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It is well known that the interior of the domain of a maximal monotone operator is convex, and coincides
with the core of its convex hull. In fact this is also true for the interior of the difference of the domains
of two maximal monotone operators S and T . Recently, Borwein [1, Th. 19] used the condition that the
origin is in the core of the convex hull of the difference of the graphs of S and −T in order to obtain
that the origin is in the image of S + T . In this short note we show that gphS − gph(−T ) has similar
properties to domS − domT .

Throughout this note X is a reflexive Banach space and X∗ is its topological dual. The
coupling (pairing) function on X×X∗ is denoted by c; so c(x, x∗) := 〈x, x∗〉 := x∗(x). We
identify the dual of X ×X∗ with X∗ ×X by the pairing

〈(x, x∗), (y∗, y)〉 := 〈x, y∗〉+ 〈y, x∗〉 .

The class of maximal monotone operators S : X ⇒ X∗ is denoted by M(X). The domain,
image and graph of S ∈ M(X) are defined as usual and are denoted by domS, ImS and
gphS, respectively. We also use the usual notation from convex analysis for functions f ,
like dom f (domain), f ∗ (conjugate), ∂f (subdifferential), cof (convex lsc envelope); ιA
denotes the indicator function of A (that is ιA is 0 on A and +∞ outside A). To S we
associate the functions cS := c + ιgphS, the Fitzpatrick function ϕS : X × X∗ → R :=
R ∪ {−∞,+∞}, that is,

ϕS(x, x
∗) := sup{〈x, u∗〉+ 〈u, x∗〉 − 〈u, u∗〉 | (u, u∗) ∈ gphS} (x, x∗) ∈ X ×X∗,

and ψS := co cS; the function ϕS was introduced in [2]. In fact ϕS is the transpose
(denoted by >) of the conjugate of cS and ψS is the transpose of the conjugate of ϕS, that
is, the biconjugate of cS. It is known (see [3], [4]) that c ≤ ϕS ≤ ψS for any S ∈ M(X).
We call a representative of S ∈ M(X) a lsc convex function f : X ×X∗ → R such that
f ≥ c, f ∗ ≥ c> and

gphS = {(x, x∗) ∈ X ×X∗ | f(x, x∗) = 〈x, x∗〉}. (1)

By [4, Prop. 2.6], the lsc convex function f : X×X∗ → R is a representative of S ∈ M(X)
if and only if ϕS ≤ f ≤ ψS; in particular, ϕS and ψS are representatives of S. It follows
that f ∗> is a representative of S when f is so.

In the sequel, for a subset A of a normed vector space Z, we use the notation clA,
intA, affA, coA, coreA, icrA for the closure, interior, affine hull, convex hull, core
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(or algebraic interior), intrinsic core (or relative algebraic interior) of A, respectively;
moreover, coA := cl(coA) and affA = cl(affA). By icA we mean icrA when affA is
closed and ∅ (the empty set) otherwise. So, when we write a ∈ icA we mean that affA is
closed and a ∈ icrA. Note that for a convex set A, a ∈ icA if and only if R+(A− a) is a
closed linear space.

The next result extends slightly (with a very similar proof) Borwein’s Theorem 19 in
[1]. Here, for g : X × X∗ → R we denote by ĝ the function on X × X∗ defined by
ĝ(x, x∗) := g(x,−x∗). Note that

ĝ∗(x∗, x) = g∗(x∗,−x) ∀(x, x∗) ∈ X ×X∗. (2)

Lemma 1. Let f, g be representatives for S, T ∈ M(X), respectively. If (0, 0) ∈ ic(dom f
− dom ĝ) then 0 ∈ Im(S + T ).

Proof. We have f, g ≥ c and f ∗, g∗ ≥ c>; moreover,

gphS = {(x, x∗) | f(x, x∗) = 〈x, x∗〉} = {(x, x∗) | f ∗(x∗, x) = 〈x, x∗〉},

and similarly for T . Of course,

f(x, x∗) + ĝ(x, x∗) = f(x, x∗) + g(x,−x∗) ≥ 〈x, x∗〉+ 〈x,−x∗〉 = 0

for every (x, x∗) ∈ X×X∗, that is inf(f + ĝ) ≥ 0. Because (0, 0) ∈ ic(dom f −dom ĝ), the
Fenchel duality theorem (see f.i. [5, Cor. 2.8.5]) yields some (u, u∗) ∈ X ×X∗ such that
f ∗(u∗, u) + ĝ∗(−u∗,−u) ≤ 0, that is, by (2), f ∗(u∗, u) + g∗(−u∗, u) ≤ 0. Since f ∗ ≥ c>

and g∗ ≥ c>,
0 ≤ 〈u, u∗〉+ 〈u,−u∗〉 ≤ f ∗(u∗, u) + g∗(−u∗, u) ≤ 0,

which yields f ∗(u∗, u) = 〈u, u∗〉 and g∗(−u∗, u) = 〈u,−u∗〉. Therefore u∗ ∈ S(u) and
−u∗ ∈ T (u), and so 0 ∈ Im(S + T ).

Note that
x∗ ∈ Im(S + T ) ⇐⇒ (0, x∗) ∈ gphS − gph(−T ). (3)

Hence the conclusion of Lemma 1 can be written as (0, 0) ∈ gphS − gph(−T ). In fact,
as we shall see in Theorem 3 below, the conclusion of Lemma 1 can be replaced by
(0, 0) ∈ ic(gphS − gph(−T )).

Let us establish the following lemma.

Lemma 2. Let f, g be representatives for S, T ∈ M(X), respectively. Then

ic(dom f − dom ĝ) ⊂ gphS − gph(−T ) ⊂ co (gphS − gph(−T )) ⊂ dom f − dom ĝ. (4)

Proof. The second inclusion is obvious. From (1) we obtain gphS ⊂ dom f and gph(−T )
⊂ dom ĝ. Since dom f − dom ĝ is convex, the third inclusion follows.

Let (u, u∗) ∈ ic(dom f −dom ĝ) and take gphS0 := gphS− (u, u∗). Note that S0 ∈ M(X)
and the function h defined by

h(x, x∗) := f(x+ u, x∗ + u∗)− 〈x, u∗〉 − 〈u, x∗〉 − 〈u, u∗〉
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for (x, x∗) ∈ X × X∗ is a representative for S0 (as a simple computation shows). Since
domh = dom f − (u, u∗), we have (0, 0) ∈ ic(domh − dom ĝ). From Lemma 1 and the
equivalence (3) we obtain that (0, 0) ∈ gphS0 − gph(−T ), and so, (u, u∗) ∈ gphS −
gph(−T ).

Theorem 3. Let S, T ∈ M(X). Then

ic(gphS − gph(−T )) = ic
(

co(gphS − gph(−T ))
)

= ic
(

domψS − dom ̂ψT

)

. (5)

Moreover, if f and g are representatives for S and T respectively, and ic(dom f − dom ĝ)
is nonempty then

ic(gphS − gph(−T )) = ic(dom f − dom ĝ). (6)

Proof. Let first f and g be representatives for S and T, respectively, with ic(dom f −
dom ĝ) nonempty. Taking into account that for a convex set A with icA 6= ∅ we have
aff(icA) = affA, from (4) we obtain

ic(gphS − gph(−T )) = ic(co(gphS − gph(−T ))) = ic(dom f − dom ĝ).

In particular (6) holds. Since ψS and ψT are representatives for S and T , from the

preceding result we get (5) when ic(domψS−dom ̂ψT ) is nonempty; in particular ic(gphS−
gph(−T )) and ic(co(gphS − gph(−T ))) are nonempty in this case. So, in order to have

(5) it is sufficient to prove that ic(domψS − dom ̂ψT ) is nonempty when ic (co(gphS−
gph(−T ))) is so, because it is clear that ic(gphS− gph(−T )) ⊂ ic(co(gphS− gph(−T ))).
For this purpose just note that from the definition of ψS we have gphS ⊂ domψS ⊂
co(gphS). Hence

gphS − gph(−T ) ⊂ co(gphS − gph(−T )) ⊂ domψS − dom ̂ψT ⊂ co(gphS − gph(−T )),
(7)

and so

aff (gphS − gph(−T )) = aff (co (gphS − gph(−T ))) ⊂ aff
(

domψS − dom ̂ψT

)

⊂ aff (gphS − gph(−T )) . (8)

Thus, if ic(co(gphS − gph(−T ))) is nonempty then aff (gphS − gph(−T )) is closed, and
so the inclusions in (8) become equalities; the claim follows immediately from (7).

Corollary 4. Let f, g be representatives for S, T ∈ M(X). If (0, x∗) ∈ ic(dom f −dom ĝ)
then x∗ ∈ Im(S + T ). Hence S + T is surjective whenever {0}×X∗ ⊂ ic(dom f − dom ĝ).

Proof. The conclusion follows immediately from Theorem 3 and (3).

From Theorem 3 we obtain that ic(gphS − gph(−T )) is a convex set for any maximal
monotone operators S and T .

Corollary 5. Let S, T ∈ M(X) be such that ic(gphS − gph(−T )) is nonempty. Then

cl(gphS − gph(−T )) = co(gphS − gph(−T )) = cl
(

domψS − dom ̂ψT

)

.
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Proof. From the preceding theorem we get

ic(domψS − dom ̂ψT ) ⊂ gphS − gph(−T ) ⊂ co (gphS − gph(−T )) ⊂ domψS − dom ̂ψT .

Because cl(icA) = clA for a convex set A with icA 6= ∅, the conclusion follows.

Taking gphT := {0} ×X∗ in Theorem 3 and Corollary 5 we recover the following known
result.

Corollary 6. Let S ∈ M(X). Then ic(domS) = ic(co(domS)). Moreover, if these sets
are nonempty then cl(domS) = co(domS).

When we deal with the core instead of the intrinsic core, in Theorem 3 we can use arbitrary
representatives of S and T .

Corollary 7. Let S, T ∈ M(X) have the representatives f, g ∈ Γ(X ×X∗). Then

core(gphS − gph(−T )) = core (co(gphS − gph(−T ))) = core(dom f − dom ĝ). (9)

In particular core(gphS − gph(−T )) = core(domϕS − dom ϕ̂T ).

Proof. Of course, the inclusions

gphS − gph(−T ) ⊂ co(gphS − gph(−T )) ⊂ dom f − dom ĝ

provide the corresponding inclusions in (9). If core(dom f − dom ĝ) is empty then (9)
holds. Because icA = coreA when coreA 6= ∅, if core(dom f − dom ĝ) is nonempty, then
ic(dom f − dom ĝ) = core(dom f − dom ĝ) 6= ∅, and so, by Theorem 3, (5) and (6) hold.
Moreover aff(dom f − dom ĝ) = X ×X∗, and so (9) holds, too.

The preceding result shows that the interiority conditions in the hypothesis of [1, Th. 19]
are equivalent.

Open problem. Let S, T ∈ M(X). Is the implication

ic(co(gphS − gph(−T ))) 6= ∅ =⇒ ic(domϕS − dom ϕ̂T ) 6= ∅

true?

Of course, as seen in Corollary 7, the answer is affirmative when aff(gphS − gph(−T )) =
X ×X∗. It is also positive when dimX < ∞. In fact the answer is positive if and only if
domϕS − dom ϕ̂T ⊂ aff(gphS − gph(−T )).
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