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1. Introduction

It has been shown by S. Fitzpatrick in [15] that a clever modification of the definition
of the local Lipschitz constant (or rate or rank) of a real-valued function yields striking
consequences in terms of relationship with Fréchet differentiability. A further change
introduced by J. Borwein, S. Fitzpatrick and J. Giles in [8] has a close bearing on GÝateaux
differentiability. Both studies lead to interesting results about distance functions and
continuity of metric projections on closed subsets of Banach spaces.

The present note gives a further twist to this topic. We introduce one-sided variants of
the Fitzpatrick’s rate which are related to subdifferentiability properties rather than dif-
ferentiability. We also put in light a connection with the notion of slope which has proved
to be a valuable tool for metric estimates in connection with the Ekeland’s variational
principle. In particular this notion gives a simple approach to a study of conditioning of
functions, error bounds, fixed point results: see [3], [4], [16].

We illustrate our results by an application to distance functions and best approximations,
an important topic; see [7]-[8], [14], [15], [19]-[24]... for related contributions.

2. Some unilateral rates

Let X be a normed vector space with unit sphere SX := {x ∈ X : ‖x‖ = 1} and let
f : X → R∞ := R∪{+∞} be a function whose domain dom f := {x ∈ X : f(x) ∈ R} is
some neighborhood X0 of a point x ∈ X. The well-known Lipschitz rate of f around x is

Lf (x) := lim sup
y,z→x

|f(y)− f(z)|
‖y − z‖

= inf
r>0

Lf (x, r)
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with

Lf (x, r) := sup{|f(y)− f(z)|
‖y − z‖

: y, z ∈ B(x, r)},

where B(x, r) denotes the open ball with center x and radius r and where by convention
we set 0

0
= 0 in order to simplify formulas. Given q ∈ R+, we define the quasi-stability

rate of f at x and the q-quasi-stability rate of f at x by

Qf (x) := inf
q>0

Qf,q(x), Qf,q(x) := inf
r>0

Qf,q(x, r)

with

Qf,q(x, r) := sup{|f(y)− f(z)|
‖y − z‖

: y, z ∈ B(x, r), ‖z − x‖ ≤ q ‖y − x‖}.

As observed by an anonymous referee, for q ≥ 1, one has Qf,q(x, r) = Lf (x, r), Qf,q(x) =
Lf (x) by symmetry. For q = 1/2 one gets the Fitzpatrick rate Nf (x) of f at x. For q = 0
one gets the Stepanov rate, or stability rate of f at x :

Sf (x) := lim sup
y→x

|f(y)− f(x)|
‖y − x‖

which plays an important role in sensitivity analysis (see [17], [18] for instance and for a
pioneering study [13]).

A one-sided version of the preceding rate is the slope of f at x given by

S−
f (x) := |∇| (f, x) := lim sup

y→x

(f(x)− f(y))+
‖x− y‖

(where r+ stands for max(r, 0) for r ∈ R), often denoted by |∇f | (x) (a confusing notation
since f is not required to be differentiable at x). As mentioned above, this notion is
an extremely useful tool in nonlinear and nonsmooth analysis. It gives an incentive to
introduce

Q−
f (x) := inf

q>0
Q−

f,q(x), Q+
f (x) := inf

q>0
Q+

f,q(x),

where

Q−
f,q(x) := lim sup

y,z→x, ‖z−x‖≤q‖y−x‖

(f(z)− f(y))+
‖y − z‖

:= inf
r>0

Q−
f,q(x, r),

Q+
f,q(x) := lim sup

y,z→x, ‖z−x‖≤q‖y−x‖

(f(y)− f(z))+
‖y − z‖

:= inf
r>0

Q+
f,q(x, r),

with

Q−
f,q(x, r) := sup{

(f(z)− f(y))+
‖y − z‖

: y, z ∈ B(x, r), ‖z − x‖ ≤ q ‖y − x‖},

Q+
f,q(x, r) := sup{

(f(y)− f(z))+
‖y − z‖

: y, z ∈ B(x, r), ‖z − x‖ ≤ q ‖y − x‖}.

Clearly Q+
f,q(x) := Q−

−f,q(x), Q
+
f (x) := Q−

−f (x) and Qf (x) = max(Q−
f (x), Q

+
f (x)). The

upper slope S+
f (x) := S−

−f (x) = Q+
f,0(x) can play a role for maximization problems but it

seems that it has not yet been introduced.

Let us note the following obvious lemma for later use.
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Lemma 2.1. For any q ∈ R+, the rate Q−
f,q(x) is the infimum of the set of nonnegative

real numbers m for which there exists some δ > 0 such that f(z) − f(y) ≤ m ‖y − z‖
whenever y, z ∈ B(x, δ) satisfy ‖z − x‖ ≤ q ‖y − x‖ . Moreover, one has

S−
f (x) ≤ Q−

f (x) ≤ Q−
f,q(x) ≤ Lf (x), S+

f (x) ≤ Q+
f (x) ≤ Q+

f,q(x) ≤ Lf (x)

and if q ∈ [0, 1/2] one has Q−
f (x) ≤ Q−

f,q(x) ≤ Nf (x) ≤ Lf (x).

Another comparison can be given for a calm function, i.e. a function f such that S−
f (x) <

+∞.

Lemma 2.2. Let f : X → R∞ be calm at x. Then S+
f (x) = Q+

f (x).

Proof. Since S+
f (x) ≤ Q+

f (x), it suffices to prove that assuming S+
f (x) < Q+

f (x) leads to

a contradiction. Let b > S−
f (x), so that there exists ρ > 0 such that, for every z ∈ B(x, ρ),

f(z)− f(x) ≥ −b ‖z − x‖ .

Given c, c′ ∈ (S+
f (x), Q

+
f (x)) with c′ < c, and a sequence (qn) → 0+, we can find sequences

(yn), (zn) → x such that ‖zn − x‖ ≤ qn ‖yn − x‖ and

f(yn)− f(zn) ≥ c ‖yn − zn‖ > 0.

Then, for n large enough, we have c− qn(b+ c) ≥ c′, hence

f(yn)− f(x) ≥ (f(yn)− f(zn)) + (f(zn)− f(x))

≥ c ‖yn − zn‖ − b ‖zn − x‖
≥ c ‖yn − x‖ − (b+ c) ‖zn − x‖
≥ (c− qn(b+ c)) ‖yn − x‖ ≥ c′ ‖yn − x‖ ,

a contradiction with the definition of S+
f (x).

A comparison with the rate

Pf (x) := sup
w∈X

sup
u∈SX

lim sup
t→0+

f(x+ tw + tu)− f(x+ tw)

t

introduced in [8] is not as obvious.

Lemma 2.3. For any function f and any x in the interior of its domain, one has

Pf (x) ≤ sup
0<q≤1

Qf,q(x) = Qf,∞(x) := sup
q∈R+

Qf,q(x) = Lf (x).

Proof. The last equality is obvious. The first equality is an easy consequence of the
symmetry of the roles of y and z in the definition of Qf,q(x).

Given w ∈ X, u ∈ SX := {v ∈ X : ‖v‖ = 1}, with w + u 6= 0, let q > 0 be such that
‖w‖ ≤ q ‖w + u‖ ; then, for each r > 0 one has

lim sup
t→0+

f(x+ tw + tu)− f(x+ tw)

t
≤ Qf,q(x, r),



842 J.-P. Penot / The Fitzpatrick Rate, the Stepanov Rate, the Lipschitz Rate and ...

hence

lim sup
t→0+

f(x+ tw + tu)− f(x+ tw)

t
≤ Qf,q(x) ≤ Qf,∞(x).

When w + u = 0, for all q > 0, we have

lim sup
t→0+

f(x+ tw + tu)− f(x+ tw)

t
≤ Q−

f,q(x) ≤ Qf,∞(x).

Taking the supremum over w ∈ W, u ∈ SX , we get Pf (x) ≤ Qf,∞(x).

The example of the function f : R → R given by f(0) = 0, f(t) = t sin(1/t) shows that
one may have Qf,q(x) 6= Lf (x) for q = 1/2, i.e. Nf (x) 6= Lf (x) ([15]). The following
example shows that for p, q ∈ (0, 1), p 6= q, one may have Qf,p(x) 6= Qf,q(x), what answers
a question of a referee.

Example. Let X := R, let p, q ∈ (0, 1), p < q, and let (tn) be a sequence of positive real
numbers such that tn+1 ≤ ptn for all n. Given c ∈ (0,+∞), let f : R → R be defined by
f(t) := 0 for t ∈ (−∞, 0]∪ [t0,+∞) and t ∈ (ptn, qtn) for n ∈ N and f(t) := c(t− qtn) for
t ∈ [qtn, tn]. Then, for every r > 0, one has Qf,q(0, r) = c and Qf,p(0, r) = c(1− p)−1(1−
q) < c, hence Qf,q(0) > Qf,p(0). One can slightly modify f to make it continuous.

Example. The preceding example also shows that one may have Sf (0) = c(1 − q) <
Qf,p(0) for p ∈ (0, q).

3. Relationships with derivatives and subdifferentials

It is the purpose of this section to delineate links between the quasi-stability rates we
defined and differentiability properties. More precisely, assuming differentiability prop-
erties on the norm of X, we wish to get differentiability of a function f at some x ∈ X
using estimates on its quasi-stability rate at x. In order to make as weak assumptions as
possible, we avoid the directional differentiability hypothesis made in [15] by using the
(radial) Dini derivatives of f at x which always exist. Recall that the lower and upper
Dini derivatives of f at x in the direction u ∈ X are given by

D−f(x, u) := lim inf
t→0+

f(x+ tu)− f(x)

t
, D+f(x, u) := lim sup

t→0+

f(x+ tu)− f(x)

t
.

When f is locally Lipschitz around x, for every u ∈ X, the lower Dini derivativeD−f(x, u)
coincides with the contingent or lower Hadamard derivative of f at x in the direction u
given by

df(x, u) := lim inf
(t,v)→(0+,u)

f(x+ tv)− f(x)

t
.

Recall that the contingent or Hadamard subdifferential of f at x is given by

∂f(x) := {x∗ ∈ X∗ : ∀u ∈ X df(x, u) ≥ 〈x∗, u〉},

while the firm or Fréchet subdifferential of f at x is defined by

∂Ff(x) := {x∗ ∈ X∗ : lim inf
u→0

f(x+ u)− f(x)− 〈x∗, u〉
‖u‖

≥ 0}.
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These two subdifferentials are special instances of subdifferentials associated with bornolo-
gies (see [9]). Recall that a bornology in X is a covering B of X by bounded subsets. We
may assume that B is hereditary (for C ⊂ B with B ∈ B one has C ∈ B) and stable
by finite unions. Then one defines the B-subdifferential of f at x as the set ∂Bf(x) of
x∗ ∈ X∗ such that for each B ∈ B and each ε > 0 one can find τ > 0 such that

∀t ∈ (0, τ),∀v ∈ B 〈x∗, tv〉 − tε ≤ f(x+ tv)− f(x).

Taking for B the whole family of bounded subsets one gets the Fréchet bornology and
∂Bf(x) = ∂Ff(x). Other interesting choices are the families of compact subsets of X (the
Hadamard bornology), the family of weakly compact subsets of X and the family of finite
subsets of X (the GÝateaux bornology). Recall also that f is said to be B-differentiable
at x if there exists some x∗ ∈ X∗ such that x∗ ∈ ∂Bf(x) ∩ (−∂B(−f)(x)), i.e. if for each
B ∈ B and each ε > 0 one can find τ > 0 such that

∀t ∈ (0, τ),∀v ∈ B |f(x+ tv)− f(x)− 〈x∗, tv〉| ≤ tε.

For the four choices of B just described, this definition corresponds to Fréchet, Hadamard,
weak Hadamard and GÝateaux differentiability respectively.

The following proposition extends [15, Theorem 2.2] which deals with the case q = 1/2;
the arguments are similar.

Proposition 3.1.

(a) For every u ∈ SX one has D+f(x, u) ≤ Q+
f (x) and −D−f(x, u) ≤ Q−

f (x).

(b) For any bornology B on X, one has

sup{‖x∗‖ : x∗ ∈ ∂Ff(x)} ≤ sup{‖x∗‖ : x∗ ∈ ∂Bf(x)} ≤ Q+
f (x).

(c) Suppose f is Fréchet differentiable at x. Then, for every q ∈ (0, 1), one has

Qf (x) = Qf,q(x) = Q+
f,q(x) = Q−

f,q(x) = Q+
f (x) = Q−

f (x) = ‖f ′(x)‖ .

Proof. (a) Given u ∈ SX , the first inequality follows by taking the infimum over q > 0,
r > 0 in the relation

sup
0<t<r

f(x+ tu)− f(x)

t
≤ Q+

f,q(x, r).

The second one follows:

−D−f(x, u) = D+(−f)(x, u) ≤ Q+
−f (x) = Q−

f (x).

(b) The first inequality stems from the inclusion ∂Ff(x) ⊂ ∂Bf(x); the second one is a
consequence of (a) and of the relation 〈x∗, u〉 ≤ D+f(x, u) ≤ Q+

f (x) for each u ∈ SX .

(c) Since ‖f ′(x)‖ = sup{f ′(x)u : u ∈ SX} and f ′(x)u = D+f(x, u) ≤ Q+
f (x), for every

q ∈ R+ one has ‖f ′(x)‖ ≤ Q+
f (x) ≤ Qf,q(x). In order to prove the reverse inequalities, let

us associate with every ε > 0 some δ := δ(ε) > 0 such that for every w ∈ B(x, δ) one has

|f(w)− f(x)− f ′(x)(w − x)| ≤ ε ‖w − x‖ .
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Then, given q ∈ (0, 1), for every y, z ∈ B(x, δ) satisfying ‖z − x‖ ≤ q ‖y − x‖ one has

|f(y)− f(z)− f ′(x)(y − x) + f ′(x)(z − x)| ≤ ε ‖y − x‖+ ε ‖z − x‖ . (1)

Now the triangle inequality ensures that

‖z − x‖ ≤ q ‖y − x‖ ≤ q ‖y − z‖+ q ‖z − x‖ ,

hence ‖z − x‖ ≤ (1− q)−1q ‖y − z‖ and

‖y − x‖ ≤ ‖y − z‖+ ‖z − x‖ ≤ (1− q)−1 ‖y − z‖ .

From (1) it ensues that

|f(y)− f(z)| ≤ |f ′(x)(y − z)|+ ε ‖y − x‖+ ε ‖z − x‖
≤ ‖f ′(x)‖ ‖y − z‖+ ε(1 + q)(1− q)−1 ‖y − z‖ .

Therefore Qf,q(x) ≤ ‖f ′(x)‖ by taking the quotient by ‖y − z‖, the supremum over y, z
and then the infimum over ε > 0. Finally, since −f is also Fréchet differentiable at x, one
has ‖f ′(x)‖ = ‖−f ′(x)‖ = Q+

−f (x) = Q−
f (x).

The inequality in (b) may be strict: for f : R → R given by f(0) = 0 and f(x) =
|x sin(1/x)| for x ∈ R\{0}, one has ∂f(0) = {0} and Q+

f (0) ≥ Sf (0) = 1.

Corollary 3.2. Suppose X is the dual of some normed vector space W, f is Fréchet
differentiable at x and f ′(x) belongs to W ⊂ X∗. Then, there exists some u ∈ SX such
that Qf (x) = f ′(x)(u).

Proof. The result follows from the equality Qf (x) = ‖f ′(x)‖ and from the fact that f ′(x)
attains its supremum on the unit sphere.

The theorem which follows is inspired by [15, Thm. 2.4]. However, it has a one-sided
character and the directional differentiability assumption on the function f is relaxed.
It has been pointed to us by a referee that both these features are present in [6] which
also contains a corresponding result in terms of the upper Dini derivative and the upper
B-derivative. However, these results are not couched in terms of the Fitzpatrick constant
Nf (x) nor of its one-sided variants Q+

f,q(x).

Theorem 3.3. Suppose that for some x ∈ X and some u ∈ SX , q ∈ (0, 1] one has
D−f(x, u) ≥ Q+

f,q(x) and the norm is B-differentiable at u with derivative u∗. Then f is

B-subdifferentiable at u with Q+
f,q(x)u

∗ ∈ ∂Bf(x).

Proof. Letm := Q+
f,q(x) ≤ D−f(x, u). Given ε > 0 andB ∈ B, let β ≥ sup{‖b‖ : b ∈ B},

β ≥ 1. Since the norm is B-differentiable at u with derivative u∗, we can find γ ∈ (0, 1/β)
such that

∀v ∈ B,∀λ ∈ [−γ, γ] ‖u+ λv‖ − ‖u‖ ≤ 〈u∗, λv〉+ ε |λ| . (2)

Since m + εγq > Q+
f,q(x) there exists r > 0 such that m + εγq > Q+

f,q(x, r): then, for

y, z ∈ B(x, r) with ‖z − x‖ ≤ q ‖y − x‖ one has

f(z)− f(y) ≥ −(m+ εγq) ‖y − z‖ . (3)
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Let δ ∈ (0, r] be such that for s ∈ [0, δ] one has

f(x+ su)− f(x) ≥ sD−f(x, u)− εγqs ≥ ms− εγqs. (4)

Then, for v ∈ B, t ∈ (0, qγδ], setting s := q−1γ−1t ≤ δ, one has λ := s−1t = qγ ≤ γ,

‖su− tv‖ ≤ s(1 + s−1t ‖v‖) ≤ s(1 + βγ) ≤ 2s, ‖tv‖ ≤ qsγβ ≤ qs = q ‖su‖ ≤ r,

hence, for y := x+ su, z := x+ tv = x+ γqsv, by (2), (3) and (4),

f(x+ tv)− f(x) ≥ f(x+ tv)− f(x+ su) + f(x+ su)− f(x)

≥ −(m+ εγq) ‖su− tv‖+ms− εγqs

≥ −ms
∥

∥u− s−1tv
∥

∥− εγq ‖su− tv‖+ms− εγqs

≥ −ms(1− 〈u∗, s−1tv〉+ εs−1t)− 2εγqs+ms− εγqs

≥ 〈mu∗, tv〉 − (m+ 3)εt.

Since ε > 0 is arbitrary, these inequalities show that mu∗ ∈ ∂Bf(x).

It would be of interest to know whether one can replace Q+
f,q(x) by Q+

f (x) in the preceding
result.

Let us state two special cases of interest. In the first one we use the fact that since the
norm is Lipschitzian, GÝateaux differentiability and Hadamard differentiability coincide
for such a function.

Corollary 3.4. Suppose that for some x ∈ X, q ∈ (0, 1] and some u ∈ SX one has
D−f(x, u) ≥ Q+

f,q(x) and the norm is GÝateaux differentiable at u with derivative u∗. Then

f is Hadamard subdifferentiable at u with Q+
f,q(x)u

∗ ∈ ∂f(x).

Corollary 3.5. Suppose that for some x ∈ X, and some u ∈ SX one has D−f(x, u) ≥
Q+

f,q(x) and the norm is Fréchet differentiable at u with derivative u∗. Then f is Fréchet

subdifferentiable at u with Q+
f,q(x)u

∗ ∈ ∂Ff(x).

A simplified subdifferentiability criterion is given in the following statement. It is a
consequence of the two preceding statements since for q ∈ (0, 1] one has Lf (x) ≥ Qf,q(x) ≥
Q+

f,q(x).

Corollary 3.6. Suppose f is Lipschitzian with rate λ around x and there exists u ∈ SX

such that D−f(x, u) = λ. If the norm of X is Fréchet (resp. GÝateaux) differentiable at u,
then f is Fréchet (resp. Hadamard) subdifferentiable at u.

The following corollary includes [15, Thm. 2.4] as the special case q = 1/2, B being
the Fréchet bornology. Here no preliminary directional differentiability assumption is
imposed.

Corollary 3.7. Suppose that for some x ∈ X, q ∈ (0, 1] and some u, v ∈ SX one has
D−f(x, u) ≥ Q+

f,q(x), D+f(x, v) ≤ −Q−
f,q(x) and the norm is B-differentiable at u, v.

Then f is B-differentiable at x.

Proof. By the preceding theorem, ∂Bf(x) is nonempty. Moreover, by our assumption,
D−(−f)(x, v) = −D+f(x, v) ≥ Q−

f,q(x) = Q+
−f,q(x), so that ∂B(−f)(x) is nonempty.

Then, it follows easily that f is B-differentiable at x.
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Remark. The preceding proof shows that if the norm is B-differentiable at v ∈ SX and
if D+f(x, v) ≤ −Q−

f,q(x), then f is B-superdifferentiable at x in the sense that ∂B(−f)(x)
is nonempty.

Corollary 3.8. Suppose X is reflexive and its norm is Fréchet differentiable at each point
of SX . Then the following assertions are equivalent:

(a) f is Fréchet differentiable at x;

(b) there exist some u ∈ SX , q ∈ (0, 1] such that D−f(x, u) ≥ Qf,q(x), −D+f(x,−u) ≥
Qf,q(x);

(c) there exist some u, v ∈ SX , q ∈ (0, 1] such that D−f(x, u) ≥ Q+
f,q(x), D

+f(x, v) ≤
−Q−

f,q(x).

Proof. (a) ⇒ (b) Suppose f is Fréchet differentiable at x and X is reflexive. Then, there
exists some u ∈ SX such that f ′(x)(u) = ‖f ′(x)‖ and, by Proposition 3.1(c), for every
q ∈ (0, 1] one has D−f(x, u) = ‖f ′(x)‖ = Qf,q(x) and −D+f(x,−u) = ‖f ′(x)‖ = Qf,q(x).

(b) ⇒ (c) It suffices to pick u as in (b) and v := −u, observing that Qf,q(x) ≥ Q+
f,q(x) and

Qf,q(x) ≥ Q−
f,q(x).

(c) ⇒ (a) It is given by Corollary 3.7.

4. Application to distance functions and best approximation

Let us apply the preceding results to the distance function dE := infe∈E ‖· − e‖ to a
nonempty closed subset E of X. The following statement is an immediate consequence
of Corollary 3.6, in view of the observations that the Lipschitz rate of dE at some point
x ∈ X\E is 1 and that the GÝateaux derivative of the norm at any point in X\{0} has
norm 1.

Proposition 4.1. Let x ∈ X be such that there exists some u ∈ SX such that D−dE(x, u)
= 1 and the norm is Fréchet (resp. GÝateaux) differentiable at u. Then ∂Ff(x) (resp. ∂f(x))
contains an element with norm 1.

One can deduce from [20, Cor. 3.6] and the preceding result the following criterion for
the existence of best approximations. As in [20] we say that w∗ ∈ X∗ is generalized well-
posed (on BX) if any minimizing sequence of the restriction of w∗ to BX has a convergent
subsequence. We denote byW the set of generalized well-posed continuous linear forms on
X and we say as in [20] that X is M-reflexive (or metrically reflexive) if X∗ = W ∪ {0}.
It is a consequence of the Šmulian Theorem that any Banach space whose dual norm
is Fréchet differentiable at each point of the unit sphere is M-reflexive. We define the
spherical duality map S by setting for u ∈ X\{0}

S(u) := ∂ ‖·‖ (u) = {u∗ ∈ X∗ : ‖u∗‖ = 1, 〈u∗, u〉 = ‖u‖}.

Proposition 4.2. Suppose that for x ∈ X\E there exists some u ∈ SX ∩ S−1(W ) such
that D−dE(x, u) = 1 and the norm is Fréchet differentiable at u, with derivative u∗.
Then the set P (E, x) of best approximations of x in E is nonempty and P (E, x) = {x−
dE(x)S∗(u

∗)}∩E, where S∗(u
∗) is the set of points in SX at which u∗ attains its maximum.
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Proof. Since ‖·‖ is differentiable, with u∗ := ‖·‖′ (u), one has S(u) = {u∗} and u∗ ∈ W

by the Šmulian Theorem. Now Theorem 3.3 ensures that u∗ ∈ ∂FdE(x). Since u∗ ∈ W,
[20, Cor. 3.6] implies that x has a best approximation in E. This can be shown directly,
along with the last assertion, following the proof of [14, Thm. 2.6]. Let (en) be a sequence
of E such that (εn) → 0 for εn := ‖en − x‖ − dE(x). Let α : R+ → R be such that
α(r) → 0 as r → 0 and

dE(x+ v)− dE(x) ≥ 〈u∗, v〉 − α(v) ‖v‖ (5)

for ‖v‖ small enough. Taking v := tn(en − x), where (εn/tn) → 0+, and observing that
for n large enough

dE(x+ tn(en − x)) ≤ (1− tn) ‖x− en‖ = (1− tn)dE(x) + (1− tn)εn,

one obtains from (5), with v := tn(en − x),

tn〈u∗, en − x〉 − tnα(tn(en − x)) ‖en − x‖ ≤ dE(x+ tn(en − x))− dE(x)

≤ −tndE(x) + (1− tn)εn.

Dividing by tndE(x) both sides of this relation and taking limits, one gets

lim sup
n

1

‖en − x‖
〈u∗, en − x〉 ≤ −1.

Since u∗ ∈ W, a subsequence of ((x− en) / ‖en − x‖) has a limit w ∈ S∗(u
∗). Then (en)

has a subsequence which converges to e := x−dE(x)w and e ∈ P (E, x). Now, for any e′ ∈
PE(x) one can take en := e′ in what precedes, so that w′ := (x− e′) / ‖e′ − x‖ ∈ S∗(u

∗)
and we see that e′ = x − dE(x)w

′ ∈ x − dE(x)S∗(u
∗). Now for any w ∈ S∗(u

∗) such that
e := x− dE(x)w ∈ E one has e ∈ P (E, x) since ‖e− x‖ = dE(x) ‖w‖ = dE(x).
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[3] D. Azé: A survey on error bounds for lower semicontinuous functions, ESAIM, Proc. 13
(2003) 1–17.
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