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On a normed linear space with uniformly Gâteaux differentiable norm a locally Lipschitz function which
satisfies a property relating the Dini derivatives to a constant determined by the Michel-Penot deriva-
tive possesses significant differentiability properties. This generalises previous joint work with Simon
Fitzpatrick.
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Zajic̆ek [13, Theorem 3, p. 300] showed that distance functions on a normed linear space
with uniformly GÝateaux differentiable norm have particular differentiability properties.
Vlasov [11, 12] showed that distance functions on a Banach space with rotund dual sat-
isfying a certain differentiability condition are convex. So we are led to ask whether
more general Lipschitz functions on a normed linear space with uniformly GÝateaux dif-
ferentiable norm and satisfying a Vlasov type condition have particular differentiability
properties. Our results come from the generalisation of a Vlasov type condition explored
by Fitzpatrick [6], [3, Theorem 1, p. 516].

The outstanding global result given by Preiss [9] is that a Lipschitz function on a Banach
space with GÝateaux differentiable norm is GÝateaux differentiable on a dense subset of
its domain. Recently, Preiss and Zajic̆ek [10] developed further dense differentiability
properties for Lipschitz functions on separable Banach spaces. But here we are interested
in exploring local differentiability properties.

1. A differentiability property related to a Michel-Penot constant

A real valued function ψ on a nonempty open subset A of a normed linear space X is
locally Lipschitz on A if for every x0 ∈ A there exists a K0 > 0 and a δ0 > 0 such that

|ψ(x)− ψ(z)| ≤ K0‖x− z‖ for all x, z ∈ B(x0; δ).

For ψ, the upper Dini derivative at x ∈ A in the direction y ∈ X is

ψ+(x)(y) ≡ lim sup
t→0+

ψ(x+ ty)− ψ(x)

t
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and the lower Dini derivative at x ∈ A in the direction y ∈ X is

ψ−(x)(y) ≡ lim inf
t→0+

ψ(x+ ty)− ψ(x)

t
.

ψ has a right hand derivative at x ∈ A in the direction y ∈ X if

ψ′
+(x)(y) ≡ lim

t→0+

ψ(x+ ty)− ψ(x)

t
exists,

ψ has a GÝateaux derivative at x ∈ A in the direction y ∈ X if

ψ′(x)(y) ≡ lim
t→0

ψ(x+ ty)− ψ(x)

t
exists

and ψ is GÝateaux differentiable at x ∈ A if ψ′(x)(y) exists for all y ∈ X and is linear in y.

As a tool in nonsmooth analysis, Michel and Penot [8] introduced the Michel-Penot gen-
eralised derivative at x ∈ A in the direction y ∈ X defined by

ψ♦(x)(y) ≡ sup
z∈X

lim sup
t→0+

ψ(x+ tz + ty)− ψ(x+ tz)

t
.

The function y 7→ ψ♦(x)(y) is continuous and sublinear. Clearly in general ψ+(x)(y) ≤
ψ♦(x)(y) for all x ∈ A and y ∈ X. If ψ is GÝateaux differentiable at x ∈ A then
ψ′(x)(y) = ψ♦(x)(y) for all y ∈ X. If ψ is a convex function on a nonempty open convex
subset A then ψ′

+(x)(y) = ψ♦(x)(y) for all y ∈ X. For given x ∈ A we define the constant

Pψ(x) ≡ sup
‖y‖=1

ψ♦(x)(y).

Then

−Pψ(x) = inf
‖y‖=1

inf
z∈X

lim inf
t→0+

ψ(x+ tz + ty)− ψ(x+ tz)

t
.

Fitzpatrick et al. [3, Theorem 1, p. 516] explored differentiability properties of ψ at a point
where a directional derivative attains such a constant. Here we generalise that result on
a normed linear space with uniformly GÝateaux differentiable norm.

A normed linear space X has uniformly GÝateaux differentiable norm if given y ∈ X, ‖y‖ =
1 and ε > 0 there exists δ(ε, y) > 0 such that

∣

∣

∣

∣

‖x+ ty‖ − ‖x‖
t

− ‖x‖′(y)
∣

∣

∣

∣

< ε for all 0 < |t| < δ for all x ∈ X, ‖x‖ = 1.

Theorem 1.1. Consider a locally Lipschitz function ψ on a nonempty open subset A of
a normed linear space X with uniformly GÝateaux differentiable norm. If for x ∈ A,

sup
‖y‖=1

ψ+(x)(y) = Pψ(x)

then there exists an f+ ∈ X?, ‖f+‖ ≤ 1 such that

ψ+(x)(y) ≥ Pψ(x)f+(y) for all y ∈ X.
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Proof. Since X has uniformly GÝateaux differentiable norm, given y ∈ X, ‖y‖ = 1 and
ε > 0 there exists γ(ε, y) > 0 such that for all y0 ∈ X, ‖y0‖ = 1

∣

∣

∣

∣

‖y0 + ty‖ − ‖y0‖
t

− ‖y0‖′(y)
∣

∣

∣

∣

< ε for all 0 < |t| ≤ γ.

Now there exists {yn}, ‖yn‖ = 1 such that

lim
n→∞

ψ+(x)(yn) = Pψ(x)

so there exists ν(ε, y) ∈ N such that

∣

∣ψ+(x)(yn)− Pψ(x)
∣

∣ ≤ ε

2
γ for all n ≥ ν.

But also for each n ≥ ν there exists {tnk}, tnk → 0+ as k → ∞ such that

lim
n→∞

ψ(x+ tnkyn)− ψ(x)

tnk
= ψ+(x)(yn)

so for each n ≥ ν there exists ν ′
n(ε, yn) ∈ N such that

∣

∣

∣

∣

ψ(x+ tnkyn)− ψ(x)

tnk
− ψ+(x)(yn)

∣

∣

∣

∣

≤ ε

2
γ for all k > ν ′

n.

Then ∣

∣

∣

∣

ψ(x+ tnkyn)− ψ(x)

tnk
− Pψ(x)

∣

∣

∣

∣

≤ εγ for all n > ν and all k > ν ′
n. ?

For each n ∈ N, ψ (x+ tγy)− ψ(x) = ψ(x+ tyn + t(−yn + γy))−ψ(x+tyn)+ψ(x+tyn)−
ψ(x) for all t > 0. From the definition of −Pψ(x) there exists δn(ε, x, yn,−yn + γy) > 0
such that

ψ (x+ tyn + t(−yn + γy))− ψ(x+ tyn) > −Pψ(x)‖yn − γy‖t− εγt for all 0 < t < δn.

So

ψ(x+ tnkγy)− ψ(x) > −Pψ(x) (‖yn − γy‖ − ‖yn‖) tnk − 2εγtnk

for n > ν, k > ν ′
n and 0 < tnk < δn

> Pψ(x) (‖yn‖′(y)− ε) tnkγ − 2εγtnk.

Since B(X?) is weak? compact there exists f+ ∈ X?, ‖f+‖ ≤ 1 such that

ψ+(x)(y) ≥ Pψ(x)f+(y) for all y ∈ X.

We should note that on any normed linear space X if a locally Lipschitz function ψ on a
nonempty open subset A has the property that at x ∈ A

ψ+(x)(y) ≥ Pψ(x)f+(y) where ‖f+‖ = 1

then sup
‖y‖=1

ψ+(x)(y) = Pψ(x).
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Theorem 1.1 has a simpler proof if there is actually a y0 ∈ X, ‖y0‖ = 1 such that

ψ+(x)(y0) = Pψ(x).

Then we can significantly reduce the differentiability condition on the space to having a
norm GÝateaux differentiable at y0. The conclusion is then that

ψ+(x)(y) ≥ Pψ(x)‖y0‖′(y) for all y ∈ X.

Corollary 1.2. If X has uniformly GÝateaux differentiable norm and for x ∈ A

inf
‖y‖=1

ψ−(x)(y) = −Pψ(x)

then there exists f− ∈ X?, ‖f−‖ ≤ 1 such that

ψ−(x)(y) ≤ −Pψ(x)f−(y) for all y ∈ X.

Proof. Now ψ−(x)(y) = −(−ψ)+(x)(y) so sup
‖y‖=1

(−ψ)+(x)(y) = Pψ(x) = P−ψ(x). Then

there exists f− ∈ X?, ‖f−‖ = 1 such that

(−ψ)+(x)(y) ≥ Pψ(x)f−(y)

so ψ−(x)(y) ≤ −Pψ(x)f−(y) for all y ∈ X.

Corollary 1.3. If X has uniformly GÝateaux differentiable norm and for x ∈ A both

sup
‖y‖=1

ψ+(x)(y) = Pψ(x)

and
inf

‖y‖=1
ψ−(x)(y) = −Pψ(x)

then ψ is intermediately differentiable at x, that is, there exists f0 ∈ X? such that

ψ−(x)(y) ≤ f0(y) ≤ ψ+(x)(y) for all y ∈ X.

Proof. From Theorem 1.1 and Corollary 1.2 we deduce that the closed cones
co {(y, ψ+(x)(y)) ∈ X × R : y ∈ X} and co {(y, ψ−(x)(y)) ∈ X × R : y ∈ X} can be sep-
arated by a hyperplane generated by an f0 ∈ X?.

A locally Lipschitz function ψ on a nonempty open subset A of a normed linear space X
is said to be M-P pseudo-regular at x ∈ A if

ψ+(x)(y) = ψ♦(x)(y) for all y ∈ X.

Then such a function satisfies

sup
‖y‖=1

ψ+(x)(y) = Pψ(x) for all equivalent norms for X.

On a separable Banach space, every locally Lipschitz function on a nonempty open subset
is M-P pseudo-regular at the points of a dense Gδ subset of its domain, [7, Theorem,
p. 208]. So if X is a separable Banach space, both ψ and −ψ are M-P pseudo-regular
at the points of a dense Gδ subset of A. Further, a separable Banach space can be
equivalently renormed to have uniformly GÝateaux differentiable norm, [4, p. 66]. so then
we make the following deduction from Corollary 1.3.
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Corollary 1.4 [7, Cor. 1, p. 209]. A locally Lipschitz function ψ on a nonempty open
subset A of a separable Banach space X is intermediately differentiable at the points of a
dense Gδ subset of A.

We can recapture the Fitzpatrick result using the comment after Theorem 1.1.

Corollary 1.5 [3, Theorem 1, p. 516]. Suppose there exists y0 ∈ X, ‖y0‖ = 1 such that
the GÝateaux derivative of ψ in the direction y0 exists at x ∈ A and

ψ′(x)(y0) = Pψ(x).

If the normed linear space X has norm GÝateaux differentiable at y0 then ψ is GÝateaux
differentiable at x and

ψ′(x)(y) = Pψ(x)‖y0‖′(y) for all y ∈ X.

Proof. Since ψ′(x)(y0) = Pψ(x) we have

ψ+(x)(y0) = Pψ(x) and ψ−(x)(−y0) = −Pψ(x).

So
ψ−(x)(y) ≤ Pψ(x)‖y0‖′(y) ≤ ψ+(x)(y) for all y ∈ X.

The stronger differentiability condition replacing ? in Theorem 1.1 enables us to conclude
as in [3, pp. 517-8] that

ψ′
+(x)(y) ≤ Pψ(x)‖y0‖′(y) ≤ ψ′

+(x)(y) for all y ∈ X

and our conclusion holds.

2. Differentiability properties of distance functions

On a real normed linear space X, a nonempty subset K generates a distance function d
on X where

d(x) = inf {‖x− y‖ : y ∈ K} .

The distance function d always satisfies the Lipschitz condition

|d(x)− d(y)| ≤ ‖x− y‖ for all x, y ∈ X.

The set K is said to be proximinal (Chebyshev) if, for each x ∈ X\K there exists a
(unique) point p(x) ∈ K such that

d(x) = ‖x− p(x)‖.

A proximinal (Chebyshev) set is necessarily closed. For x ∈ X\K whereK is a proximinal
set,

d♦(x) (x− p(x)) ≥ ‖x− p(x)‖, [3, Theorem 5, p. 520].

and so Pd(x) = 1.

The most general conditions under which a subset is convex was given by Vlasov [11, 12]
which may be presented in the following form.
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Proposition 2.1. In a Banach space X with rotund dual X?, a nonempty closed subset
K which generates a distance function d satisfying

lim sup
‖y‖→0

d(x+ y)− d(x)

‖y‖
= 1 for all x ∈ X\K,

is convex.

For a proximinal set we see that this condition is precisely

sup
‖y‖=1

d+(x)(y) = Pd(x)

and from Theorem 1.1 we have that if the space X has uniformly GÝateaux differentiable
norm then there exists an f+ ∈ X?, ‖f+‖ ≤ 1 such that

d+(x)(y) ≥ f+(y) for all y ∈ X.

We present Zajic̆ek’s argument again so that we can see the fuller implications of differ-
entiability properties of the distance function.

The following characterisations of uniform GÝateaux differentiability will be needed:
The normed linear space X has uniformly GÝateaux differentiable norm if and only if for
any r > 0 and each y ∈ X, given ε > 0 there exists a δ(ε, y) > 0 such that

∣

∣

∣

∣

‖x+ ty‖ − ‖x‖
t

− ‖x‖′(y)
∣

∣

∣

∣

< ε for all 0 < |t| < δ and x ∈ X, ‖x‖ > r.

Equivalently, if and only if for any r > 0 and each y ∈ X the mapping x 7→ ‖x‖′(y) is
uniformly continuous on {x ∈ X; ‖x‖ > r}, [13. Proposition 7, p. 299].

With the form of the Michel-Penot generalised derivative in mind, we note the following
elementary properties of distance functions.

Lemma 2.2. In a normed linear space X with nonempty closed subset K, for each x ∈
X\K and t > 0 and y, z ∈ X, choose pt(x+ tz + ty) ∈ K such that

‖(x+ tz + ty)− pt(x+ tz + ty)‖ < d(x+ tz + ty) + t2.

Then
‖x− pt(x+ tz + ty)‖ → d(x) as t → 0 + .

Proof.

d(x) ≤ ‖x− pt(x+ tz + ty)‖ ≤ ‖x+ tz + ty − pt(x+ tz + ty)‖+ t(‖y‖+ ‖z‖)
≤ d(x+ tz + ty) + t2 + t(‖y‖+ ‖z‖) ≤ d(x) + t2 + 2t(‖y‖+ ‖z‖).

Theorem 2.3. On a normed linear space X with uniformly GÝateaux differentiable norm,
the distance function d generated by a nonempty closed subset K has a right hand deriva-
tive at each x ∈ X\K and for any y ∈ X,

d′+(x)(y) = inf
z∈X

lim inf
t→0+

d(x+ tz + ty)− d(x+ tz)

t
.
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Proof. Given z ∈ X,

lim inf
t→0+

d(x+ tz + ty)− d(x+ tz)

t

≥ lim inf
t→0+

1

t

(

‖x+ tz + ty − pt(x+ tz + ty)‖ − t2 − ‖x+ tz − pt(x+ tz + ty)‖
)

≥ lim inf
t→0+

‖x+ tz − pt(x+ tz + ty)‖′ (y)

≥ lim inf
t→0+

‖x− pt(x+ tz + ty)‖′ (y) from the uniform continuity characterisation

≥ lim inf {‖x− v‖′(y) : ‖x− v‖ → d(x), v ∈ K} from Lemma 2.2.

Now there exists vn ∈ K where ‖x− vn‖ → d(x) as n → ∞ such that

lim
n→∞

‖x− vn‖′(y) = lim inf {‖x− v‖′(y) : ‖x− v‖ → d(x), v ∈ K} .

Since the norm is uniformly GÝateaux differentiable, given ε > 0 there exists a δ(ε, y) > 0
such that ∣

∣

∣

∣

‖x+ sy − vn‖ − ‖x− vn‖
s

− ‖x− vn‖′(y)
∣

∣

∣

∣

< ε

for all 0 < |s| < δ and n sufficiently large. Then

‖x− vn‖′(y) + ε ≥ d(x+ sy)− d(x)

s
+

d(x)− ‖x− vn‖
s

.

So lim inf {‖x− v‖′(y) : ‖x− v‖ → d(x), v ∈ K}+ε ≥ d(x+ sy)− d(x)

s
for all 0 < |s| < δ,

and

d+(x)(y) ≤ inf
z∈X

lim inf
t→0+

d(x+ tz + ty)− d(x+ tz)

t
but

≤ lim inf
t→0+

d(x+ ty)− d(x)

t
= d−(x)(y).

Therefore, d′+(x)(y) exists and our conclusion follows.

We can now deduce a differentiability result for distance functions.

Corollary 2.4. On a normed linear space X with uniformly GÝateaux differentiable norm,
the distance function d generated by a nonempty closed set K has the property that for
x ∈ X\K,

sup
‖y‖=1

d+(x)(y) = Pd(x)

if and only if d is GÝateaux differentiable at x.

Proof. If d is GÝateaux differentiable at x then

Pd(x) = ‖d′(x)‖ .

Conversely, from Theorem 2.3, d′+(x)(y) = −(−d)♦(x)(y) for all y ∈ X so the mapping
y 7→ d′+(x)(y) is superlinear. From Theorem 1.1 this mapping y 7→ d′+(x)(y) dominates a
linear functional. So we conclude that the mapping y 7→ d′+(x)(y) is linear and that d is
GÝateaux differentiable at x.
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For a Chebyshev set K in a normed linear space X, the mapping x 7→ p(x) on X is
called the metric projection. Early attempts to determine the convexity of K invoked the
continuity of the metric projection. Now if K has a continuous metric projection then
the distance function d satisfies Vlasov’s differentiability condition of Proposition 2.1.

Asplund [1] had proved that in a Hilbert space a Chebyshev set with continuous metric
projection is convex. Vlasov [12] had shown that in a Banach space with rotund dual a
Chebyshev set with continuous metric projection is convex. However, it was known that
the continuity of the metric projection is not in general necessary for the convexity of
Chebyshev sets [2].

Now of course, if K is convex on a normed linear space with uniformly GÝateaux differ-
entiable norm then the distance function d is GÝateaux differentiable. However, even in
Hilbert space the GÝateaux differentiability of a distance function d at a point x ∈ X\K
does not necessarily imply that ‖d′(x)‖ = 1, [5, Example 5.1, p. 308]. Nevertheless, on any
normed linear space X if the distance function d generated by K is GÝateaux differentiable
at x ∈ X\K then

sup
‖y‖=1

d′(x)(y) = Pd(x)

and if K is proximinal then Pd(x) = 1.
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