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The present paper investigates the property of a function f : Rn → R+∞ := R ∪ {+∞} with f(0) < +∞
to be Ln-subdifferentiable or Hn-convex. The Ln-subdifferentiability and Hn-convexity are introduced
as in Rubinov [9]. Some refinements of these properties lead to the notions of L0

n
-subdifferentiability and

H0
n
-convexity. Their relation to the convex-along (CAL) functions is underlined in the following theorem

proved in the paper (Theorem 5.6): Let the function f : Rn → R+∞ be such that f(0) < +∞ and f is
Hn-convex at the points at which it is infinite. Then if f is L0

n
-subdifferentiable, it is CAL and globally

calm at each x0 ∈ dom f . Here the notions of local and global calmness are introduced after Rockafellar,
Wets [8] and play an important role in the considerations. The question is posed for the possible reversal
of this result. In the case of a positively homogeneous (PH) and CAL function such a reversal is proved
(Theorem 6.2). As an application conditions are obtained under which a CAL PH function is H0

n
-convex

(Theorems 6.3 and 6.4).

Keywords: Abstract convexity, generalized convexity, duality, Hn-convexity, convex-along-rays func-
tions, convex-along-lines functions, positively homogeneous functions
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1. Introduction

After the monographs of Pallaschke, Rolewicz [5], Singer [13] and Rubinov [9] abstract
convex analysis has grown to a mathematical discipline with its own face and problems.
Its importance is due mainly to its close relation to global optimization. In spite of the
recent advances, there are still many problems in its merit, which are until so far either
unsolved or insufficiently developed. Among them it is the problem to characterize the
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class of Hk-convex functions f : Rn → R+∞ := R∪{+∞} for k positive integer. The Hk-
convex functions are defined as in Rubinov [9]. It is known that all Hk-convex functions
are convex-along-rays (CAR). Recall that the function f is CAR if its restriction on each
ray {λx | λ ≥ 0} is convex. We use also the notions of convex-along-lines (CAL) functions
and positively homogeneous of order one (PH) functions defined as follows. The function
f is CAL if its restriction on each line {λx | λ ∈ R} is convex. The function f is PH if
f(λx) = λf(x) for λ ≥ 0 and x ∈ R

n. It is known [9] that all lsc CAR functions with
finite value at zero belong to the class Hn+1, which in consequence turns to be very broad.
Therefore, the task to establish the relation of CAR and Hn-convex functions seems quite
natural. The present paper is an investigation in this direction. We study the property
of a function f : Rn → R+∞ with f(0) < +∞ to be Ln-subdifferentiable or Hn-convex.
More precisely, we introduce the concepts of L0

n-subdifferentiability and H0
n-convexity as

some refinement of Ln-subdifferentiability and Hn-convexity. We study the property of a
CAR function to be L0

n-subdifferentiable or H0
n-convex. The CAL property appears in a

natural way in this study.

The paper is structured as follows. Section 2 is an introduction to abstract convexity
with respect to min-type functions. We define there also L0

n-subdifferentiability and H0
n-

convexity. Section 3 gives some properties and examples of CAL functions. The notions of
local and global calmness, which play an important role in the considerations, are defined
in Section 4. In Section 5 the following theorem is proved: Let the function f : Rn → R+∞

be such that f(0) < +∞ and f is Hn-convex at the points at which it is infinite. Then
if f is L0

n-subdifferentiable, it is CAL and globally calm at each x0 ∈ dom f . Here CAL
functions appear in a natural way and for this reason they are exposed in the study. We
pose the question for the possible reversal of this result. In Section 6 we prove a reversal
in the case of CAL PH functions. As an application we derive conditions under which
a CAL PH function is H0

n-convex (for PH functions H0
n-convexity is equivalent to L0

n-
convexity). Let us note that an attempt to generalize the results from Section 6 to CAL
but not necessarily PH functions brings into light new phenomena. The authors intend
to study separately this more general case.

Confining in the last section to PH functions, we would like to add the following comment.
Many important functions in nonsmooth analysis are PH, say different type of generalized
derivatives with respect to the directions, or the Minkowski gauge of a radiant set. For
other aspects of applications of PH functions in abstract convexity see [2] and [10].

The Hn+1-convex functions find interesting applications in the study of radiant (star-
shaped at zero) and co-radiant sets [9, 11, 12] and also in the study of a separation of
star-shaped sets by means of a finite collection of linear functions. We hope that H0

n-
convex functions can find also similar applications.

The class of CAL functions contains the class of CAR functions possessing a minimum at
x0 = 0. The importance of such functions, various applications and some duality schemes
in convex setting has been studied by Penot [6]. The present paper deals in fact with
an extension of the duality scheme of Moreau [4] generalizing the well known duality
schemes for convex functions. The latter is discussed in details e.g. in Borwein, Lewis [1].
Extension of Moreau duality can be found in Rubinov [9] and Singer [13]. Obviously, the
problem of finding a general characterization of Hk-convex and in particular of Hn-convex
functions remains open.



G. P. Crespi, I. Ginchev, M. Rocca, A. Rubinov / Convex Along Lines Functions ... 187

2. Preliminaries

In this paper R+∞ denotes the set R+∞ = R ∪ {+∞} and R = R ∪ {−∞} ∪ {+∞}. The
abbreviation lsc stands for lower semicontinuous and usc for upper semicontinuous. We
shall examine some special classes of functions f : Rn → R+∞.

2.1. Positively homogeneous functions and convex-along-rays functions

Let f : Rn → R+∞ be a function with dom f 6= ∅. Recall that the domain of f : Rn → R+∞

is the set dom f = {x ∈ R
n | f(x) 6= +∞}. For each x ∈ R

n, x 6= 0, consider the ray
Rx = {αx : α ≥ 0} and the restriction fx of f to this ray. In other words fx is the function
of one variable defined on [0,+∞) by fx(α) = f(αx). We say that a certain property
holds for f along rays if fx possesses this property for each x. In particular, f is convex-
along-rays (CAR) if fx is convex for each x. This functions is positively homogeneous of
first degree (PH) if f(αx) = αf(x) for all x ∈ R

n and α ≥ 0. We accept in the sequel
that 0 · (+∞) = 0. This definition implies that f(0) = 0 for each PH function f , hence
0 ∈ dom f .

The examination of CAR functions can be reduced to the examination of PH functions
with the help of construction of lower affine approximation that is discussed in [9, Section
5.5.3]. Let f be a CAR function and a < f(0). For each x ∈ R

n consider

ba(x) = inf
λ>0

fx(λ)− a

λ
= sup{c : a+ cλ ≤ fx(λ), λ ≥ 0}. (1)

It is easy to check that ba is a PH function for each a < f(0). If f is PH then ba = f for
all a < 0 = f(0). The function

ga(x) = a+ ba(x), x ∈ R
n, (2)

is affine-along-rays. It is easy to see that ga(x) ≤ f(x), ∀x ∈ R
n. This function is called

a lower affine approximation of f .

Proposition 2.1 ([9], Lemma 5.5). A lsc-along-rays CAR function is the supremum
of its lower affine approximations.

In [9] this result was proved for lsc CAR functions however the proof holds for lsc-along-
rays CAR functions. Using terminology of abstract convexity (see next subsection) we
can say that a lsc-along-rays CAR function is abstract convex with respect to the set of
abstract affine function HL where L is the set of PH functions.

Let 0 ∈ dom f . Then we can also consider the lower affine approximation with a = f(0).
Since fx(0) = f(0) we have in such a case:

ba(x) = inf
λ>0

fx(λ)− fx(0)

λ
.

If the function f is CAR, the function fx is convex on [0,+∞), hence

ba(x) = lim
λ→0+

fx(λ)− fx(0)

λ
= (fx)

′(0) = f ′(0, x),
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where f ′(0, x) is the directional derivative of f at zero in the direction x. We have for
a = f(0):

ga(x) = a+ ba(x) = f(0) + inf
λ>0

fx(λ)− fx(0)

λ
≤ f(0) + fx(1)− f(0) = f(x)

so ga is a lower affine approximation also for a = f(0).

2.2. Abstract convex functions

We recall first some definitions from abstract convexity [9]. Let X be a given set and L
be a set of functions ℓ : X → R. A function f : X → R+∞ is said to be abstract convex
with respect to L or L-convex at a point x0 if

f(x0) = sup{ℓ(x0) | ℓ ∈ L, ℓ ≤ f}. (3)

Here g ≤ f means g(x) ≤ f(x) for all x ∈ X. In such a situation L is called the set of
elementary functions. If (3) holds for each x0 ∈ X then f is called L-convex (abstract
convex w.r.t. L) on X. For each ℓ ∈ L and c ∈ R consider the function

hℓ,c(x) = ℓ(x)− c, x ∈ X. (4)

The set L with the property that ℓ ∈ L, c 6= 0, implies hℓ,c /∈ L is called a set of abstract
linear functions. If L is a set of abstract linear functions, then a function of the form (4)
is called abstract affine function. The set of all abstract affine functions is denoted by
HL.

Consider a function f : X → R+∞. A function ℓ ∈ L is called an L-subgradient of f at a
point x0 ∈ dom f if

ℓ(x)− ℓ(x0) ≤ f(x)− f(x0) for all x ∈ X.

The set ∂Lf(x
0) of all L-subgradients of f at x0 is called the L-subdifferential of f at x0.

It holds that f is L-subdifferentiable at x0, that is ∂Lf(x
0) 6= ∅, if and only if

f(x0) = max{h(x0) | h ∈ HL, h ≤ f}.

Thus a L-subdifferentiable at x0 ∈ dom f function f is HL-convex at x0. If

f(x) = max{h(x) | h ∈ H, h ≤ f} for all x ∈ dom f,

then ∂Lf(x) 6= ∅ for every x ∈ dom f and f is called L-subdifferentiable on dom f .

Assume that the set L consists of PH functions. Then each L-convex function is PH. Let
f be a PH function. Then ℓ ∈ ∂Lf(x0) if and only if

ℓ(x) ≤ f(x) for all x ∈ X and ℓ(x0) = f(x0). (5)

For given two sets L ⊂ L′ of abstract linear functions, obviously each HL-convex function
is HL′-convex. Further each HL-convex function with nonempty L-subdifferentials is HL′-
convex with nonempty HL′-subdifferentials.



G. P. Crespi, I. Ginchev, M. Rocca, A. Rubinov / Convex Along Lines Functions ... 189

2.3. Abstract convexity with respect to sets of min-type functions

Let n be a positive integer. Denote by R
n the n-dimensional Euclidean space. Let 〈·, ·〉

be the inner product in R
n. For a positive integer k we define the class of abstract linear

functions Lk as the set of all functions ℓ : Rn → R such that ℓ(x) = min1≤i≤m〈li, x〉 for
some m ≤ k and l1, . . . , lm ∈ R

n (repeating eventually some of the vectors we can simply
write k instead of m in the above minimum, a convention applied in the sequel). Clearly
Lk consists of PH functions. Denote the set HLk

of all abstract affine with respect to Lk

functions by Hk. Thus h ∈ Hk if and only if there exist li ∈ R
n, i = 1, . . . , k, and c ∈ R

such that

h(x) = min
1≤i≤k

(〈li, x〉 − c), x ∈ R
n.

It is clear from this definition that if k′ < k′′ then Hk′ ⊂ Hk′′ and therefore the class of
Hk′-convex functions is contained in the class of Hk′′-convex functions. In particular the
class of Hn-convex functions is contained in the class of Hn+1-convex functions.

Since a function ℓ ∈ Lk is continuous and PH, it follows that each Lk-convex function is lsc
and PH. The following two proposition can be found in [9, Section 5.5.2] and Proposition
2.4 is in fact Proposition 5.53 in [9]. Further, for Proposition 2.5 see [9, Theorem 5.16].

Proposition 2.2. Each lsc PH nonnegative function f is Ln-convex.

Proposition 2.3. A function f with 0 ∈ dom f is Ln+1-convex if and only if f is lsc and
PH.

Proposition 2.4. For arbitrary positive integer k a Hk-convex function is a lsc CAR
function.

Proposition 2.5. A function f with 0 ∈ dom f is Hn+1-convex if and only if f is lsc
and CAR.

A description of Ln-convex functions and Hn-convex functions is more complicated.

The set Lk of all min-type functions is very large, so it is convenient to consider some
special subsets of this set. Denote by Lk(x

0) the set of functions ℓ(x) = min1≤i≤k〈li, x〉
such that

〈l1, x0〉 = 〈l2, x0〉 = · · · = 〈lk, x0〉. (6)

We consider Lk(x
0) as a set of abstract linear functions. The set of the shifts (4) with

ℓ ∈ Lk(x
0) is denoted by Hk(x

0) and can be taken as a set of abstract affine func-
tions. We are interested in the situation when f is Lk(x

0)-subdifferentiable, Lk(x
0)-

convex or Hk(x
0)-convex at x0. In such a case we say for short that f is respectively L0

k-
subdifferentiable, L0

k-convex andH0
k-convex at x0. The inclusion Lk(x

0) ⊂ Lk implies that
each L0

k-subdifferentiable or L0
k-convex at x0 function is respectively Lk-subdifferentiable

or Lk-convex at x0. Similarly, Hk(x
0) ⊂ Hk implies that each H0

k-convex at x0 function
is Hk-convex at x0. We will say that f is L0

k-subdifferentiable if f is L0
k-subdifferentiable

at any point x0 ∈ dom f . We say that f is L0
k-convex or H0

k-convex if it is respectively
L0

k-convex or H0
k-convex at any point x0 ∈ R

n. Obviously, if f is L0
k-subdifferentiable,

L0
k-convex or H0

k-convex, then it is respectively Lk-subdifferentiable, Lk-convex or Hk-
convex.
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Remark 2.6. Let us note that L0
k-convex and H0

k-convex functions are not abstract con-
vex functions in the sense of the definition of abstract convexity given in Subsection 2.2,
and for this reason these notions can be considered only as a convenient notation. For
instance, L0

k-convexity means abstract convexity at each point x0 with respect to the set
of elementary functions Lk(x

0) that depends on this point.

Remark 2.7. The notions of H0
k-convexity and L0

k-subdifferentiability allow us to ex-
amine a qualified version of Hk-convexity and Lk-subdifferentiability. For instance, L0

k-
subdifferentiability of f means that f is Lk-subdifferentiable at each point x0 ∈ dom f
and moreover f has a subgradient ℓ = (l1, . . . , lk) ∈ Lk such that (6) holds.

Some results related to L0
k-convex, H0

k-convex and L0
k-subdifferentiable functions with

k = n + 1 can be found in [9]. In this paper we study L0
k-convex, H0

k-convex and L0
k-

subdifferentiable functions with k = n.

3. CAL functions and their lower affine approximation

Let f : Rn → R+∞ be a function. For each x ∈ R
n, x 6= 0, consider the line L = {λx :

λ ∈ R} and the restriction fx of f to this line. In other words fx is the function of one
variable defined on R by fx(α) = f(αx). We say that f enjoys a certain property along
lines if fx possesses this property for each x. In particular, f is called convex-along-lines
(CAL) if fx is convex for each x. The function f is called lsc-along-lines if fx is lsc for
each x. It is called linear-along-lines if fx is linear, or in other words if f(αx) = αf(x)
for all x ∈ R

n and α ∈ R. Let us underline that we distinguish in the sequel between
the defined here function fx having domain R and the defined in Section 2.1 function fx
having domain [0,+∞).

In this paper we shall study CAL functions. First we indicate some properties of the set
of CAL functions. Namely, it is easy to check that the sum of a finite number of CAL
functions is a CAL function. The supremum of an arbitrary family of CAL functions is a
CAL function. The pointwise limit of a net of CAL functions is a CAL function.

We give now simple examples of CAL functions.

1) Each convex function is CAL.

2) Each nonnegative PH function is CAL.

3) Let f be a CAR function with dom f ⊂ K, where K is a pointed closed cone (pointed
means K ∩ (−K) = ∅). Then f is CAL.

Proposition 3.2 below gives a condition for a CAR function to be CAL. We insert a proof
based on the notion of a Dini derivative. Consider a function f : Rn → R+∞. The upper
Dini-directional derivative of f at x ∈ dom f in direction u ∈ R

n is defined as element of
R by

f ′
+(x, u) = lim sup

t→0+

1

t
(f(x+ tu)− f(x)).

We introduce the second-order upper Dini-directional derivative of f at x in the direction
u if (and only if) f ′

+(x, u) is finite by

f ′′
+(x, u) = lim sup

t→0+

2

t2
(f(x+ tu)− f(x)− t f ′

+(x, u)).
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The following lemma characterizes the property of an usc function to be convex in terms
of upper Dini-derivatives and is a special case of a result proved in Ginchev, Ivanov [3,
Theorem 2.1].

Lemma 3.1. Let ϕ : R → R+∞ be usc function and domϕ be a convex set. Then ϕ is
convex if and only if the following two conditions are satisfied for each t ∈ domϕ:

a) ϕ′
+(t, 1) + ϕ′

+(t,−1) ≥ 0 if the expression in the left hand side has sense.

b) ϕ′
+(t, 1) + ϕ′

+(t,−1) = 0 implies ϕ′′
+(t, 1) ≥ 0.

We add the following comments to the above conditions. Concerning a) we accept that
sums of the type (±∞) + (∓∞) have no sense. All the other sums involving infinities
have sense: (±∞)+(±∞) = ±∞ and for a finite (±∞)+a = ±∞. Concerning b) we see
that ϕ′

+(t, 1) + ϕ′
+(t,−1) = 0 could have place only if ϕ′

+(t, 1) and ϕ′
+(t,−1) are finite,

whence ϕ′′
+(t, 1) does exist.

Now, applying Lemma 3.1 we get the following result:

Proposition 3.2. Let f : Rn → R+∞ be a CAR function with 0 ∈ dom f . Then the
property that f is CAL is equivalent to any of the following conditions:

10 ) f(x) + f(−x) ≥ 2f(0) for all x ∈ R
n,

20 ) f ′(0, u) + f ′(0,−u) ≥ 0 for all u ∈ R
n.

Proof. Suppose that f is CAL. Then inequality 10 is a straightforward consequence of
the convexity of the function fx. Putting x = tu in 10 we get

1

t
(f(tu)− f(0)) +

1

t
(f(−tu)− f(0)) ≥ 0,

and after passing to a limit with t → 0+ we obtain condition 20.

Suppose now that f is CAR and satisfies condition 20 (if condition 10 is assumed, we have
shown that also 20 has place). Fix x 6= 0.

The function fx is convex on the segments [0,+∞) and (−∞, 0]. If f is identical to +∞
on the interior of one of these segments, then obviously fx is convex. Assume that this is
not the case. Put t− = inf dom f and t+ = sup dom f . Then t− < 0 < t+. Choose t̄− and
t̄+ such that t− < t̄− < 0 < t̄+ < t+. Define the function ϕ : R → R+∞ which coincides
with fx on (t̄−, t̄+) and is equal to +∞ outside this interval.

We show that ϕ satisfies the assumptions of Lemma 3.1: The function ϕ is usc. At
a point t /∈ (t̄−, t̄+) it is usc, since f(t) = +∞. Further ϕ is convex on the intervals
(t̄−, 0) and (0, t̄+). Therefore it is continuous and hence usc at each point t from these
intervals (recall that a convex function defined on an Euclidean space is continuous at the
points in the interior of its domain). At t = 0 ϕ is usc in consequence of the inequalities
ϕ(0) ≥ lim supt→0+ ϕ(t) and ϕ(0) ≥ lim supt→0− ϕ(t). To show the first of them (the
second follows in a similar way) we must pass to a limit with t → 0+ in the inequality

ϕ(t) ≤
(

1− t

t̄+

)

ϕ(0) +
t

t̄+
ϕ(t̄+), t ∈ (0, t̄+),

obtained from the convexity of ϕ on [0, t̄+]. Inequality a) holds for each t ∈ domϕ. For
t ∈ domϕ \ {0} = (t̄−, 0) ∪ (0, t̄+) this follows from the convexity of ϕ restricted to each
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of the intervals (t̄−, 0) and (0, t̄+). For t = 0 from condition 20 we have

ϕ+(0, 1) + ϕ+(0, −1) = f ′(0, x) + f ′(0,−x) ≥ 0.

In b) the inequality ϕ′′
+(t, 1) = f ′′

+(tx, x) ≥ 0, t ∈ domϕ, follows from the convexity of fx

on the intervals (−∞, 0] and [0,+∞), and it is satisfied both if ϕ′
+(t, 1) +ϕ′

+(t, −1) = 0
holds and if does not. Now Lemma 3.1 gives that the function ϕ is convex.

We face the following situation. The function fx is convex on each of the overlapping
open intervals (−∞, 0), (t̄−, t̄+), (0,+∞), that is it is locally convex. It is a known fact
that then fx is convex on R.

Corollary 3.3. Let f be a PH function. Then the condition that f is CAL is equivalent
to f(x) + f(−x) ≥ 0 for all x ∈ R

n.

The following Proposition 3.4 needs to be noticed. It follows directly from the subsequent
Lemma 3.5.

Proposition 3.4. The lower affine approximation of a CAL function is a CAL function.

Lemma 3.5. Let f be a CAL function and let a ≤ f(0). Let ba be the PH function
defined by (1). Then ba is a CAL function.

Proof. Let x ∈ R
n, x 6= 0. The convexity of fx implies for λ, µ > 0 the inequality

1

λ
(f(λx)− a) +

1

µ
(f(−µx)− a) ≥ λ+ µ

λµ
(f(0)− a) ≥ 0.

Taking infimum with respect to (λ, µ) ∈ (0,+∞)× (0,+∞) we get immediately ba(x) +
ba(−x) ≥ 0. The result follows now from Corollary 3.3.

4. Calmness

The notion of calmness is well known (see, for example, [8] and references therein). We
shall use the following definition: a function f : Rn → R+∞ is called locally calm at a
point x0 ∈ dom f if

calm f(x0) := lim inf
x→x0

f(x)− f(x0)

‖x− x0‖ > −∞. (7)

The value calm f(x0) is referred to as the local calmness of f at x0.

To be more precise we need to use the term locally calm from below, having in mind that
the inequality lim supx→x0(f(x) − f(x0))/‖x − x0‖ < +∞ can be considered as locally
calmness from above. However, we consider only (7) in this paper and we omit the words
“from below� for the sake of simplicity.

Obviously, a Fréchet differentiable at x0 function is locally calm. The following assertion
is also obvious and we omit its proof.

Proposition 4.1. If a function f : Rn → R+∞ is locally calm at a point x0 ∈ dom f then
f is lsc at x0.
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Clearly, the reverse statement does not hold. For PH functions however the following is
true.

Proposition 4.2. A PH function, which is lsc at zero is also locally calm at zero.

Proof. Take ε > 0 and assume that δ > 0 is such that ‖x‖ ≤ δ implies f(x) ≥ −ε. For
‖x‖ = δ we have f(x)/‖x‖ ≥ −ε/δ and from the PH property the same inequality is true
for all x. Therefore f is calm at zero.

Later we use also the following assertion.

Proposition 4.3 ([9], see Theorem 5.15). The local calmness of a lsc PH function at
a point x0 6= 0 is equivalent to the nonemptyness of the subdifferential ∂Ln+1

f(x0).

We now introduce the notion of global calmness. A function f : Rn → R+∞ is said to be
globally calm at a point x0 ∈ dom f if

Calm f(x0) := inf

{

f(x)− f(x0)

‖x− x0‖ | x ∈ R
n, x 6= x0

}

> −∞.

The value Calm f(x0) is referred to as the global calmness of f at x0. Obviously it holds
Calm f(x0) ≤ calm f(x0). Therefore if f is globally calm at x0 it is also locally calm at
x0. The next proposition shows that it can be said more in the case of a CAR function.

Proposition 4.4. Let a function f : Rn → R+∞ be CAR and such that f(0) < +∞.
Then calm f(0) = Calm f(0). Further, if x0 ∈ dom f and f is locally calm at both 0 and
x0, then f is globally calm at x0.

Proof. Let x ∈ R
n. The function t → f(tx), t ∈ [0, +∞), is convex, whence for t ∈ (0, 1]

it holds f(x)− f(0) ≥ 1

t
(f(tx)− f(0)) and consequently

1

‖x‖(f(x)− f(0)) ≥ lim inf
t→0+

1

‖tx‖(f(tx)− f(0)) ≥ calm f(0).

Therefore Calm f(0) ≥ calm f(0). Since the converse inequality is obviously true, we get
Calm f(0) = calm f(0).

Let x0 ∈ dom f be fixed. We show that if f is locally calm at both 0 and x0 then f is
globally calm at x0. The identity of the local and global calmness at 0 proves this assertion
for x0 = 0. Let now x0 6= 0. Since f is locally calm at x0, then for any c < calm f(x0)
there exists δ > 0 such that (f(x) − f(x0))/‖x − x0‖ > c for ‖x − x0‖ < δ. Let now
‖x− x0‖ ≥ δ. Then

f(x)− f(x0)

‖x− x0‖ =
f(x)− f(0)

‖x− x0‖ − f(x0)− f(0)

‖x− x0‖ .

In order to check the global calmness of f at x0 we need to show that the two terms in
the right-hand side are bounded from below.

For the second term we have

− f(x0)− f(0)

‖x− x0‖ ≥ − 1

‖x− x0‖ |f(x0)− f(0)| ≥ − 1

δ
|f(x0)− f(0)|.
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For the first term we have

f(x)− f(0)

‖x− x0‖ =
‖x‖

‖x− x0‖
f(x)− f(0)

‖x‖

≥ ‖x‖
‖x− x0‖ calm f(0) ≥ − ‖x‖

‖x− x0‖ | calm f(0)| ≥ −A | calm f(0)|,

where

A = sup

{ ‖x‖
‖x− x0‖ | ‖x− x0‖ ≥ δ

}

≤ ‖x0‖+ δ

δ
< +∞.

The above estimation for A follows from the inequalities

‖x‖
‖x− x0‖ ≤ ‖x0‖+ ‖x− x0‖

‖x− x0‖ ≤ ‖x0‖
‖x− x0‖ + 1 ≤ ‖x0‖

δ
+ 1.

Proposition 4.4 gives relations between local and global calmness for CAR functions. In
the case of PH functions we can say more.

Proposition 4.5. Let a function f : Rn → R+∞ be PH. Let x0 ∈ dom f . Then for all
t > 0 it holds calm f(x0) = calm f(tx0) and Calm f(x0) = Calm f(tx0).

Proof. We consider only the global calmness, the equality for the local calmness is derived
similarly. Applying the positive homogeneity we get

Calm f(x0) = inf
x 6=x0

f(x)− f(x0)

‖x− x0‖ = inf
x 6=x0

f(tx)− f(tx0)

‖tx− tx0‖

= inf
x 6=tx0

f(x)− f(tx0)

‖x− tx0‖ = Calm f(tx0).

Proposition 4.6. Let f : R
n → R+∞ be a PH function. Let x0 ∈ dom f and f be

locally calm at both 0 and x0. Then inft≥0Calm f(tx0) > −∞. If also −x0 ∈ dom f and
calm f(−x0) > −∞, then inft∈R Calm f(tx0) > −∞.

Proof. According to Proposition 4.4 it holds Calm f(0) > −∞ and Calm f(x0) > −∞.
According to Proposition 4.5 Calm f(tx0) = Calm f(x0) for t > 0, hence inft≥0Calm f(tx0)
> −∞. In the case of x0 6= 0, −x0 ∈ dom f and calm f(−x0) > −∞ we have also
Calm f(−tx0) = Calm f(−x0) > −∞ for all t > 0 and finally inft∈R Calm f(tx0) >
−∞.

We now show that lower semicontinuity at the origin of a CAR function implies globally
calmness at zero of lower affine approximations of this function.

Proposition 4.7. Let a function f : Rn → R+∞ be lsc at 0 and CAR with f(0) < +∞.
Then for each a < f(0) the PH function ba defined by (1) is globally calm at 0. More
precisely, Calm ba(0) ≥ −C, where C = (1/δ0)(f(0) − a) with δ0 > 0 defined so that
f(x) > a for ‖x‖ ≤ δ0 (the existence of δ0 follows from a < f(0) and from f lsc at 0).
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Proof. Fix x ∈ R
n \ {0}. We show that

ba(x)− ba(0)

‖x‖ =
ba(x)

‖x‖ ≥ −C. (8)

For this purpose we prove first that

f(tx) ≥ − f(0)− a

δ0
t‖x‖+ f(0) for all t >

δ0
‖x‖ . (9)

Suppose on the contrary, that for some t > δ0/‖x‖ the opposite inequality is true. From
the convexity of f on the ray {sx | s ≥ 0} we get

f

(

δ0
‖x‖ x

)

= f

((

1− δ0
t‖x‖

)

0 +
δ0

t‖x‖ tx

)

≤
(

1− δ0
t‖x‖

)

f(0) +
δ0

t‖x‖ f(tx)

<

(

1− δ0
t‖x‖

)

f(0) +
δ0

t‖x‖

(

− f(0)− a

δ0
t‖x‖+ f(0)

)

= a.

The obtained inequality contradicts however the inequality f((δ0/‖x‖)x) > a which is a
consequence of ‖ (δ0/‖x‖)x ‖ = δ0.

Now we show that

1

t
(f(tx)− a) ≥ − f(0)− a

δ0
‖x‖ for all t > 0. (10)

For t > δ0/‖x‖ this follows straightforward from (9). For 0 < t ≤ δ0/‖x‖ this follows from
f(tx) − a > 0. Inequality (10) gives ba(x) ≥ − ((f(0) − a)/δ0) ‖x‖ and straightforward
(8). In consequence Calm ba(0) ≥ −C.

Corollary 4.8. Let the function f : Rn → R+∞ be PH and let f be lsc at 0. Then

Calm f(0) := inf
x 6=0

f(x)

‖x‖ > −∞. (11)

Proof. Since f is PH, it follows that ba = f for all a < 0 = f(0). Now our assertion
follows from Proposition 4.6. This assertion can be proved easily also in a direct way.
Looking again at the proof of Proposition 4.2, we see that in fact we have demonstrated
there not only the local calmness, but also the global calmness of f at zero.

The lower semicontinuity of a PH function which satisfies (11) holds as a direct conse-
quence of Propositions 4.4 and 4.1.

Proposition 4.9. Let the function f : Rn → R+∞ be PH, 0 ∈ dom f and let (11) hold.
Then f is lsc at zero.

The property of a PH function to be lsc does not imply the calmness at the points x 6= 0.
We give now a simple example that confirms this assertion.
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Example 4.10. The function

f : R2 → R, f(x1, x2) =

{

−
√

|x1x2| , x1 ≥ 0,
√

|x1x2| , x1 < 0,

is continuous and CAL. Moreover, f is linear on each 1-dimensional subspace of R2 (in
other words f is linear-along-lines), but f is not locally calm at the nonzero points of the
positive x1-semiaxis and the x2-axis (and it is locally calm at all the remaining points of
R

2).

It is obvious that f is continuous and linear-along-lines. From the following estimation it
is clear that f is not locally calm at the points (x0

1, 0), x
0
1 > 0.

calm f(x0

1, 0) ≤ lim inf
x2→0+

f(x0
1, x2)− f(x0

1, 0)

x2

= lim inf
x2→0+

−
(

x0
1

x2

)1/2

= −∞.

Similar estimations show that f is not locally calm at the nonzero points of the x2-axis.
For x0 = (x0

1, 0), x
0
1 < 0, we have calm f(x0) = 0. This equality follows from f(x) ≥ 0 for

x = (x1, x2) satisfying ‖x− x0‖ ≤ −x0
1, while f(x) = 0 for x on the x1-axis. At the origin

x0 = (0, 0) we get straightforward from the definition that calm f(0, 0) = −1/
√
2. At all

the remaining points of R2 the function f is differentiable, hence locally calm.

5. Ln-subdifferentiability: necessary conditions

First we prove a statement showing that the global calmness is a necessary condition for
Lk-subdifferentiability.

Proposition 5.1. Let function f : Rn → R+∞ be Lk-subdifferentiable at x
0 ∈ dom f with

k ≥ 1. Then f is globally calm (hence locally calm) at x0.

Proof. Let l ∈ ∂Lk
f(x0). Then there exist l1, . . . lk ∈ R

n such that l(x) = mini=1,...,k〈li, x〉.
We have also f(x) − f(x0) ≥ l(x) − l(x0). The function l(x) = mini=1,...,k〈li, x〉 is super-
linear. Let ‖l‖ = max‖x‖≤1 |l(x)|. It is well-known that |l(x) − l(y)| ≤ ‖l‖‖x − y‖ for all
x, y ∈ R

n. Since f(x)− f(x0) ≥ l(x)− l(x0) for all x ∈ R
n, we have:

Calm f(x0) = inf
x 6=x0

f(x)− f(x0)

‖x− x0‖ ≥ inf
x 6=x0

l(x)− l(x0)

‖x− x0‖

≥ − sup
x 6=x0

|l(x)− l(x0)|
‖x− x0‖ ≥ −‖l‖ > −∞.

The following statement gives a necessary condition for a function f : Rn → R+∞ with
0 ∈ dom f to be Hn-convex with nonempty Ln-subdifferential.

Theorem 5.2. Let the function f : R
n → R+∞ be such that f(0) < +∞ and f is

Hn-convex at the points at which it is infinite. Then if f is Ln-subdifferentiable on R
n,

it is CAR and globally calm (hence locally calm) at each x0 ∈ dom f and there exists
a 1-dimensional subspace L ⊂ R

n, such that the restriction f |L of f on L is a convex
function.
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Proof. 10. Global calmness follows from Proposition 5.1.

20. The function f is CAR according to Proposition 2.4.

30. Since f is Ln-subdifferentiable at 0, it holds f(x)− f(0) ≥ ℓ(x)− ℓ(0) = ℓ(x) for all
x ∈ R

n, where ℓ(x) = min1≤i≤n〈li, x〉. The homogeneous system of (n−1) linear equations
of n variables

〈l1, x〉 = 〈l2, x〉 = · · · = 〈ln, x〉. (12)

possesses a solution u0 6= 0. Put L = {tu0 | t ∈ R}. Then L is 1-dimensional subspace, for
which f(x) ≥ f(0)+ 〈l, x〉 for x ∈ L, where l stands for any of the vectors li, i = 1, . . . , n.
We get from here for x ∈ L the inequality f(x)+f(−x) ≥ 2f(0). According to Proposition
3.2 we get that the restriction of f to L is convex.

The next example shows that the necessary conditions for Ln-subdifferentiability obtained
in Theorem 5.2 are not sufficient, that is Theorem 5.2 does not admit a reversal. We use
there the following proposition.

Proposition 5.3 ([9], Proposition 7.15, p. 292). Let f be a PH function and L be a
set of PH functions. Then f is HL-convex if and only if f is L-convex.

Example 5.4. Consider the function f : R2 → R defined by

f(x1, x2) =











x2
1/
√

x2
1 + x2

2, x1 > 0,

0, x1 = 0,

−2x2
1/
√

x2
1 + x2

2, x1 < 0.

The function f is finite and PH. It is CAR, globally calm at each x0 ∈ R
2, and its

restriction to the 1-dimensional subspace L = {(x1, x2) | x1 = 0} is identically zero, hence
convex. However, f is not L2-subdifferentiable at the points of the set L+ = {(x1, x2) |
x1 > 0}. Moreover, f is not H2-convex at these points.

It is obvious that f is finite, PH and with a restriction to L being identically zero. The
global calmness of f can be proved by means of Proposition 4.4. Indeed, at x = 0, one
has

f (x)− f (0)

‖x− 0‖ =























x2
1

x2
1 + x2

2

, x1 > 0,

0, x1 = 0,
−2x2

1

x2
1 + x2

2

, x1 < 0.

Hence
f (x)− f (0)

‖x− 0‖ ≥ −2x2
1

x2
1 + x2

2

∀x ∈ R
2,

which implies lim infx→0

f (x)− f (0)

‖x− 0‖ ≥ −2 > −∞, hence calm f(0) > −∞. By Propo-

sition 4.4, the latter means also Clam f(0) > −∞. Further f is locally calm at every
x 6= 0, since it is Fréchet differentiable. Again, by Proposition 4.4, we conclude global
camlmness at every x ∈ R

2.
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Now we prove that f is not H2-convex at the points x ∈ L+. Since any H2-convex PH
function is L2-convex (see Proposition 5.3), it is enough to show that f is not L2-convex.
This follows from the following property: If ℓ(x) = min1≤i≤2 〈li, x〉 satisfies the inequality
ℓ(x) ≤ f(x) for all x ∈ R

2, then ℓ(x) ≤ 0 at the points x ∈ L+. Indeed, for x ∈ L+

obviously f(x) > 0, therefore f(x) cannot be a supremum of the set {ℓ(x) | ℓ ∈ L2}. To
prove the property, let

〈l1, x̄〉 = 〈l2, x̄〉 for some x̄ = (x̄1, x̄2). (13)

Then also 〈l1, tx̄〉 = 〈l2, tx̄〉 for all t ∈ R. Therefore we may assume without loss of
generality that x̄1 ≥ 0. Now we have

−f(−x̄) ≤ ℓ(x̄) ≤ f(x̄), (14)

whence 2x̄2
1/
√

x̄2
1 + x̄2

2 ≤ x̄2
1/
√

x̄2
1 + x̄2

2. This inequality can hold only if x̄1 = 0. Let
li = (αi, βi), i = 1, 2. From (13) we get β1 = β2 := β and (14) gives β = 0. Therefore
ℓ(x) = min {α1x1, α2x1}. For x ∈ L+ applying (14) we obtain

ℓ(x) = min {α1x1, α2x1} ≤ x2
1

√

x2
1 + x2

2

.

Since ℓ(x) does not depend on x2, we may consider x1 on the left-hand side of the above
inequality a fixed point and vary with x2 on the right-hand side. Passing to a limit with
x2 → ∞ we get ℓ(x) ≤ 0.

A natural generalization of the appearing in Theorem 5.2 conclusion that the restriction
f |L of f to some 1-dimensional subspace is convex, or in other words that the defined in
Section 3 function fx is convex for some x 6= 0, is the condition that fx is convex for
all x, which means that f is CAL. This observation leads to the question, whether the
assumptions of Theorem 5.2 imply that f is CAL. The next example gives a negative
answer to this question.

Example 5.5. Let l1, . . . , ln with n > 1 be linearly independent vectors in R
n. Then the

function f : Rn → R, f(x) = min1≤i≤n〈li, x〉 is Ln-subdifferentiable, but not CAL.

Since f ∈ Ln, f is Ln-subdifferentiable. Let x̄ 6= 0 be a solution of system (12) and let
L be the 1-dimensional linear space spanned on x̄. Then there exist indexes i0, i1 and
x0 6= x̄ such that f(x0) = min1≤i≤n〈li, x0〉 = 〈li0 , x0〉 and 〈li1 , x0〉 > 〈li0 , x0〉. (Indeed,
the system of linear equations 〈li − ln, x〉 = 0, i = 1, . . . , n− 1, is of rank n− 1, whence
its solutions form 1-dimensional subspace. The rank is n − 1, since the vectors li − ln,
i = 1, . . . , n− 1, are linearly independent as a consequence of the linear independence of
the vectors li, i = 1, . . . , n.) Now f(−x0) = min1≤i≤n〈li, −x0〉 ≤ 〈li1 , −x0〉 and

f(−x0) + f(x0) ≤ 〈li1 , −x0〉+ 〈li0 , x0〉 < 0.

The function f is however PH and in virtue of Corollary 3.3 the above inequality shows
that f is not CAL.

Thus, an Ln-subdifferentiable function need not be CAL. The things change however, if
instead we confine to L0

n-subdifferentiability.
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Theorem 5.6. Let the function f : Rn → R+∞ be such that f(0) < +∞ and f is Hn-
convex at the points at which it is infinite. Suppose that f is L0

n-subdifferentiable on R
n.

Then f is CAL and globally calm (hence locally calm) at each x0 ∈ dom f .

Proof. Since f is L0
n-subdifferentiable function, it is also Ln-subdifferentiable and ac-

cording to Theorem 5.2 also CAR and globally calm at each x0 ∈ dom f . In particular f
is globally calm and lsc at 0 ∈ dom f . Take arbitrary u ∈ R

n \{0}. In order to prove that
f is CAL according to Proposition 3.2 it is enough to show that f ′(0, u) + f ′(0,−u) ≥ 0.
If on at least one of the sets {tu | t > 0} or {tu | t < 0} the function f is identically
+∞, then from f CAR we get that f restricted to the set {tu | t ∈ R} is convex and
the above inequality follows from Proposition 3.2 (the inequality is a necessary condi-
tion for the restricted function to be convex). Assume now that f is not identically +∞
on any of the two sets. Then there exists t0 > 0, such that [−t0u, t0u] ⊂ int dom f .
Let 0 < t < t0. Since f is L0

n-subdifferentiable at tu ∈ dom f , there exists ℓt ∈ Ln with
ℓt(x) = min1≤i≤n〈lti, x〉 such that ℓt(x)−ℓt(tu) ≤ f(x)−f(tu) and 〈lt1, tu〉 = · · · = 〈ltn, tu〉.
These equalities show that ℓt restricted to L is linear, where L is the linear space spanned
by u. Adding the inequalities

ℓt(t0u− tu) ≤ f(t0u)− f(tu),

ℓt(−t0u− tu) ≤ f(−t0u)− f(tu).

we get
2f(tu) ≤ f(t0u) + f(−t0u) + 2t ℓt(u),

From
(t0 − t)ℓt(u) = ℓt(t0u)− ℓt(tu) ≤ f(t0u)− f(tu)

we obtain

ℓt(u) ≤ − f(t0u− (t0 − t)u)− f(t0u)

t0 − t
≤ −f ′(t0u,−u) < +∞.

The estimation with the directional derivative follows from standard properties of the
convex function f(λu), 0 ≤ λ ≤ 1. The finiteness of the directional derivative comes from
t0u ∈ int dom f . Therefore

2f(tu) ≤ f(t0u) + f(−t0u)− 2t f ′(t0u,−u).

Passing to a limit with t → 0+ and using that f is lsc at 0 we get

2f(0) ≤ 2 lim inf
t→0+

f(tu) ≤ f(t0u) + f(−t0u).

The obtained inequality can be written as

1

t0
(f(t0u)− f(0)) +

1

t0
(f(−t0u)− f(0)) ≥ 0.

Passing to a limit with t0 → 0+ we get f ′(0, u) + f ′(0,−u) ≥ 0. We have shown that
property 20 in Proposition 3.2 is satisfied, whence f is CAL.

Thus, Theorem 5.6 shows that the L0
n-subdifferentiable functions with 0 ∈ dom f which

are Hn-convex at the points where they are infinite are necessary CAL functions. A
natural question arises whether Theorem 5.6 can be reverted. This problem for CAL PH
functions is investigated in Section 6.
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6. L0
n-subgradients and L0

n-convexity for CAL PH functions

In this section we prove existence of L0
n-subgradients for CAL PH functions and investigate

H0
n-convexity for such functions, or more precisely, their L0

n-convexity. Let us however
underline, that as in Proposition 5.3 it holds: A PH function is H0

n-convex at x0 if and
only if it is L0

n-convex at x0.

We need the following construction. Let f : Rn → R+∞ be a PH function and x0 ∈
dom f \ {0}. Consider the function f̃ : Rn → R+∞ defined by

f̃(x) =

{

−f(−x), x = λx0, λ < 0,
f(x), otherwise.

(15)

If f is CAL then due to Corollary 3.3 we have f(x) ≥ −f(−x) for all x, hence f̃ ≤ f .
Clearly f̃ is also a CAL and PH function. Note that −x0 ∈ dom f̃ . Assume that the
function f̃ has a L0

n-subgradient ℓ at the point x0. Since f̃ ≤ f and f̃(x0) = f(x0)
it follows that ℓ is also a L0

n-subgradient of f at x0. At the same time the equalities
ℓ(−x0) = −ℓ(x0) = −f̃(x0) = f̃(−x0) demonstrate that ℓ is L0

n-subgradient of f̃ at −x0.
Assume that f is L0

n-subdifferentiable at x
0 ∈ dom f \{0}. Then f̃ is L0

n-subdifferentiable
at both x0 and −x0, hence (see Proposition 5.1) f̃ is locally calm at x0 and −x0. The
local calmness at −x0 means that

lim inf
x→−x0

f(x) + f(x0)

‖x+ x0‖ > −∞.

In Theorem 6.2 below we prove that the local calmness of f̃ at x0 and −x0 implies L0
n-

subdifferentiability of f at x0. In the next theorem we establish first a special case of this
result.

Theorem 6.1. Let f be a lsc at zero CAL PH function. Let x0 6= 0 be such that
x0 ∈ dom f , −x0 ∈ dom f and f is locally calm at both x0 and −x0. Then f is L0

n-
subdifferentiable at x0.

Proof. Since the PH function f is lsc at zero it follows from Corollary 4.8 that f is
globally calm at zero. From Proposition 4.4 and the made assumptions it follows that f
is globally calm at x0 and −x0. It follows from (5) that a L0

n-subgradient of f at a point
x is a L0

n-subgradient of f at a point µx with µ > 0. Thus we can assume without loss of
generality that ‖x0‖ = 1. Let L = {λx0 : λ ∈ R} be the straight line going through zero
and x0. Due to Corollary 3.3 we have −f(−x0) ≤ f(x0). It follows from this inequality
that the linear function p defined on R by p(λ) = f(x0)λ enjoys the following properties:

p(λ) ≤ f(λx0), λ ∈ R and p(1) = f(x0).

Consider now function (15) and set along the proof for notational simplicity g = f̃ . The
function g is PH and CAL with g(x) ≤ f(x) for all x and g(x) = f(x) for x /∈ L. We have

Calm g(0) = inf
x 6=0

g(x)

‖x‖ = min

(

inf
x/∈L

f(x)

‖x‖ , f(x0),−f(x0)

)

> −∞.
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In view of Proposition 4.9 we can assert that g is lsc at zero. Having in mind that ‖x0‖ = 1
we get:

Calm g(x0) = min

(

inf
x∈L, x 6=x0

g(x)− g(x0)

‖x− x0‖ , inf
x/∈L

g(x)− g(x0)

‖x− x0‖

)

= min

(

inf
λ6=1

(λ− 1)f(x0)

|λ− 1| , inf
x/∈L

f(x)− f(x0)

‖x− x0‖

)

≥ min
(

−|f(x0)|,Calm f(x0)
)

> −∞.

Now we estimate Calm g(−x0). Since f is CAL and PH, we have −g(−x0) = f(x0) ≥
−f(−x0), so

Calm g(−x0) = min

(

inf
x∈L, x 6=x0

g(x)− g(−x0)

‖x+ x0‖ , inf
x/∈L

g(x)− g(−x0)

‖x+ x0‖

)

≥ min

(

inf
λ6=−1

(λ+ 1)f(x0)

|λ+ 1| , inf
x/∈L

f(x)− f(−x0)

‖x− (−x0)‖

)

≥ min
(

−|f(x0)|,Calm f(−x0)
)

> −∞.

Due to Proposition 4.6 we have

inf
x∈L

Calm g(x) ≥ −C > −∞. (16)

Consider the subspace M = {x ∈ R
n | 〈x0, x〉 = 0} of Rn orthogonal to the vector x0.

Since M is a n − 1 dimensional space we can find n vectors m1, . . . ,mn in M such that
their convex hull S, which is a simplex, contains the ball B = {x ∈ M : ‖x‖ ≤ ε}. Let
q(x) = maxi=1,...,n〈mi, x〉 be the support function of S. Since S ⊃ B and the support
function of B is equal to ε‖x‖ for x ∈ M , it follows that

q(x) := max
1≤i≤n

〈mi, x〉 ≥ ε‖x‖, x ∈ M. (17)

Fix x ∈ R
n and let x̄ = 〈x0, x〉x0 be the orthogonal projection of x on L. We have

g(x̄) = f(x0) 〈x0, x〉. (18)

Since x̄ ∈ L we can apply (16). Then

g(x)− g(x̄) ≥ −C ‖x− x̄‖.

Due to (17) and x− x̄ ∈ M we get

‖x− x̄‖ ≤ 1

ε
max
1≤i≤n

〈mi, x− x̄〉,

so

g(x)− g(x̄) ≥ −C ‖x− x̄‖ ≥ − C

ε
max
1≤i≤n

〈mi, x− x̄〉.

Since mi ∈ M, i = 1, . . . , n, and x̄ belongs to the subspace L being orthogonal to M , it
follows that 〈mi, x̄〉 = 0 or i = 1, . . . , n. Using these equalities and (18) we get

f(x) ≥ g(x) = (g(x)− g(x̄)) + g(x̄) ≥ − C

ε
max
1≤i≤n

〈mi, x〉+ f(x0)〈x0, x〉.
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Let li = −(C/ε)mi + f(x0)x0, i = 1, . . . , n. The above inequalities can be written as

f(x) ≥ min
1≤i≤n

〈li, x〉, x ∈ R
n.

and from the definition of li we have

〈l1, x0〉 = · · · = 〈ln, x0〉 = f(x0)〈x0, x0〉 = f(x0).

Therefore, we have proved that the function ℓ(x) = min1≤i≤n〈li, x〉 is a L0
n-subgradient of

f at the point x0.

The following theorem rejects some of the limitations of Theorem 6.1.

Theorem 6.2. Let f : Rn → R+∞ be a lsc at zero CAL PH function. Let x0 ∈ dom f\{0}
be a point such that both calm f(x0) = calm f̃(x0) > −∞ and calm f̃(−x0) > −∞, where
f̃ : Rn → R+∞ is defined by (15) (turn attention that if x0 ∈ dom f , then both x0 and
−x0 belong to f̃). Then there exists a L0

n-subgradient of f at x0. Consequently, if f is
locally calm at each point x ∈ dom f , then f is L0

n-subdifferentiable on R
n.

Proof. Consider the function f̃ defined by (15). Since f is lsc at zero, it easily follows
that f̃ is also lsc at zero. Hence, with regard to the assumptions on f , we can apply
Theorem 6.1 to the function f̃ obtaining that f̃ has a L0

n-subgradient ℓ at x0. It follows
from the discussion in the beginning of this section that ℓ is a L0

n-subgradient of f at x0.

Let f be locally calm at each point in dom f . To prove its L0
n-subdifferentiability it

remains to show that f is L0
n-subdifferentiable at zero. If dom f = {0}, ℓ ≡ 0 is a L0

n-
subgradient at 0. Otherwise, if there exists at least one x0 6= 0 in dom f , then f possesses a
L0

n-subgradients at x
0, and from the PH property it follows that each such L0

n-subgradient
is also a L0

n-subgradient at zero. We get again that f is L0
n-subdifferentiable at zero.

The following property of a PH function f has been used in the proof of Theorem 6.2
and needs specially to be underlined. If ℓ is L0

n-subgradient of f at x0 then ℓ is also a
L0

n-subgradient of f at 0. Therefore the L0
n-subdifferentiability of f at any point x0 6= 0

implies L0
n-subdifferentiability of f at 0. Obviously, this property remains true also for

other type of abstract subdifferentials as far as the set L of abstract linear functions
consists of PH functions.

The next result involves L0
n-convexity of PH functions and illustrates an application of

Theorem 6.2.

Theorem 6.3. Let f be a lsc at zero CAL PH function. Let x0 6= 0 be a point such that
f is lsc at x0 and −f(x0) < lim infx→−x0 f(x). Assume also f(x0) + f(−x0) > 0. Then
f is L0

n-convex at x0. If in addition x0 ∈ dom f and f is locally calm at x0, then f is
L0

n-subdifferentiable at x0.

Proof. Choose y0 ∈ R such that

−f(x0) < −y0 < lim inf
x→−x0

f(x). (19)

Consider the function g defined on R
n by

g(x) =

{

λy0, x = λx0, λ ∈ R,
f(x), otherwise.
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Then g is a PH function. We have g(x) + g(−x) ≥ 0 for all x ∈ R
n. Hence by Corollary

(3.3) g is a CAL function. We indicate some properties of g.

1) g(x) ≤ f(x) for all x ∈ R
n.

Indeed, we need only to check that g(λx0) ≤ f(λx0) for λ ∈ R. Using (19) we derive
the following: if λ ≥ 0 then g(λx0) = λy0 ≤ λf(x0) = f(λx0); if λ ≤ 0 then g(λx0) =
−|λ|y0 ≤ |λ|f(−x0) = f(λx0).

2) g is lsc at zero.

This property follows easily from f lsc at zero, the definition of g, Corollary 4.8 and
Proposition 4.9.

3) calm g(−x0) > −∞.

Choose δ > 0 such that ‖x + x0‖ < δ implies −y0 < f(x). If 0 < ‖x − x0‖ < δ we have
the estimations

g(x)− g(−x0)

‖x+ x0‖ ≥















(λ+ 1)y0

|λ+ 1| ‖x0‖ ≥ − |y0|
‖x0‖ , x = λx0,

f(x) + y0

‖x+ x0‖ > 0, otherwise.

Therefore calm g(−x0) ≥ −(|y0|/‖x0‖) > −∞.

4) calm g(x0) > −∞.

We have y0 < f(x0). Since f is lsc at x0, there exists δ > 0, such that ‖x − x0‖ < δ
implies y0 < f(x). If 0 < ‖x− x0‖ < δ as above we have the estimations

g(x)− g(x0)

‖x− x0‖ ≥















(λ− 1)y0

|λ− 1| ‖x0‖ ≥ − |y0|
‖x0‖ , x = λy0,

f(x)− y0

‖x− x0‖ > 0, otherwise.

Therefore calm g(x0) ≥ −(|y0|/‖x0‖) > −∞.

Due to Theorem 6.2 applied to the function g, we see that there exist vectors l1, . . . , ln
such that 〈li, x0〉 = y0 for all i = 1, . . . , n and min1≤i≤n〈li, x〉 ≤ g(x) ≤ f(x) for all x.
Since in the inequality −f(x0) < −y0, or equivalently y0 < f(x0), we can choose y0

arbitrary close to f(x0), we see that f is L0
n-convex at x0.

Let f be Ln-convex at x0. We apply the same construction putting

−f(x0) = −y0 < lim inf
x→−x0

f(x).

The latter implies that g(x) = f(x), sinse f is PH. Hence we can follow the same steps
which led to prove g is L0

n-subdifferentiable at x0. The only thing that changes in the
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above reasonings is the demonstration of 4). Choosing ε > 0 we will have for sufficiently
small δ > 0 the inequality

g(x)− g(x0)

‖x− x0‖ ≤ calm f(x0)− ε,

whence we will get calm g(x0) ≥ min (calm f(x0),−(|y0|/‖x0‖)) > −∞.

The next theorem is in fact a direct corollary of Theorem 6.3.

Theorem 6.4. Let a PH function f : Rn → R+∞ be lsc on R
n, 0 ∈ dom f and let f(x)+

f(−x) > 0 for all x 6= 0 (this assumption implies that f is CAL). Then f is L0
n-convex.

If in addition f is locally calm at the points x ∈ dom f , then f is L0
n-subdifferentiable on

R
n.
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