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On a normed linear space with uniformly Gateaux differentiable norm a locally Lipschitz function which
satisfies a property relating the Dini derivatives to a constant determined by the Michel-Penot deriva-
tive possesses significant differentiability properties. This generalises previous joint work with Simon
Fitzpatrick.
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Zajicek [13, Theorem 3, p. 300] showed that distance functions on a normed linear space
with uniformly Gateaux differentiable norm have particular differentiability properties.
Vlasov [11, 12] showed that distance functions on a Banach space with rotund dual sat-
isfying a certain differentiability condition are convex. So we are led to ask whether
more general Lipschitz functions on a normed linear space with uniformly Gateaux dif-
ferentiable norm and satisfying a Vlasov type condition have particular differentiability
properties. Our results come from the generalisation of a Vlasov type condition explored
by Fitzpatrick [6], [3, Theorem 1, p. 516].

The outstanding global result given by Preiss [9] is that a Lipschitz function on a Banach
space with Gateaux differentiable norm is Gateaux differentiable on a dense subset of
its domain. Recently, Preiss and Zajicek [10] developed further dense differentiability
properties for Lipschitz functions on separable Banach spaces. But here we are interested
in exploring local differentiability properties.

1. A differentiability property related to a Michel-Penot constant

A real valued function ¥ on a nonempty open subset A of a normed linear space X is
locally Lipschitz on A if for every xq € A there exists a Ky > 0 and a dy > 0 such that

[¥(2) = ¥(2)] < Kollz — z[|  for all ,z € B(xo; ).
For v, the upper Dini derivative at x € A in the direction y € X is

Y (x)(y) = limsup U(x +ty) — P(z)

t—0+ t
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and the lower Dini derivative at x € A in the direction y € X is

¥ (2)(y) = liming LEFW) Z (@)

t—0+ t

1 has a right hand derivative at x € A in the direction y € X if

v (@)(y) = fim VT Z0E)

t—0+ t

exists,

¥ has a Gateauzr derivative at © € A in the direction y € X if

o)) = lim LEH W) V)

t—0 t

exists

and v is Gateaux differentiable at x € A if ¢'(x)(y) exists for all y € X and is linear in y.

As a tool in nonsmooth analysis, Michel and Penot [8] introduced the Michel-Penot gen-
eralised derivative at © € A in the direction y € X defined by

U(x +tz +ty) — P(x + tz2)

¥ (2)(y) = sup lim sup .
zeX t—0+ t

The function y — 9 (z)(y) is continuous and sublinear. Clearly in general ¥ (x)(y) <
YO (z)(y) for all z € A and y € X. If ¢ is Gateaux differentiable at + € A then
Y (x)(y) = ¥ (x)(y) for all y € X. If ¢ is a convex function on a nonempty open convex
subset A then ¢/, (z)(y) = ¢¥(z)(y) for all y € X. For given x € A we define the constant

Then

t ty) — t
—Py(x) = inf inf liminf Y(x +tz+ty) — (o + Z),
lyl=1 zeX t—0+ t

Fitzpatrick et al. [3, Theorem 1, p. 516] explored differentiability properties of ¢ at a point
where a directional derivative attains such a constant. Here we generalise that result on
a normed linear space with uniformly Gateaux differentiable norm.

A normed linear space X has uniformly Gateauz differentiable norm if given y € X, ||y|| =
1 and € > 0 there exists d(¢,y) > 0 such that

|l + tyl| — [l]]
t

—Jlz|'(y)| <e forall0< |t| <§ forallze X, || =1.

Theorem 1.1. Consider a locally Lipschitz function 1 on a nonempty open subset A of
a normed linear space X with uniformly Gateauz differentiable norm. If for x € A,

s (@)) = Pule)

then there exists an fi € X*, || f+|| <1 such that

(@) (y) = Py(@)f(y) forally € X.
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Proof. Since X has uniformly Gateaux differentiable norm, given y € X, ||y| = 1 and
€ > 0 there exists y(e,y) > 0 such that for all yo € X, ||yl =1

o + tyll — llyoll
t

—lyoll'(y)| < e forall 0< Jt| <H.

Now there exists {y,}, [|yn|| = 1 such that

lim 4 (2)(y) = Py ()

n—oo

so there exists v(e,y) € N such that
Wﬁ(@(yn) - P¢($)| < gv for all n > v.

But also for each n > v there exists {t,;}, tnx — 0+ as k — oo such that

L ) — ()

n—o0 tok

- ¢+(93) (yn)

so for each n > v there exists v/, (¢, y,) € N such that

‘@b(x - tn;;yn) —(z) (@) ()| < % v for all k > /).
nk
Then ;
‘w(:c + nl;yn) — () — Py(x)| <ey foralln>v andall k> v,. *
nk

For eachn € N, ¢ (z + tyy) — () = (2 + tyn + t(—yn + 7)) = V(@ +tyn) + (0 +1y,) —
¢(z) for all t > 0. From the definition of —Py(z) there exists 6, (¢, z, Yn, —yn +vy) > 0
such that

(@ 4ty + H(—yn +7Y)) — V(@ + tyn) > —Pp(@)llyn —yyllt —ert forall 0 <t <4,

So

V(@ +tayy) —0(x) > —Pyp(@) ([yn — I = Ynll) tar — 267t
forn > v, k>, and 0 < t,, <9,

> Fy(@) (lynll'(y) — €) tury — 2671k
Since B(X™*) is weak* compact there exists f, € X*, || f+] <1 such that

V(@) (y) = Py(z) fr(y) forally € X.

O

We should note that on any normed linear space X if a locally Lipschitz function ¢ on a
nonempty open subset A has the property that at x € A

v (2)(y) > Py(z)fi(y) where ||fi]] =1

then. sup v (2)(y) = Pof)
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Theorem 1.1 has a simpler proof if there is actually a yo € X, ||yo|| = 1 such that
(@) (o) = Py(w).

Then we can significantly reduce the differentiability condition on the space to having a
norm Gateaux differentiable at 1yy. The conclusion is then that

() (y) = Py(2)lyol'(y) for all y € X.

Corollary 1.2. If X has uniformly Gateaux differentiable norm and for x € A
inf o~ (2)(y) = — Py(x)

llyll=1

then there exists f— € X*, ||f-|| <1 such that
T (@)(y) < —Fy(@)f-(y) forally € X.

Proof. Now ¢~ (x)(y) = —(=¢)"(2)(y) so ||81H1£1(—¢)+(x)(y) = Py(z) = P_y(z). Then
there exists f_ € X* || f_|| = 1 such that ’
(=) (2)(y) = Py()f-(y)
so v~ (z)(y) < —Py(x)f-(y) forally e X. O
Corollary 1.3. If X has uniformly Gateauz differentiable norm and for x € A both
Sup U (@)(y) = Py(z)

and
inf v~ (2)(y) = —Py(2)

lyll=1
then i is intermediately differentiable at x, that is, there exists fo € X* such that

v (2)(y) < foly) <o (x)(y) forally € X.

Proof. From Theorem 1.1 and Corollary 1.2 we deduce that the closed cones
co{(y, v (z)(y) e X xR:ye X} and co{(y,v (z)(y)) € X xR :y € X} can be sep-
arated by a hyperplane generated by an f, € X™*. O

A locally Lipschitz function 1) on a nonempty open subset A of a normed linear space X
is said to be M-P pseudo-reqular at x € A if

() (y) = O (x)(y) forally e X.
Then such a function satisfies

sup " (z)(y) = Py(z) for all equivalent norms for X.
lyll=1

On a separable Banach space, every locally Lipschitz function on a nonempty open subset
is M-P pseudo-regular at the points of a dense G4 subset of its domain, [7, Theorem,
p. 208]. So if X is a separable Banach space, both 1) and — are M-P pseudo-regular
at the points of a dense G5 subset of A. Further, a separable Banach space can be
equivalently renormed to have uniformly Gateaux differentiable norm, [4, p. 66]. so then
we make the following deduction from Corollary 1.3.
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Corollary 1.4 [7, Cor. 1, p. 209]. A locally Lipschitz function 1) on a nonempty open
subset A of a separable Banach space X is intermediately differentiable at the points of a
dense G5 subset of A.

We can recapture the Fitzpatrick result using the comment after Theorem 1.1.

Corollary 1.5 [3, Theorem 1, p. 516]. Suppose there ezists yo € X, ||yo|| = 1 such that
the Gateaux derivative of ¥ in the direction yo exists at x € A and

V() (yo) = Py(x).

If the normed linear space X has norm Gateaux differentiable at yo then i is Gateaux
differentiable at x and

' (x)(y) = Py(x)|lyoll (y)  for ally € X.

Proof. Since ¢'(x)(yo) = Py(x) we have

Y (@)(yo) = Py(x) and ¢~ (2)(—yo) = —Py(x).

So
Y~ (2)(y) < Py(@)|loll'(y) < ¢ (2)(y) forally e X,

The stronger differentiability condition replacing x in Theorem 1.1 enables us to conclude
as in [3, pp. 517-8] that

Vi (@)(y) < Pyp(@)|lyoll (y) < ¥l (2)(y) forally e X

and our conclusion holds. O

2. Differentiability properties of distance functions

On a real normed linear space X, a nonempty subset K generates a distance function d
on X where
d(z) = inf{llz —y[| : y € K}.

The distance function d always satisfies the Lipschitz condition
|d(z) —d(y)| < [z =yl forall z,y € X.

The set K is said to be proziminal (Chebyshev) if, for each x € X\K there exists a
(unique) point p(z) € K such that

d(z) = ||z = p(x)|.

A proximinal (Chebyshev) set is necessarily closed. For x € X\ K where K is a proximinal
set,
d¥(z) (x — p(x)) > ||z — p(z)||, [3, Theorem 5, p. 520].

and so Py(x) = 1.

The most general conditions under which a subset is convex was given by Vlasov [11, 12]
which may be presented in the following form.
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Proposition 2.1. In a Banach space X with rotund dual X*, a nonempty closed subset
K which generates a distance function d satisfying

lim sup dz +y) — dx)

=1 foralzxe X\K,
lyll—0 [yl

1S convez.

For a proximinal set we see that this condition is precisely

sup d(x)(y) = Pu(z)

lyll=1

and from Theorem 1.1 we have that if the space X has uniformly Gateaux differentiable
norm then there exists an f, € X* ||f1|] <1 such that

d"(z)(y) = f+(y) forallye X.

We present Zajicek’s argument again so that we can see the fuller implications of differ-
entiability properties of the distance function.

The following characterisations of uniform Gateaux differentiability will be needed:
The normed linear space X has uniformly Gateaux differentiable norm if and only if for
any r > 0 and each y € X, given € > 0 there exists a d(¢,y) > 0 such that

[z + tyll — ]
t

— x| (y)| <e forall0< |t| <d and xz e X, |z| >r.

Equivalently, if and only if for any » > 0 and each y € X the mapping x — ||z|/'(y) is
uniformly continuous on {z € X;||z|| > r}, [13. Proposition 7, p. 299].

With the form of the Michel-Penot generalised derivative in mind, we note the following
elementary properties of distance functions.

Lemma 2.2. In a normed linear space X with nonempty closed subset K, for each x €
X\K andt >0 and y,z € X, choose pi(x + tz + ty) € K such that

(2 +tz +ty) — pe(z + tz + ty)|| < d(x + tz + ty) + 2.

Then
|lx — pi(x+tz+ty)|]| — d(x) ast—0+.
Proof.
d(z) |2 — pi(w +tz +ty)|| < l|o+t2 +ty — po +tz +ty)|| +t(llyll + [12])

d(z +tz +ty) + £+ t([lyll + 12l) < d(z) + ¢+ 2t(l[y ]| + []z]])-
O

Theorem 2.3. On a normed linear space X with uniformly Gateaux differentiable norm,
the distance function d generated by a nonempty closed subset K has a right hand deriva-
tive at each x € X\K and for anyy € X,

d(z +tz+ty) — d(z + tz)

] s . .
Loy = T Tyt t |
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Proof. Given z € X,
d(z +tz+ty) — d(z + tz)

im fnt t
> litriloiJrrlf% (llz +tz+ty — pe(x + tz + ty)|| — £ — |z + tz — pe(z + tz + ty)||)
> litrilOiEfo—i-tz—pt(:L'—i-tz—i-ty)H'(y)
> htril OiJIrlf |z — pe(x +tz+ty)||' (y) from the uniform continuity characterisation
> liminf{||z —v|'(y) : ||z — v|| = d(z),v € K} from Lemma 2.2.

Now there exists v, € K where ||z — v,|| — d(z) as n — oo such that

lim |z — v, ['(y) = iminf{||lz = v|'(y) : [z — v]| — d(z),v € K}.
Since the norm is uniformly Gateaux differentiable, given ¢ > 0 there exists a d(e,y) > 0
such that
2+ sy — vnl| — [z — vl

/
J— n <
. o=l ()] < e

for all 0 < |s| < ¢ and n sufficiently large. Then

d —d d(z) — ||z — v,
ool e s A )~ @) | dle) o= ]
s s
d —d
Soliminf {[|z — vl['(y) : [z — ]| — d(x),v € K }+e > DT S@Q ) forall 0 < |5 < o,
and
IH(@)(y) < inf liminf d(z +tz +ty) —d(x + tz)
z€X t—0+ t
but
e d@tty) —d(x)
< =
< liminf : d™(x)(y).
Therefore, d', (x)(y) exists and our conclusion follows. O

We can now deduce a differentiability result for distance functions.

Corollary 2.4. On a normed linear space X with uniformly Gateauz differentiable norm,
the distance function d generated by a nonempty closed set K has the property that for
r e X\K,

sup d*(2)(y) = Pula)

lyll=1
if and only if d is Gateauz differentiable at x.

Proof. If d is Gateaux differentiable at x then
Py(x) = ||d'(z)] -

Conversely, from Theorem 2.3, d, (z)(y) = —(—d)¥(x)(y) for all y € X so the mapping
y +— d' (z)(y) is superlinear. From Theorem 1.1 this mapping y — d, (z)(y) dominates a
linear functional. So we conclude that the mapping y — d/,()(y) is linear and that d is
Gateaux differentiable at z. O
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For a Chebyshev set K in a normed linear space X, the mapping = +— p(x) on X is
called the metric projection. Early attempts to determine the convexity of K invoked the
continuity of the metric projection. Now if K has a continuous metric projection then
the distance function d satisfies Vlasov’s differentiability condition of Proposition 2.1.

Asplund [1] had proved that in a Hilbert space a Chebyshev set with continuous metric
projection is convex. Vlasov [12] had shown that in a Banach space with rotund dual a
Chebyshev set with continuous metric projection is convex. However, it was known that
the continuity of the metric projection is not in general necessary for the convexity of
Chebyshev sets [2].

Now of course, if K is convex on a normed linear space with uniformly Gateaux differ-
entiable norm then the distance function d is Gateaux differentiable. However, even in
Hilbert space the Gateaux differentiability of a distance function d at a point x € X\ K
does not necessarily imply that ||d'(z)]| = 1, [5, Example 5.1, p. 308]. Nevertheless, on any
normed linear space X if the distance function d generated by K is Gateaux differentiable
at x € X\ K then

sup d'(z)(y) = Fa(z)

lyll=1

and if K is proximinal then P;(z) = 1.
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