yn − PC(yn)). As (tn)n

converges to t := (dC(us) − dC(u))/dC(u) > 0, we have wn
‖.‖−→

n→∞
ut and ut ∈ B(u, 2δ)

by (28) and by the inclusion u ∈ B(u, δ). So by continuity of PC over B(u, 2δ) we get

PC(wn) ‖.‖−→
n→∞

PC(ut). But we also have PC(wn) = PC(yn) ‖.‖−→
n→∞

PC(u). Finally, for this

number t we have PC(ut) = PC(u) and hence the proof is complete.

The next lemma follows from the previous one.

Lemma 4.6. Let C ⊂ X be a closed subset of the space X and x ∈ C. If the mapping
PC is single-valued and norm-to-norm continuous in a neighbourhood U of x, then there
exists some ε > 0 such that for all x ∈ C ∩ B(x, ε) and all p ∈ NC(x) with p 6= 0 the
equality PC(x+ ε p

‖p‖) = x holds.

Proof. Let PC be single-valued and norm-to-norm continuous in B(x, δ). Take ε < δ/2
and consider any non-zero p ∈ NC(x) with ‖x − x‖ < ε. By definition of the proximal
normal cone and by Lemma 1.1, there exists λ > 0 such that PC(x + λp) = x. Set
λs := sup{λ ≤ ε : PC(x + λ p

‖p‖) = x}. By the continuity of PC on B(x, δ) we have that

PC(x + λs
p

‖p‖) = x. Suppose that λs < ε. As x + λs
p

‖p‖ belongs to the open set B(x, δ)
where dC is Fréchet differentiable according to Proposition 4.2, by Lemma 4.5 there exists
η > 0 with λs + η ≤ ε such that PC(x+ (λs + η) p

‖p‖) = x. This gives a contradiction with
the definition of λs. Hence λs = ε.

Lemma 4.6 allows us to establish the following proposition which prepares the theorem
on characterizations of prox-regularity.

Proposition 4.7. Let C ⊂ X be a closed subset of the space X. The following assertions
are equivalent:

(a) C is prox-regular at x ∈ C;
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(b) there exists ε>0 such that the condition
x=PC(u), x 6= u
0 < ‖u−x‖ < ε

}

implies that x=PC(u
′)

for u′:=x+ε u−x
‖u−x‖ ;

(c) there exists ε > 0 such that p ∈ NC(x) with x ∈ B(x, ε) and p 6= 0 imply that

PC(x+ ε
p

‖p‖
) = x.

Proof. (a)⇒ (b): If C is prox-regular at x, then PC is single valued and Hölder continuous
in a neighbourhood U of x according to Corollary 3.7. From the continuity of PC , for the

positive number ε of Lemma 4.6, there exists ε′ ∈]0, ε[ such that
x = PC(u), x 6= u
0 < ‖u− x‖ < ε′

}

implies that ‖x− x‖ = ‖PC(u)− PC(x)‖ < ε. Lemmas 4.6 and 1.1 ensure for p = u− x
that PC(x+ ε′ u−x

‖u−x‖) = x.

(b) ⇒ (c): Let us suppose that (b) holds with some ε > 0. If ‖x−x‖ < ε/2 and p ∈ NC(x)
with p 6= 0, then by definition of NC(x) and by Lemma 1.1 there exists some η ∈]0, ε/2[
such that x = PC(u), where u := x+ η p

‖p‖ . We have

‖u− x‖ ≤ ‖u− x‖+ ‖x− x‖ < ε/2 + ε/2,

and from (b), PC(x+ ε u−x
‖u−x‖) = x. Hence, one obtains (c) with ε/2.

(c) ⇒ (a): We suppose that (c) holds with some ε > 0. Let 0 6= p∗ ∈ N∗
C(x) with

‖x− x‖ < ε and ‖p∗‖ < ε. There exists u 6∈ C such that 〈 p∗

‖p∗‖ , u− x〉 = ‖u− x‖ = dC(u).

Thus, u − x ∈ NC(x) and
p∗

‖p∗‖ = J( u−x
‖u−x‖). We have by (c) that PC(x + ε u−x

‖u−x‖) = x, so

PC(x+
ε

‖p∗‖J
∗(p∗)) = x. Now, for all s ≤ 1 (since 1 ≤ ε

‖p∗‖), we have that PC(x+sJ∗(p∗)) =
x. By Definition 2.1 and by Proposition 2.2, the set C is prox-regular at x.

Now, following [38] and [39] we give a subdifferential characterization of the prox-regularity
of a set in terms of the truncated cone (see (13)) of proximal normal functionals.

Proposition 4.8. A set C ⊂ X is prox-regular at x ∈ C, if and only if, for some ε, ρ > 0,
the set-valued mapping N∗ε

C : X ⇒ X∗ that assigns to each x ∈ X the truncated cone of
proximal normal functionals N∗ε

C (x) is J-hypomonotone of degree ρ on B(x, ε).

Proof. By Proposition 2.6, if C is prox-regular at x then, for some ε > 0 and ρ > 0, the
truncated normal functional cone mapping N∗ε

C is J-hypomonotone of degree ρ on B(x, ε).
Conversely, suppose that N∗ε

C is J-hypomonotone of degree ρ. Then the argument of The-
orem 3.5 or Corollary 3.7 works as well (since it only makes use of the J-hypomonotonicity
of the truncation of ∂pf), to get that PC is single-valued and continuous on a neighbour-
hood of x. It just remains to invoke Lemma 4.6 and Proposition 4.7 to conclude.

Now we can state the theorem giving several characterizations of the prox-regularity of
a set. Recall first that the (lower) Dini subdifferential of a locally Lipschitz continuous
function f : X → R at a point x is defined by

∂−f(x) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ lim inf
t↓0

t−1[f(x+ th)− f(x)], ∀h ∈ X}.
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Theorem 4.9. Let C ⊂ X be a closed set. The following are equivalent:

(a) C is prox-regular at x;

(b) PC is single-valued and norm-to-norm 1
q
-Hölder continuous on some neighbourhood

U of the point x;

(c) PC is single-valued and norm-to-weak continuous on some neighbourhood U of x;

(d) there exists ε > 0 such that p ∈ NC(x) with x ∈ B(x, ε) and p 6= 0 implies that
PC(x+ ε p

‖p‖) = x;

(e) there exists ε>0 such that the condition
x=PC(u), x 6= u
0 < ‖u−x‖ < ε

}

implies that x=PC(u
′)

for u′=x+ε u−x
‖u−x‖ ;

(f) d2C is of class C1,α on some neighbourhood U of x with α = q−1(s− 1);

(g) dC is Fréchet differentiable on U \ C for some neighbourhood U of x;

(h) for some neighbourhood U of x, the function dC is GÝateaux differentiable on U \ C
with ‖∇GdC(x)‖ = 1 for all x ∈ U \ C;

(i) dC is Fréchet subdifferentiable on U for some neighbourhood U of x;

(j) dC is Fréchet regular on U \ C for some neighbourhood U of x;

(k) PC is nonempty-valued on U and dC is Dini subdifferentiable on U for some neigh-
bourhood U of x;

(l) the indicator function ψC is J-plr at x;

(m) there exist ε, ρ > 0 such that the truncated normal functional cone mapping N∗ε
C is

J-hypomonotone of degree ρ on B(x, ε).

If C is weakly closed, one has one more equivalent condition

(n) PC is single-valued on some neighbourhood U of x.

Proof. First we will establish all the equivalences without specifying the Hölder character
of the continuity in (b) and (f). The proof follows the scheme:

(m) ⇔ (a) ⇒ (l) ⇒ (f) ⇔ (j) ⇔ (h) ⇔ (i) ⇔ (g) ⇔ (k)

m
(c) ⇔ (b) ⇒ (d) ⇔ (e) ⇔ (a).

(m) ⇔ (a) is Proposition 4.8.
(a) ⇒ (l) is established in Proposition 2.6.
(l) ⇒ (f) follows from Corollary 3.7.
(f) ⇔ (j) ⇔ (h) ⇔ (i) ⇔ (g) is Proposition 4.3.
(g) ⇒ (k): Assume that (g) holds. This obviously ensures the Dini subdifferentiability of
dC on U \C and since one always has 0 ∈ ∂−dC(x) for all ∈ C, we obtain that dC is Dini
subdifferentiable on U. The nonvacuity of PC on U follows from the above implication (g)
⇒ (f) and from Proposition 4.2.
(k) ⇒ (g): For any x ∈ U \ C, there exists some x∗ in the Dini subdifferential ∂−dC(x)
of dC at x. Choose p(x) ∈ PC(x). By the definition of Dini subdifferential, for any ε > 0,
there is some δ > 0 such that, for any t ∈]0, δ[, one has

〈x∗, p(x)− x〉 ≤ t−1[dC(x+ t(p(x)− x))− dC(x)] + ε (29)
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and hence

〈x∗, x− p(x)〉 ≥ t−1[dC(x)− dC(x+ t(p(x)− x))]− ε

≥ t−1[‖x− p(x)‖ − ‖x+ t(p(x)− x)− p(x)‖]− ε.

Then, for any ε > 0, using the equality ∇(‖ · ‖2)(x − p(x)) = 2J(x − p(x)) and taking
some t > 0 small enough, we obtain

〈x∗, x− p(x)〉 ≥ 〈J(x− p(x))

‖x− p(x)‖
, x− p(x)〉 − 2ε

= ‖x− p(x)‖ − 2ε,

the last inequality being due the fact that 〈J(y), y〉 = ‖y‖2. Therefore,

‖x− p(x)‖ ≤ 〈x∗, x− p(x)〉 ≤ lim inf
t↓0

t−1[dC(x+ t(x− p(x))− dC(x)]

≤ lim sup
t↓0

t−1[dC(x+ t(x− p(x))− dC(x)] ≤ ‖x− p(x)‖

(the second inequality coming from x∗ ∈ ∂−dC(x)), so

lim
t↓0

t−1[dC(x+ t(x− p(x))− dC(x)] = ‖x− p(x)‖.

Further observe (as in the proof of Corollary 2 in [6]) that for each t ∈ [−1, 0[ one has
p(x) ∈ PC(x+ t(x− p(x)) and hence

t−1[dC(x+ t(x− p(x)))− dC(x)] = ‖x− p(x)‖.

So lim
t→0

t−1[dC(x+ t(x− p(x))− dC(x)] = ‖x− p(x)‖, that is, dC has a GÝateaux directional

derivative in the full direction x− p(x). Consequently, (g) follows from Theorem 4.4.
(f) ⇔ (b) is Proposition 4.2.
(b) ⇔ (c) is Lemma 4.1.
(b) ⇒ (d) is Lemma 4.6.
(d) ⇔ (e) ⇔ (a) is Proposition 4.7.

Under the additional assumption, to see that we have (n) ⇔ (c) we need to prove the
implication (n) ⇒ (c).

Let us take any u ∈ U and un
‖.‖−→

n→∞
u. By weak compactness, taking if necessary a

subsequence, we may suppose that PC(un) w−→
n→∞

v. From the weak lower semicontinuity

of the norm, we have ‖v − u‖ ≤ lim infn→∞ ‖un − PC(un)‖ and hence ‖v − u‖ ≤ dC(u).

Therefore, as C is weakly closed, v ∈ C and PC(u) = v. Thus, PC(un) w−→
n→∞

PC(u), which

gives the norm-to-weak continuity of PC on U.

To conclude, we apply Corollary 3.7 to obtain (a) ⇔ (b) ⇔ (f) but now with the Hölder
character of the continuity that holds on (possibly smaller) neighbourhood of x. The
proof is then complete.
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5. Characterizations of uniformly prox-regular sets

In this final section we proceed to the study of the global setting of positively reached
or proximally smooth set C, corresponding (see [16]) to the continuous Fréchet differen-
tiability of the distance function dC over all an open tube of uniform thickness around
the set C. We still have most of the characterizations for these sets given in [26] for finite
dimensional space and in [16] and [39] in Hilbert space. We also add the characterizations
(c), (e), and (g).

Definition 5.1. Following our definition of prox-regular set (see Definition 2.1) and mod-
ifying slightly Definition 2.4 of [39], we will say that the closed set C is uniformly r-prox-
regular if whenever x ∈ C and p∗ ∈ N∗

C(x) with ‖p∗‖ < 1, then x is the unique nearest
point of C to x+ rJ∗(p∗).

For the subset C of X, let us first recall the definitions of
the r-enlargement of C

C(r) := {x ∈ X : dC(x) ≤ r},
the open r-tube around C

UC(r) := {x ∈ X : 0 < dC(x) < r},

and let us define the set of r-distance points to C

DC(r) := {x ∈ X : dC(x) = r}.

Theorem 5.2. Let C ⊂ X be a closed set and r > 0. The following are equivalent:

(a) C is uniformly r-prox-regular;

(b) dC is continuously differentiable on UC(r) \ C;

(c) dC is Fréchet regular on UC(r) \ C;

(d) dC is Fréchet differentiable on UC(r) \ C;

(e) dC is GÝateaux differentiable on UC(r)\C with ‖∇GdC(x)‖ = 1 for all x ∈ UC(r)\C;

(f) ∂FdC is nonempty-valued at all points in UC(r);

(g) PC and ∂−dC are nonempty-valued at all points in UC(r);

(h) d2C is C1 on UC(r) with locally Hölder continuous derivative mapping;

(i) PC is single-valued and locally Hölder continuous on UC(r);

(j) PC is single-valued and norm-to-weak continuous on UC(r);

(k) For any non-zero p ∈ NC(x) with x ∈ C one has x ∈ PC(x+ r p
‖p‖);

(l) If u ∈ UC(r) and x = PC(u), then x ∈ PC(u
′) for u′ = x+ r u−x

‖u−x‖ .

If C is weakly closed, one has the additional equivalent condition

(m) PC is single-valued on UC(r).

Proof. We will follow the scheme:

(a) ⇔ (k) ⇔ (l) ⇒ (i) ⇒ (h)

⇑ ⇓
(j) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f)

m
(g) .
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(k) ⇔ (l) is obvious and here below each one will be considered.
(k) ⇒ (a) follows from Lemma 1.1.
(a) ⇒ (k): Fix any nonzero p ∈ NC(x) and take pn := p/(‖p‖ + 1

n
). For any x′ ∈ C, (a)

entails ‖x′ − (x+ rpn)‖ ≥ r‖pn‖ which yields after taking the limit ‖x′ − (x+ r p
‖p‖)‖ ≥ r.

The latter means that x ∈ PC(x+ r p
‖p‖), which is (k).

(b) ⇔ (c) ⇔ (d) ⇔ (e) ⇔ (f) follows from Proposition 4.3.
(d) ⇔ (g) results from Theorem 4.4 like in the proof of the similar equivalence in Theorem
4.9.
(b) ⇔ (j) is a consequence of Proposition 4.2 and Lemma 4.1.
(b) ⇒ (l): Let u ∈ UC(r) and x = PC(u). Since (b) holds, according to Lemma 4.5
there exists some t0 > 0 such that PC(ut) = x for all ut := u + t(u − x)/‖u − x‖ with
0 < t < t0. As in [39] one may consider the number λ0 given by the supremum over all
t ∈ [0, r − dC(u)] such that x ∈ PC(ut). Using the equivalence (note that x ∈ C and
‖x− ut‖ = dC(u) + t)

x ∈ PC(ut) ⇔ ∀x′ ∈ C, ‖x′ − ut‖ ≥ dC(u) + t,

it is easily seen that the supremum λ0 is attained. We now claim that λ0 = r − dC(u).
Assume the contrary, i.e., λ0 < r−dC(u). Then one would have on the one hand x ∈ UC(r)
and on the other hand x = PC(uλ0) because of the assumptions (b) and Proposition
4.2. Applying Lemma 4.5 again one would obtain a contradiction with the supremum
property of λ0. So the equality λ0 = r − dC(u) holds. As ut can be written in the form
ut = x+ (dC(u) + t)(u− x)/‖u− x‖, taking t = λ0 gives (l).
(l) ⇒ (i): We will proceed in five steps.

Step 1. For any x∗ ∈ N∗r
C (x) = N∗

C(x) ∩ rB∗ with x ∈ C and any α ∈]0, 1], from (k) ⇔
(l) one has PC(x+ rαJ∗x∗

‖x∗‖ ) 3 x. This means that, for any x′ ∈ C,

‖x+ rα
J∗x∗

‖x∗‖
− x‖ ≤ ‖x+ rα

J∗x∗

‖x∗‖
− x′‖.

Besides, as J = ∇(1
2
‖ · ‖2), one also has

1

2
‖x+ rα

J∗x∗

‖x∗‖
− x′‖2 + 〈J(x− x′ + rα

J∗x∗

‖x∗‖
), x′ − x〉 ≤ 1

2
‖rαJ

∗x∗

‖x∗‖
‖2.

So 〈J(J∗(x∗)− ‖x∗‖
rα

(x′ − x)), x′ − x〉 ≤ 0. It is possible to take any α in ]0, ‖x
∗‖
r

]. Hence,
whenever xi ∈ C, x∗

i ∈ N∗r
C (xi), i = 1, 2, and t ≥ 1, one has

〈J(J∗(x∗
1)− t(x2 − x1)), x2 − x1〉 ≤ 0

and 〈J(J∗(x∗
2)− t(x1 − x2)), x1 − x2〉 ≤ 0.

By adding, one obtains

〈J(J∗(x∗
1)− t(x2 − x1))− J(J∗(x∗

2)− t(x1 − x2)), x1 − x2〉 ≤ 0

which is the J-hypomonotonicity of N∗r
C of degree t for any t ≥ 1 .
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Step 2. For any α ∈]0, 1/2[, we have by step 1 and by Lemma 2.7 that the set-valued
mapping (I + J∗ ◦N∗αr

C )−1 is 1
q
-Hölder continuous on the intersection of its domain with

any bounded subset. We also have, for any r′ > 0,

PC(x) ⊂ (I + J∗ ◦N∗r′
C )−1(x) for any x ∈ UC(r

′). (30)

Indeed, for any x ∈ UC(r
′), the inclusion y ∈ PC(x) entails that J(x − y) ∈ N∗

C(y), and
‖y − x‖ < r′ so J(x − y) ∈ N∗r′

C (y). So we have that for any α ∈]0, 1/2[, PC is 1
q
-Hölder

continuous on the intersection of any bounded set with DomPC ∩ UC(αr). Then by the
arguments of step 2 in the proof of Theorem 3.5, PC is also nonempty, single-valued on
UC(αr). As α can be made as close as one wants to 1

2
, PC is nonempty, single-valued,

locally 1
q
-Hölder continuous on UC(r/2).

Step 3. Step 3 corresponds to the two following lemmas. The first one completes the
result of Lemma 3.1 of Bounkhel-Thibault [10]. As usual the line segment between two
points u, v ∈ X will be denoted by [u, v], that is, [u, v] := {tu+ (1− t)v : t ∈ [0, 1]}.
Lemma 5.3. Let C be a nonempty closed subset of a normed vector space (Y, ‖ · ‖). Let
ρ > 0 and u 6∈ C(ρ). Then the following hold:

(a) dC(u) = ρ+ dC(ρ)(u) = ρ+ dDC(ρ)(u);

(b) If u0 ∈ PC(u) and y0 ∈ [u0, u] ∩DC(ρ), then y0 ∈ PC(ρ)(u);

(c) If y ∈ PC(ρ)(u) and z ∈ PC(y), then z ∈ PC(u). Further, if PC(ρ)(u) = {y} and
z ∈ PC(y), then y ∈ [z, u] and PC(u) = {z}.

Proof. (a) For all y ∈ C(ρ)

dC(u) ≤ dC(y) + ‖u− y‖ ≤ ρ+ ‖u− y‖

hence
dC(u) ≤ ρ+ dC(ρ)(u) ≤ ρ+ dDC(ρ)(u). (31)

Fix any ε > 0 and choose uε ∈ C with ‖u − uε‖ ≤ dC(u) + ε. Since dC(uε) = 0 and
dC(u) > ρ we may choose yε ∈ [uε, u] ∩DC(ρ) and hence

dC(u) + ε ≥ ‖u− uε‖ = ‖u− yε‖+ ‖yε − uε‖ ≥ dDC(ρ)(u) + dC(yε) = dDC(ρ)(u) + ρ.

Combining this with (31) we obtain

dC(u) = ρ+ dC(ρ)(u) = ρ+ dDC(ρ)(u). (32)

(b) Assume now that u0 ∈ PC(u) and y0 ∈ [u0, u]∩DC(ρ). Then u0 ∈ PC(y0) and by (32)

‖u− y0‖+ ρ = ‖u− y0‖+ dC(y0) = ‖u− y0‖+ ‖y0 − u0‖ = ‖u− u0‖ = ρ+ dC(ρ)(u)

and hence ‖u− y0‖ = dC(ρ)(u), i.e., y0 ∈ PC(ρ)(u).
(c) Assume that y ∈ PC(ρ)(u) and z ∈ PC(y). Then

‖u− z‖ ≤ ‖u− y‖+ ‖y − z‖ = dC(ρ)(u) + dC(y) ≤ dC(ρ)(u) + ρ = dC(u)

(the last equality being due to (32)) and hence z ∈ PC(u).

Assume now that PC(ρ)(u) = {y}. Taking y′ ∈ [z, u] ∩ DC(ρ) 6= ∅, we have by (b) that
y′ ∈ PC(ρ)(u) and hence y = y′ ∈ [z, u]. If there exists z′ 6= z with z′ ∈ PC(u), then
one sees that z′ 6∈ u + [0,+∞[(z − u) and by (b) for y′′ ∈ [z′, u] ∩ DC(ρ) 6= ∅ (hence
y′′ 6= u) one would have y′′ ∈ PC(ρ)(u) and hence y′′ = y ∈ [z, u] which would contradict
z′ /∈ u+ [0,+∞[(z − u). This completes the proof of the lemma.
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Lemma 5.4. If C satisfies the assertion (l) of Theorem 5.2 with parameter r and PC is
nonempty, single-valued on UC(αr) for some α ∈]0, 1], then for any α′ ∈]0, α[, the set
C(α′r) := {x ∈ X : dC(x) ≤ α′r} satisfies (l) with parameter r(1− α′).

Proof. Take u ∈ UC(α′r)(r(1 − α′)) and put r′ := dC(u). Note that 0 < dC(α′r)(u) <
r(1 − α′) and hence by (a) of Lemma 5.3 one has α′r < dC(u) < r, which implies
in particular u ∈ UC(r). Suppose that PC(α′r)(u) = {y}. We have to prove that y ∈
PC(α′r)(y+ r(1−α′) u−y

‖u−y‖). Observing that y ∈ UC(αr), we may put z := PC(y) according

to the assumption on PC over UC(αr). By (c) of Lemma 5.3, we have z ∈ PC(u). Since
dC(z) = 0 and dC(u) > α′r, we may take y1 ∈ [z, u] ∩ DC(α

′r) 6= ∅. The assertion (b)
of Lemma 5.3 says that y1 ∈ PC(α

′r)(u) and hence y1 = y. Now, since y1 ∈ UC(r) and
z = PC(y1) we have by (l) that PC(u

′) 3 z for

u′ := z + r
y1 − z

‖y1 − z‖
= z + r

u− z

‖u− z‖
.

This entails by (b) of Lemma 5.3 again that PC(α′r)(u
′) 3 y since (recall that y = y1)

y ∈ [z, u] ∩DC(α
′r) ⊂ [z, u′] ∩DC(α

′r).

Further, since ‖u′ − y‖ = ‖u′ − z‖ − ‖y − z‖ = r − α′r (the second equality being due to
the definition of u′ and to the inclusion y ∈ DC(α

′r)) we see that

u′ = y + (r − α′r)
u− y

‖u− y‖
.

So, we obtain that C(α′r) satisfies (l) with parameter r(1 − α′), and the proof of the
lemma is complete.

Step 4. For α ∈]0, 1], let us consider the property

P(α)

{

C satisfies (l) with parameter r and
PC is single-valued, locally Hölder continuous on UC(αr).

We claim that P(α) ⇒ P(α+1
2
).

Suppose that P(α) holds. From step 3 and steps 1-2, we have that for any α′ ∈]0, α[,

PC(α′r) is single-valued, locally Hölder continuous on UC(α′r)(
r(1− α′)

2
). (33)

Take any u ∈ UC(α
′r + r(1−α′)

2
) such that r′ := dC(u) > α′r. By (a) of Lemma 5.3 we

have dC(α′r)(u) = r′ − α′r, and so

u ∈ UC(α′r)(
r(1− α′)

2
) (34)

since r′−α′r < r(1−α′)
2

because of the inclusion u ∈ UC(α
′r+ r(1−α′)

2
).We may then put y :=

PC(α′r)(u) according to (33) and put z := PC(y) according to the second assumption in
P(α). Then by (c) of Lemma 5.3 we have z = PC(u) and so PC(u) = z = PC◦PC(α′r)(u). So
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for any α′ ∈]0, α[, (33), (34), and P(α) ensure that PC is single-valued and locally Hölder

continuous on UC(α
′r+ r(1−α′)

2
)\C(α′r). By assumption it is also locally Hölder continuous

on UC(αr). So PC is single valued, locally Hölder continuous on UC(α
′r+ r(1−α′)

2
) for any

α′ ∈]0, α[ and hence also on UC(αr +
r(1−α)

2
) = UC(

α+1
2
r). This establishes the claim and

finishes the proof of step 4.

Step 5. Define (αn) by α0 = 1/2, αn+1 = (αn + 1)/2. We have αn → 1 and by step 4,
P(αn) ⇒ P(αn+1). As P(α0) is true by step 1, we have P(1), that entails (i).

(i) ⇒ (h): This implication follows from Lemma 3.2 and Remark 3.4.
(h) ⇒ (d) is obvious.

Since the additional equivalence (m) can be established like in Theorem 4.9, the proof is
now complete.

The following proposition gives the expression of the metric projection mapping in terms
of the normal cone.

Proposition 5.5. Under the assumptions of Theorem 5.2, one has for all x ∈ UC(r)

∇FdC(x) = J(x− PC(x))/dC(x) and PC(x) = (I + J∗ ◦N∗r
C )−1(x).

Proof. The equality concerning the derivative follows easily from the theorem above and
from the expression of ∇eλf(x) in Lemma 3.1. Let us prove the equality concerning the
metric projection mapping. We know by (30) that PC(x) ⊂ (I + J∗ ◦ N∗r

C )−1(x) for all
x ∈ UC(r), so it is enough to check that (I+J∗◦N∗r

C )−1 is at most single-valued on UC(r).
Suppose that y1, y2 are in (I+J∗ ◦N∗r

C )−1(x) with x ∈ UC(r), that is, J(x−yi) ∈ N∗r
C (yi),

i = 1, 2. Then PC(x) = y1 = y2 by (k).

The uniform prox-regularity also entails the J-hypomonotonicity of the truncated normal
functional cone.

Proposition 5.6. Under the assumptions of Theorem 5.2, we also have

(n) The truncated normal functional cone mapping N∗r
C is J-hypomonotone of degree t

for any t ≥ 1.

Conversely, (n) entails the assertions of Theorem 5.2 with parameter r/2 instead of r.

Proof. See steps 1 and 2 in the proof of Theorem 5.2.

The following corollary gives several characterizations of convex sets. The condition (k)
in the corollary is Vlasov’s extension (see [46]) to Banach space with rotund dual of the
known result proved by Asplund in Hilbert space (see [1]). The characterization (f)
is exactly Theorem 18 of Borwein, Fitzpatrick and Giles [6]. Theorem 18 in [6] was
established in the more general case where the dual space is merely rotund and it was, in
some sense, a generalization of Theorem 3.6 of Fitzpatrick [27] where both the norm and
the dual norm were assumed to be Fréchet differentiable away from the origins. Note also
that the characterization (h) was explicitely given by Borwein, Fitzpatrick and Giles [6,
Theorem 17] (with directional GÝateaux derivability as in Theorem 4.4 instead of the Dini
subdifferentiability), in the larger context of Banach space Y with rotund dual Y ∗. Both
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Theorems 17 and 18 in [6] are derived by the authors by proving that any closed subset
of a Banach space Y such that

lim sup
‖y‖→0

dC(x+ y)− dC(x)

‖y‖
= 1 for all x ∈ Y \ C

is almost convex and hence, according to a result due to Vlasov [46], convex whenever Y ∗

is rotund for its dual norm.

In our corollary, the requirement (X5) is imposed for a large part because of characteri-
zations (b), (i), (j), (m), (n).

Corollary 5.7. Let C ⊂ X be a closed set. The following are equivalent:

(a) C is convex;

(b) C is uniformly ∞-prox-regular, i.e., uniformly r-prox-regular for any real number
r > 0;

(c) dC is continuously differentiable on X \ C;

(d) dC is Fréchet regular on X \ C;

(e) dC is Fréchet differentiable on X \ C;

(f) dC is GÝateaux differentiable on X \ C with ‖∇GdC(x)‖ = 1 for all x ∈ X \ C;

(g) ∂FdC(x) 6= ∅ for all x ∈ X;

(h) PC(x) 6= ∅ and ∂−dC(x) 6= ∅ for all x ∈ X;

(i) d2C is C1 on X with locally Hölder continuous derivative mapping on X;

(j) PC is single-valued and locally Hölder continuous on X;

(k) PC is single-valued and norm-to-norm continuous on X;

(l) PC is single-valued and norm-to-weak continuous on X;

(m) For any p ∈ NC(x) with x ∈ C one has x ∈ PC(x+ p);

(n) If u ∈ X \ C and x = PC(u), then x ∈ PC(u
′) for u′ = x+ r(u− x) and any r > 0.

Proof. The equivalence between all the assertions from (b) to (n) is easily seen to follow
from Theorem 5.2. The implication (a) ⇒ (g) is obvious according to the convexity of
the continuous function dC under (a). By Proposition 5.6, the condition (g) entails that
N∗r

C is J-hypomonotone of degree 1 on UC(r) for any r > 0. Fix any x, y ∈ C and any
x∗ ∈ N∗

C(x), y
∗ ∈ N∗

C(y). By definition of J-hypomonotonicity of degree 1 for all s > 0
large enough

〈J [J∗(sx∗)− (y − x)]− J [J∗(sy∗)− (x− y)], x− y〉 ≥ 0,

or

〈J [J∗(x∗)− 1

s
(y − x)]− J [J∗(y∗)− 1

s
(x− y), x− y〉 ≥ 0.

Using the continuity of J and J∗ and passing to the limit when s goes to +∞ we obtain

〈x∗ − y∗, x− y〉 ≥ 0.

This means that N∗
C is monotone and hence by [18] (see also [19, 20]) the set C is convex,

that is, (a). The proof of the corollary is then complete.
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In the remainder of the paper, we will give, for an r-prox-regular set C, some properties
of the ρ-enlargement C(ρ) with ρ ∈]0, r[ and of the set of ρ-external points to C

EC(ρ) := {u ∈ X : dC(u) ≥ ρ}.

The first result concerns the proximal normal cone to the ρ-enlargement of C. In its
statement we will denote by NCl

S the Clarke normal cone to a set S and by R+ the set of
all non negative real numbers.

Proposition 5.8. Assume that C is uniformly r-prox-regular. Then, for any ρ ∈]0, r[
and any y ∈ DC(ρ),

N∗
C(ρ)(y) = NCl

C(ρ)(y) = R+∇FdC(y) ⊂ N∗
C(PC(y)).

Proof. Fix y ∈ DC(ρ). From Lemma 5.4 and Theorem 5.2, the set C(ρ) is uniformly
(r − ρ)-prox-regular and PC(ρ) is single-valued on UC(r). To see that ∇FdC(y) actually
belongs to N∗

C(ρ)(y), put

u := y + ε(y − PC(y)), (35)

where ε is small enough that dC(u) < r. As PC(u) = PC(y) by Theorem 5.2(l), we have

dC(u) = ‖u−PC(y)‖ = ‖y+ ε(y−PC(y))−PC(y)‖ = (1+ ε)‖y−PC(y)‖ = (1+ ε)ρ > ρ.

Then by Lemma 5.3(b), since PC(ρ) is single-valued on UC(r), one has y = PC(ρ)(u). So
u − y ∈ NC(ρ)(y) and hence y − PC(y) ∈ NC(ρ)(y) which entails ∇FdC(y) ∈ N∗

C(ρ)(y).

Further, as C(ρ) = {x ∈ X : dC(x) ≤ dC(y)} because y ∈ DC(ρ), we know by Clarke [14,
Theorem 2.4.7 and Corollary 1] that NCl

C(ρ) = R+∇FdC(y) and hence

R+∇FdC(y) ⊂ N∗
C(ρ)(y) ⊂ NCl

C(ρ)(y) = R+∇FdC(y).

So it remains to see that the inclusion R+∇FdC(y) ⊂ N∗
C(PC(y)) follows from ∇FdC(y) =

y − PC(y)

‖y − PC(y)‖
∈ N∗

C(PC(y)).

Before establishing the second result, let us prove the following lemma which has its own
interest.

Lemma 5.9. Assume that C is uniformly r-prox-regular. Then for any ρ ∈]0, r] and
y ∈ UC(ρ) one has

dC(y) + dEC(ρ)(y) = ρ. (36)

Proof. Fix y ∈ UC(ρ) and put x := PC(y) according to (i) of Theorem 5.2. Then for
u := x+ρ y−x

‖y−x‖ one has x ∈ PC(u) by Theorem 5.2(k) and hence u ∈ DC(ρ) ⊂ EC(ρ) and

dC(y) + dEC(ρ)(y) ≤ ‖y − x‖+ ‖y − u‖ = ‖u− x‖ = ρ. (37)

For any z ∈ EC(ρ) we have

‖z − y‖ ≥ ‖z − PC(y)‖ − ‖y − PC(y)‖ ≥ dC(z)− dC(y) ≥ ρ− dC(y)

hence
dEC(ρ)(y) ≥ ρ− dC(y). (38)

It follows from (37) and (38) that dC(y) + dEC(ρ)(y) = ρ.
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From this lemma we see, on the one hand, through Theorem 5.2(d) that if C is uniformly
r-prox-regular, then for any ρ ∈]0, r[, the set EC(ρ) is uniformly ρ-prox-regular, because
dEC(ρ)(.) = ρ− dC(.) and UC(ρ) = UEC(ρ)(ρ). On the other hand, the lemma allows us to
retreive the following characterization of uniform r-prox-regularity given by Clarke, Stern
and Wolenski [16] in the context of Hilbert space. Their proof is different and it relies on
the analysis of an appropriate infimum value function. In our characterization below, the
additional nonvacuity of PC(y) is not required (compare with [16, Theorem 4.1(c)]).

Theorem 5.10. A closed set C is uniformly r-prox-regular for some r > 0 if and only if

dC(y) + dEC(r)(y) = r for all y ∈ UC(r). (39)

Proof. The fact that (39) is implied by the uniform r-prox-regularity of C follows from
Lemma 5.9 with ρ = r. Assume now that (39) holds and consider any y ∈ UC(r) for which
PC(y) is a singleton, say PC(y) = x. Then, for any y′ ∈]x, y[, one has PC(y

′) = x. This

yields for any non zero t ∈]− 1, ‖y−y′‖
‖y′−x‖ [

t−1[dC(y
′ + t(y′ − x)))− dC(y

′)]

= t−1[‖y′ + t(y′ − x)− x‖ − ‖y′ − x‖] = ‖y′ − x‖,

which entails that dC has a GÝateaux directional derivative in the full direction y′ − x and
hence by Theorem 4.4 the function dC is Fréchet differentiable at y′. Thus by (39) the
function dEC(r) is also differentiable at y′. We then deduce (see the formula for ∇eλf in
Lemma 3.1) that PEC(r)(y

′) is a singleton that will be denoted by u′. Using successively
the inclusion u′ ∈ DC(r) and (39) we obtain

r ≤ ‖x− u′‖ ≤ ‖y′ − x‖+ ‖y′ − u′‖ = r,

so y′ ∈]x, u′[ (see (4)) and PC(u
′) 3 x. By Theorem 5.2(l), this means that C is uniformly

r-prox-regular.
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