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We develop a theory of non-smooth analysis in infinite dimensional Banach homogenous groups and
extend the Fritz John necessary condition for minimizers of a Lipschitz function subject to Lipschitz
constraints.

1. Introduction

The study of minimization is one of the cornerstone uses of calculus. Typically, to min-
imize a given function f : R™ — R, one is often reduced to find the zeros of Df. This
simple algorithm is the foundation for much of the calculus of variations. Indeed, given an
open bounded domain Q of R” and boundary values u € W'%(Q), the harmonic function
h + u with h € W,*(€) is the unique minimum to the functional

£.(6) = / V(ut )P

across W, ?(Q). Many of the analytic properties of h follows from considering the deriva-
tive of £,. Indeed since h minimizes £, we then see that

DL, (h) =0

which implies that for each ¢ € C°(Q),

/Q (V(u+ h), V) = 0.

Nonsmooth analysis deals with the case where the function f : R®™ — R or the functional
L are not continuously differentiable. Its main technique is to replace the derivative with
a set of sub-derivatives. Indeed, following F. H. Clarke see [3, Chapter 2|, if X is a Banach
space and £ : X — R is locally Lipschitz, one defines the generalized derivative of L at
a point p as the set of all ( € X* (where X* is the space of continuous real valued linear
maps) so that

where

L°(p;v) = limsup
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It is well known that the the class of locally Lipschitz functions is much larger than the
class of continuously differentiable functions. Further, starting with any such function f
and performing composition, multiplication or addition with smooth or non-smooth func-
tions, one can produce examples of locally Lipschitz functions which are not differentiable.

Recently there has been active research on homogenous groups also known as Carnot
groups as introduced by Folland and Stein in [6]. We do not give a full list of the results
in the area of analysis in Carnot groups, but we do mention the works [11], [2], [8], [1],
[7], [10], [13] and [9]. A Carnot group G is topologically R", but the group operation
one employs is not the standard vector addition. This group operation is typically non-
commutative. However, for each A > 0 there is a non-homogenous dilation ) which is
a group isomorphism. The metric used on a Carnot group produces the same topology
as the Euclidean metric, but has a much richer class of locally Lipschitz functions than
the Euclidean case. Moreover, when doing analysis in Carnot groups of a real valued
function f, one examines Vp f the horizontal gradient of f rather than the full gradient
of f. The class of functions whose horizontal gradient exists and is continuous is denoted
by Cl .. There are functions f € C! which are not locally Lipschitz with respect to the
Euclidean metric, but to minimize such functions one just needs to find the zeros of the
horizontal gradient. The horizontal gradient at a point p of a function f can be calculated
by examining Dy f(p) the horizontal derivative of f at p which is an element of £(G;R).
The set £(G; R) is the set of all continuous maps ¢ : G — R for which ¢(p-q) = ¢(p)+¢(q)
and ¢ o 0y = Ao, i.e., L(G;R) is the Carnot group analogue of the of space of continuous
real valued linear maps, refer to Section 2 for the definition of 6. When f € CL,, Dy f(p)
is the unique element in £(G;R) for which

D f(p)(g) = tim L2 20) = /()

A—0 A

whenever g € G. With this in mind a natural way to extend the Clarke theory of non-
smooth analysis to Carnot groups (see Section 2 for the definitions) is to say ¢ € L(G;R)
is a sub-derivative of a locally Lipschitz function u at p if

C() <ul(p;-)

where

o . u(gdx(g)) — u(q)
u’(p; g) = limsu
(p g) q—>p7/\l£) A

and we will write ¢ € du(p). It is worth noting that if u € CL | then du(p) = {Dgyu(p)},
see Corollary 3.16. We will define an infinite dimensional analogue of Carnot groups
which we call Banach homogenous groups which will allow us, together with the theorems
developed within, to examine minimization problems for which the standard tools of the
calculus of variations do not apply. In the classical case of where the domain of u is
a Banach space, the Hahn-Banach theorem assures us there are always sub-derivatives
of a locally Lipschitz function v at a point p. Our first theorem, Theorem 3.11, allows
us to use the Hahn-Banach theorem even in the setting of Banach homogenous groups.
Our main theorem is an analogue of the Fritz John necessary conditions of minimizing a
locally Lipschitz functions subject to locally Lipschitz constraints:

Theorem 1.1. Let G be an infinite (or finite) dimensional Banach homogenous group
and U an open subset of G. Let u: U — R, v : U — R™ and w : U — R" be locally
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Lipschitz functions (with G given the Carnot-Carathéodory metric). If zo € S so that
u(zo) = infg u where
S:={zxeU]|v(x) <0, w(x)=0},

then there exists a = (X\o,7,A) € {0,1} x R™ x R™ which is non-zero with v > 0 and
(v,v(z)) =0 so that
0€dNof + (7,v) + (A w))(zo).

Here for vector v € R™ we write v > 0 if each component of v is non-negative.

One corollary of Theorem 1.1 is a Lagrange multiplier rule for C | functions on Carnot

groups.

Corollary 1.2. Let u,hy,..., h,, be real valued C!, functions defined on an open sub-
set U of a Carnot group G so that for each p € S where S = ﬁ}”:lhj_l(O), the wvectors
{Vuhi(p)}jL, are linearly independent. If po € S so that u(py) = infsu, then there evists
A € R™ so that

0 =Va(u+ (X h)(po)

where h = (hy, hay ..., hy).

The simplest example of a Banach homogenous group whose metric is different from the
Euclidean metric is the first Heisenberg group H;. As a set H; is R3, but the metric
is so that the measure of a ball of radius R is comparable to R*. Moreover the class of
locally Lipschitz function with respect to the metric of H; is much richer than the class
of functions which are locally Lipschitz with respect to the Euclidean metric.

Corollary 1.2 in the Heisenberg group setting opens the window to calculating minimum
of functions defined on surfaces which are not smooth, or even algebraic varieties. Indeed,
F. Serra Cassano and B. Kirchheim in [12] have constructed a function f : R? — R whose
graph is (locally) the zero set of a Lipschitz function on the Heisenberg group but has
Euclidean Hausdorff dimension 21. In fact, the graph is (locally) the zero set of a Cl,
function whose horizontal gradient is non-zero.

The paper is organized as follows. In Section 2 we state our basic definitions and give
examples of Banach homogenous groups. In Section 3 we prove some of basic properties
of these concepts. In Section 4 we present the proof to our main theorem, Theorem 1.1
and also give proofs for a mean value theorem and a chain rule for generalized derivatives
of functions defined on Banach homogenous groups.

2. Definitions

Let G = V) x Vo x ... xV,, with each V; a Fréchét space (i.e. each V; is a complete metric
space with a topological vector space structure) and V; is a Banach space. For each
1 < i < mn, let d; denote the metric on V; (note that d;(x,y) = || — y||1 where || - || is
the norm of V;) and set m; : G — V; as projection. For an element v € G we will write
v; = m(v) and v = (v1,v,...,v,). We make G into a Fréchét space using the metric
do(v,w) =Y d;(v;, w;). We let || - ||5 denote the norm on V{* produced by || - ||, i.e., for
Qb € ‘/1*7
ollT = sup  [o(x)].

zeVi, [lz][1=1
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Definition 2.1. We say that G with a continuous group structure that makes the identity
0 and a function || [|cc : G — [0, 00) is an n-step Banach homogenous group if it satisfies
the following.

(1) The group operation has the form
roy=r+y+Qz,y)

with m0Q =0, for 2 <i <n, m(Q(z,y)) = Qi((xj)j-;ll, (y]);;ll) and for each x € G
and A € R we require that Q(z, Ax) = 0.
(2) For each A > 0 the map given by

Sx(v1,va, ..., vn) = (Avg, A2, ..., Ay,
is a group isomorphism. Recall that we will write an element v € G as v =
(v1,v9,...,0,) where v; = m;(v).
(3)  The function || - ||cc : G — [0,00) is a gauge, i.e.,

(i) for each A > 0, ||0\(z)||cc = Allz||cce,
(i) [z -yllce < lzllce + lyllcc,

(iii) || = z[lcc = ||#||cc and
(iv) ||z|lcc = 0 if and only if x = 0.
(4) The left invariant metric doc(z,y) := ||z7' - y||cc is complete and the topologies

induced by dec and dy are equivalent. We will call doe the Carnot-Carathéodory
metric on G. We will write Boe(p,r) as the set of all those x € G for which

dCC<J;7p) <Tr.

Note that each Banach space (V|| - ||y) with the group structure z - y = x + y with its
norm is a one step Banach homogenous group.

For two Banach homogenous groups G; and G, we define

L(G1;G2) :={¢: G — Go | ¢ is a continuous group homomorphism
so that for each A > 0, ¢ 0, = d) 0 ¢}.

We will say a function f : U — R where U is an open subset of G is locally Lipschitz, if
for each p € U there exists r > 0 and K € R so that for each x,y € Bee(p, 1),

|f(z) = f(y)| < Kdce(z,y).

Remark 2.2. The definition of a Banach homogenous group is motivated by the form
of the group law of Carnot groups in exponential coordinates. Indeed in exponential
coordinates (i.e., on the Lie algebra) the group law of a Carnot group is of the form

r-y=z+y+Qz,y)

where @) is a finite sum of iterated brackets generated by the Baker-Campbell-Hausdorff
formula. Analogously to both Carnot groups and Banach spaces, a Banach homogenous
group possesses the following properties.

(A) The fact that Q(z, Ax) = 0 implies that z - Az = (A + 1)z, in particular for each
m € Zand z € G, 2™ = mx. Thus, 27! = —z and ||z7Y||cc = ||z]|cc. Additionally,
for each z1 € Vi, ds14(x1) = 05(x1) - §¢(x1). Moreover, since Qg = 0, for g € G and
h € 771(0), we see that m,(gh) = m1(hg) = m1(g). We also see that for each k, if
mj(g) =mj(h) =0 for 1 < j <k, then 7;(g-h) =0 for 1 <j <k as well.
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For each k > 1, if ;(v) = 0 for 1 < j < k, then there exists w* € V; for k <i <mn
so that v = w* - w1 .. .. w" and w* = m,(v). Indeed, if k = n, then v € V},, and we
are done. Inductively, if v is such that m;(v) = 0 for 1 < j < k, let x = m(v) v.

The group law (item (1) of Definition 2.1) then gives us that for 1 < j < k,

mi(z) = m(v) + Q;(0,0) = 0

and

() = m(—v +v) + Qx(0,0) = 0.
Thus the induction hypothesis implies that z = w**! - ... - w" with w’ € V;. Thus,
v =1z =mp(v) - wh. .. -w" as needed. Also note that the above implies that if

v € G with 7;(v) =0 for 1 < j < k, then there exists w' € V; for k < i < n so that
v=w"w" .. . wkand w* = 7 (v). Indeed, let v be as above and let x = v~!.

Then (A) gives us that + = —v and thus 7j(z) = 0 for 1 < j < k. Hence there

exists @/ € V; for k < j < nso that x = a* - a**! - ... a" with a* = m(2). Thus
v=a"t=(a"-d" . a) T = () (a”_lf1 Cae (ak)_l.
Letting w’ = (o) " = —a’ we see that w’ € V;, wk = m,(v) and v = w™w" ... -wh,

In the case where each of the V;’s are Banach spaces and () is continuously differ-
entiable, ) and it’s derivatives have polynomial growth. Indeed, since d, is a group
homomorphism, we see that for 2 < i < n,

Qi((Nx)52y, (Wyy)im) = NQil(2))521, (5)i=0)- (1)

Recall that the Fréchét derivative of @); when it exists at a point (z,y) € G denoted
by DQ;(z,y) is the unique continuous linear map from G x G to V; for which

Qi + v,y + w) = Qi(x, y) — DQi(x, y) (v, w)]|;

lim =0
vw—0 [lollo + [[wllo
where || - ||; is the norm on V; and ||v||o = >, ||vi||; . Using equation (1) one has

that for each A > 0, z,y € G and v;,w; € V; (with 1 < j <),
DQ;(0x(x), 0x(y))(vj, w;) = X7 DQi(x, y) (v, w;).

In particular,
i—1

1DQi(6x(x), 5\W)I| < 1DQu(, y)l - DV
j=1

where ||DQ;(z,y)|| is the operator norm of DQ;(x,y). Since @; is continuously
differentiable, there is a neighborhood of 0 for which || D@;|| is bounded by a constant
M. Hence, using the above we see that ||DQ;|| has polynomial growth. If we let
7.(y) = x - y, then the above gives a polynomial ® : R? — R so that ||D7,(y)|| <
O({lzllo, Iyllo)-

If each of the V; are Banach spaces, then we have a ball-box theorem on G, i.e.,
there exists a constant C' > 0 so that for each r > 0

éBox(O,’r) C Bee(0,7) € CBox(0,7)
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where for each r > 0 and A > 0
ABox(0,7) := {(v,va,...,v,) €G | for 1 <i <, [|vi]|; < M}

Indeed, since the topologies produced by the metrics doc and dy are equivalent there
exists C' > 0 so that

éBox(O, 1) € Bee(0,1) € CBox(0,1).

Let v € Bee(0,7) and set w = 6y/,(v). Then w € Bee(0,1) and thus also w €
CBox(0,1). Hence for each i, ||w;||; < C. Now v = 6,(w). Thus for each i,
l|vs]| = ri]wi]| < Cr', ie., v € CBox(0,r). Hence Boo(0,7) € CBox(0,7). On
the other hand if v € $Box(0,7), let w = 8y/,(v). Then [|w;||; = %||vi]]; < &, ie.,
w € £Box(0,1) and thus w € Bee(0,1). Now v = 6,(w), thus v € Bee(0, 7).
Along similar lines by using a continuity argument, one can show that if V; is a
Banach space (without assuming weather or not the other components of G are
Banach spaces) that there exists a constant C' > 0 so that for each v* € V;,

1 ) - )
Allvlls = llv'llee < Cllv'll.

By homogeneity, a group homomorphism ¢ between two Banach homogenous group
G1 and Gy which commutes with d, for each A > 0 is continuous if and only if

19lle@i62) == sup_|l¢(g)llcc < oo

llgllco<1

For the case where G, is R we make £(G;R) into a normed linear space by using
the above norm. Additionally, for each Banach homogenous group G, £(G;G) also
becomes a group by composition for which each A > 0 induces a group isomorphism,
Ax(¢) = dr0¢. Additionally, for each ¢y, ¢y € L(G;G), ||¢102llc6:0) < M|1lle0)-
||#2||2(g:6)- Moreover, a standard proof (see for instance [5]) to the Open Mapping
theorem can be adapted to Banach homogenous groups to conclude the following
Open Mapping theorem for Banach homogenous groups:

Theorem 2.3. Let G, and Gy be Banach homogenous groups and ¢ € L(G1;Ga) so that ¢
s onto. Then ( is also an open map. In particular, if ( is a continuous group isomorphism,
then (' is continuous.

One useful corollary of the above theorem is:

Theorem 2.4. Let G with || - ||cc be a Banach homogenous group. If ||| - |||cc is another
gauge on G which makes G into a Banach homogenous group for which there exists a
constant K > 0 so that || - ||cc < K||| - |||cc, then there exists another constant K' > 0
so that ||| - |[lcc < K'|| - ||cc-

Some examples of Banach homogenous groups follow.

Example 2.5. All Carnot groups are Banach homogenous groups. Indeed, let G be a
Carnot group whose Lie algebra G admits the stratification G =V & Vo b ... D V., ie.,
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span[Vi, V] = Viyg for 1 <@ <n—1and [V4,V,] = 0. Let (-,-), be an inner product on
G and define a Riemannian metric, (-,-), on G by letting

(D7:(0)(v), D72 (0)(w)), = (v, W)

for each v, w € ToG where 7,(p) = x - p, i.e., the above inner product is the left-invariant
inner product produced by (-,-),. Given an interval I of R, we say a piecewise smooth
curve v : I — G is horizontal if for a.e. t € I, /(t) € D7y (0)(V1). Define the Carnot-
Carathéodory metric on G as

deo(p, q) = inf{i(7) | v is a horizontal curve connecting p to ¢}

where
I(y) = / (1), 7 ()72 .

By Chow’s theorem, dee(p, q) is finite for each pair p,q € G. Since G and G are diffeo-
morphic through the exponential map we can identify G and G. The Baker-Campbell-
Hausdorff formula gives that on G, the group law is given by

r-y=x+y+Qzy)

where @ is a finite sum of iterated brackets. Hence @) satisfies item (1) of Definition 2.1.
Additionally, for each A\ > 0 we have that the map &, : G — G given by m;(d)(v)) = N'm;(v)
is a group homomorphism where m; : G — V; is projection. The function ||z||cc =
dec(0,2) is a gauge because doe is a left invariant metric with dee(—2,0) = doc(z,0)
and dec(0r(2),0) = Adee(x,0) for all x € G and A > 0.

Example 2.6. A less traditional example is an infinite dimensional Heisnenberg group.
Fix an infinite dimensional real Hilbert space (Hg, (-, )z) and let (Hg, (-,-)c) be the
complexification of Hg, i.e., Hc = Hr x Hy and

(@1, 1), (T2, 92))c = (1, T2)g + (Y1, Y2 — 0 (T1, Y2)p + 1 (Y1, T2)g -
Let G = H¢ x R with the group operation

1
(ZL‘, S) : (ya t) = (ZL‘ +y,s+i+ §IH1 <I7 y)(C)
Analogous to the Heisenberg setting, we define the horizontal plane at a point p € G as
H,G = D7,(0)(Hc % 0)

where 7,(x) := p-z. Given and interval I of R, we say a piecewise smooth curve y: I — G
where [ is an interval of R is horizontal if for a.e. t, 7/(t) € HyG. Let (-,-), be the real
inner-product on G produced when viewing G as HZ X R and || - || be the norm produced
by (-,-),- For each p € G we create a new inner product as

(D7p(0)(v), D7 (0)(w)),, = (v, W), -

For (x,s) € G, let V be a one dimensional complex vector subspace of H¢ containing x,
i.e., if x # 0, then V = spang(x). The set V xR with the above group action is isomorphic
to the first Heisenberg group H; through the map ¢ : H; — V X R defined by

t(c,t) = (ez,t) (2)
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where z € V is fixed with (z,2)c = 1. Moreover, if a smooth curve v : I — H; is
horizontal, then the curve ¢ o 7 is horizontal in G. Hence by Chow’s theorem on the first
Heisenberg group, we see that for each p € G there exists a piecewise horizontal smooth
curve v : I — G connecting p to (0,0). This allows us to define a Carnot-Carathéodory
metric on G, doc as

dco(g, h) = inf{l(7) | v is a horizontal curve connecting g to h}

where

Just as in the case of a Carnot group, the above metric is left invariant because a curve
«v is horizontal if and only if for each p € G and A > 0, the curves 7, oy and J, o vy are
horizontal. Hence the function ||z||cc = doc(z,0) is a gauge and for each pair of points

p,q €G, dec(p,q) = |lp~'qllcc.
Since D7_(,4)(q)(w, s) = (w, s) + (0, 2Im (— 2, w)) we see that for each v € G and p € G

(v,0)g = (DTp(P)(D7(0)(v)), D7 (p)(D7,(0) ()
D7 (p)II* (D7,(0)(v)), D7 (0) (v))),
(1+lpllo)* (v, v),, -

In particular, for each R > 0 and each pair of points p and ¢ with |[p|l¢ < R and
llg|lo < R we have that dco(p,q) > ﬁ“p — q|lo. We claim that the metric do¢ still

<
<

produces the same topology. Indeed, let p = (z,t) € G and let V be a one complex
dimensional subspace of H¢ containing x endowed with the inner-product from (-, -),.
Then the subgroup V x R is isomorphic to H; by the map ¢ : H; — V x R given
by (2) so that dee(i(p),0) < dee(p,0). Now the Carnot-Carathéodory metric on H;
satisfies doc((2,1),0) < C(||z]| + [t|'/?). In particular, ||(z,t)|lcc < C(||z|lo + [t|'/?).
Thus, dec((z,5), (y,1)) < C(|lz — yllo + [t — s — $Im (z, y)¢ ['/?) which goes to zero as
||(x —y,t —s)|lo — 0, i.e., doc is a complete metric and produces the same topology as
the Hilbert space structure. We conclude that the function ||p||cc := doe(p, 0) will make
G a Banach homogenous group. Note that if we took Hg = R", then G would be the n-th
Heisenberg group, H,,.

Following the notation found in Example 2.6 we define the following for a Banach ho-
mogenous group G = Vi x V4 x ...V, where each V; is a Hilbert space.

Definition 2.7. Let G = V] x ..., xV,, be a Banach homogenous group where each V;
is a Hilbert space with inner-product (-, -), and the group law is smooth. Let (v, w), =
> (vi, w;);. For each p € G create the inner-product (-, -)  as

(D7p(0)(v), D7 (0)(w)),, = (v, W)y,

o (v,0), = (Dr_y(p) (v), D7y () (w)),

where 7,(x) = p- 2. This inner-product is the left invariant inner-product produced by
(-,-)o- For each p € G we let H,G be the horizontal space at p defined by

H,G = D7,(0)(V1 x 0 x ... x0).
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For each p € G we let m, : G — H,G be orthogonal projection onto H,G with respect to
inner-product (-, ), i.e.,

Tp = D7p(0) 0 71 0 D7,(0)*
where 7 is orthogonal projection onto V; with respect to the inner-product (-,-), and

D7,(0)* denotes the adjoint of D7,(0). For a function v : G — R, we say u has a
horizontal gradient at p if the function u, : V; — R

up(v) = u(7,(v))

has a Fréchét derivative at v = 0, i.e., there exists ¢ € V" so that

L () = w(0) — 6(0)|

v—0,veV] <U, U>1/2

=0.

We set Vyu(p) = D7,(0)(w,) where w, is the unique element in V; so that ¢(-) = (-, wp),.
We say u € CL if the map p — Vgu(p) is continuous as a map between G and V; when
V) is given the topology generated by the norm || - ||;. Note that if u is C*, then u is also
C2, and

su

Viu(p) = D7y(0)(m1(V(uo7,)(0)))
= m(Vu(p)).

Definition 2.8. For the case where not all of V; are Hilbert spaces we can still define
the horizontal derivative Dyu of a real valued function u as follows. We say a function u
defined on a open neighborhood of p has a horizontal derivative at p € G if the function
up : U — R where U C V} is an open neighborhood 0 in V;

up(x) = u(p - x)
has a Fréchét derivative at x = 0, i.e., there exists ¢ € V}* so that

|up(2) = up(0) = o))

lim =0
=0 1Egi
where the limit is across all € V; going to zero and || - ||; is the norm on V;. We set

Dyu(p) = ¢. We will say u € CL, if for each p, u has a horizontal derivative and the
function p — Dgyu(p) is continuous as a map between G and V* when V}* is given the
topology generated by the norm || - |[f. Note that if each of the V; are Hilbert spaces and
the group law is smooth, then

Dyu(p)(v1) = (Vau(p), D1p(v1)),

where Vyu(p) and (-, -),, are as in Definition 2.7. Moreover if each of the V; are Banach
spaces and the group law is smooth, then

Diru(p) = D(wo7,)(0) o 1y

where 7 is projection onto V4. In particular, if u is smooth, then wu is also CL, .
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3. Basics

Throughout we let G = V; x V5 x ... x V,, be a Banach homogenous group. Recall that
we say a real valued function f defined on an open subset U C G is locally Lipschitz if
for each p € U, there exists a constant K and an € > 0 so that for z,y € Beoo(p,€),

|f(x) = f(y)] < Kdoc(x,y).

Proposition 3.1. If L € L(G;R), then L restricted to Vi is an element of Vi* and
L = L om. Moreover, given ¢ € Vi, ¢ om € L(G;R). In particular, for a map
u:G — R, Dyu(p) € L(G;R) whenever Dyu(p) is defined.

Proof. We first claim that for each i > 1 and v; € V;, L(v;) = 0. Indeed, ds(v;) = 2%,
and for each m € N, (v;)™ = muv;. Thus
2L(v;) = L(8(v;)) = L(20;) = L((v:)*") = 2'L(v;)

0. By Remark 2.2(B), we have for each v € G there exist

which implies that L(v;)
" 2. ..-w". Hence

w? € Vo, w® € Vs, ..., w" € V, so that v =m(v) - w
Llv) = L(m@)- -w* w*-... -w")
= L(m () + L(w?®) + L(w*) + ... + L(w")

Moreover, for x,y € V7,
L(z +y) = L(m(z-y)) = L(z - y) = L(z) + L(y)
and for A > 0,
L(Az) = L(6x(z)) = AL(x).

Since 7! = —x, the above implies that L : V; — R is linear. That L restricted to V; is
continuous follows from the fact that L is continuous on G.

On the other hand, given ¢ € V", the map ¢ o m; is continuous on G because m : G — V;
is continuous. For each z,y € G,

P(mi(z-y)) = o(m(z) + m(y)) = d(m(x)) + o(m(y))
and for each A > 0,
¢(m1(0x(2))) = ¢(Ami(2)) = Ad(m1(x))
which implies that ¢ o m; € L£(G;R) as needed. O

Corollary 3.2. Let ( € L(G;R). Then for each g € 7;'(0) and h € G,

C(gh) = ((hg) = ¢(h).

In light of Proposition 3.1, we will say a sequence (, of elements in £(G;R) converges
weak* to an element ¢ € £(G;R) if for each g € G, (,(9) — ((g), which is equivalent to
requiring that ¢, — ¢ weak* as elements of V}*.

Definition 3.3. We call a function p : G — R a bounded signed gauge if the following
three conditions are satisfied.



K. Rogovin / Non-Smooth Analysis in Banach Homogenous Groups 677

(1) For each g,h € G, p(gh) < p(g) + p(h).
(2) For each g € G and A > 0, p(dr(g9)) = Ap(g).
(3) There exists a constant K > 0 so that for each g € G we have p(g) < K||gl|cc-

Remark 3.4. By using the fact that dco(g, h) = ||hgllcc = ||g7 h||cc, one can easily
derive that if (1)-(3) hold with K, then for each g, h € G,

lp(9) — p(h)| < Kdcc(g, h),

i.e., p is K-Lipschitz. Moreover, if a function p : G — R satisfies (1) and (2) of above,
then homogeneity implies that p satisfies (3) if and only if p is continuous.

Definition 3.5. Let u be a real valued locally Lipschitz function defined on a neighbor-
hood of p € G. Following Clarke, we define the generalized directional derivative of u at
p in the (right) direction g as

o : u(gdr(g)) — u(q)
u’(p; g) = limsu .
(p; 9) im sup s

Proposition 3.6. If u is C, on a neighborhood of p € G, then u°(p;g) = Dgyu(p)(g)
whenever g € Vi where Dgu(p) is the horizontal derivative of u at p as defined in Def-
inition 2.8. Moreover, if v is Lipschitz on a neighborhood of p, then (u + v)°(p;g) =
u®(p; g) +v°(p; g) for each g € V1.

Proof. Let g € V;. We first claim that if u is C,, then for ¢ close to p the map

fa(t) = ulq - 0.(9))

is C' on (0,¢€) for some € > 0. Since u is C,, for p close to ¢, the map u, : V; — R
defined as u,(v1) = u(q - v1) has a Fréchét derivative Du,(0) € Vi* at v, = 0, hence for
each g € Vq,

ug(Ag) = 14(0)

= Duy(0)(g)-

lim
A—0

Now for ¢ > 0,

— lim uqét(g)<h9) - uq5t(g)(0)
h—0 h
Dugs,(4)(0)(9)

Dyu(qo(9))(9)

which because Dyu is continuous, is a continuous function in ¢. In particular, f, is C'.
For each ¢ near p and A > 0 near 0, the Mean Value theorem produces a t(\, q) € (0, \)

so that
fq()‘) — fq(o)

= ).
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Hence,

u(qox(g)) — u(q)

u’(p;g) = limsup

q—p,A10 A
sy B = 5(0)
q—p,A10 A
= limsup f'(t(), q))
q—p,A0
= limsup DHU(q5t(A,q)(g>>(g>
q—p,A10
= Dpyu(p)(g)

where the last line comes from the fact that Dyu is continuous. The above also shows us

[¢] : U q A .9 U q
u (F?.g) q lp’Al )\

which gives us for any real valued locally Lipschitz function v defined on a neighborhood
of p that (u+v)°(p; g) = u®(p; g) + v°(p; g) for g € V1. O

Proposition 3.7. Let u be a real valued K-Lipschitz function defined on a neighborhood
of p. We then have the following.

(1)  The function g — u°(p;g) is a bounded signed gauge with constant K.

() Ifpn—pand g, — g, then

lim sup ©®(pn; gn) < (P g).

n—oo

Proof. We first show that p(g) = u°(p;g) is a bounded signed gauge with constant K.
Indeed, for each pair g, h € G, we have

u(qox(gh)) — u(q)

u®(p;gh) = limsup

q—p,Al0 A
o u(qdx(gh)) — u(qor(g)) | u(gdr(g)) — ulq)
R
< Tmsup U(qéx(g)%(hl) — u(qdx(9)) ©limsup U(CJ%(Q)A) —u(g)
q—p,A10 q—p,\10

< w’(p;h) +u’(p;g).

The last line follows from the fact that if A | 0 and ¢ — p, then ¢d\(g) — p. Also, for
each p > 0 we have

u(g0x(3,(9))) — ulq)

u’(p;6,(9)) = limsup S
q—p,A10
= limsup ulgdn(9)) = ulg)
q—p,A10 A
ey M050u0(0) ~ u(0)
q—p,AL0 A p

= p-u(p;g).
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Since u is K-Lipschitz on a neighborhood of p and

dec(902(9),9) = 11g7 " 40x(9)|lcc = M|9gllcc

we get that u°(p; g) < Kl|g||lcc. To show item (2), let p, — p and g, — g. For each n,
let 0 < A\, <27 and ¢, € G with dec(gn, pn) < 27" so that

u(n6, (90)) = 0(an)

U’ (Pns gn) <277 +

An
Now ¢, — p and A, | 0, hence
“(pig) > limsup u(gnd, (gA)) — u(gn)
:IMQNM&M%»ﬂmw_w%%@m;w%%@»
> li:{soljp u®(Pn; gn) j 27" — Kdeoo(gn, 9) :
= li:n soljp u°®(Pn; gn)
as needed, completing the proof. O

Analogous to the definitions of non-smooth analysis in Banach spaces (see Clarke [3,
Chapter 2]), we define the generalized derivative of a real valued locally Lipschitz function
as follows.

Definition 3.8. Let u be a real valued Lipschitz function defined on a neighborhood of
p. We call ¢ € L(G;R) a generalized derivative of u at p if for each h € G,

((h) < u’(p;h)
and we write ¢ € du(p).

Remark 3.9. From the definition we conclude the following.

(1) If u is locally Lipschitz, then for each constant k, (u + k)°(p; g) = u°(p; g). Hence,
for for each constant k we have d(u + k)(p) = du(p).

(2) Let u and v be Lipschitz functions on a neighborhood of p € G. If for each g € G,
u®(p; g) < v°(p; g), then du(p) C dv(p).

(3) If uis a real valued K-Lipschitz function defined on a neighborhood of p and ¢ €
Ou(p), then ||(||zgr) < K. Indeed, for each g € G,

IC(9)] < |u’(p;g)| <limsup |u(gdr(g)) — u(g)]
q—p,A10 A

< Kl|gllzgm)-

(4) If a > 0, then (au)°(p;g) = au’(p;g) whenever u is locally Lipschitz. Hence, for
a > 0 we have 0(au)(p) = adu(p). Additionally, a direct computation yields that

u°(p; g) = (—u)°(p; g~1) which together with the above implies that for each @ € R,
d(au)(p) = adu(p).

Proposition 3.10. Let u be a real valued K -Lipschitz function defined on a neighborhood
ofp€G. If p, — p and (, — ¢ weak® so that ¢, € du(p,) for each n, then ¢ € du(p). In
particular, Ou(p) is a weak® closed subset of Vi*.
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Proof. Fix h € G. We then have that for each n,

Cu(h) < u®(pp; h).
Proposition 3.7 then gives us that

¢(h) = limsup ¢, (h) < limsupu®(py; h) < u®(p; h)

n—oo n—oo

as needed. ]

Proposition 3.1 shows us that for ( € L(G;R), ((g) = ((mi(g)) for all g € G. Hence, if
¢ € Ju(p), then for each g € G,

Clg) < inf u®(p;gh).
heri = (0)

Our next proposition when coupled with the Hahn-Banach theorem shows us that du(p)
is never empty whenever v is Lipschitz on a neighborhood of p.

Theorem 3.11. Let p : G — R be a bounded signed gauge with constant K. Then the
function
fv) = inf p(v,vg, ... )

v2€Va,..., v €Vp

is a Minkowski functional on Vi with f(v) < K||v||cc, where || - ||cc is the gauge on G.
In particular by Remark 2.2(D), there is a constant C' independent of p so that for each
vy € Vi, f(v1) < CK]||vy|| where ||-||1 is the norm of V1. Moreover, f satisfies the relation

f(v) = p(v,0,...,0).

Proof. We first do the proof when G has step 2. The step n case we outline at the end
of the proof.

Once we have shown that f is finite valued, it is a straightforward calculation to check
that f is a Minkowski functional on V;. For each g € V5, define p, as py(h) = p(gh). We
note that

1pg(h) — pg(k)| = |p(gh) — p(gk)| < Kdcc(gh, gk) = Kdcc(g, h)

i.e., for each g, p, is K-Lipschitz. Hence, f = inf ey, p, which is an infimum of K-Lipschitz
functions. Thus to show that f is finite valued it suffices to show that f(0) is not —oc.
Indeed, let 6(t) = p(0,t) and note that f(0) = infy, 6. We will now show that § > 0 on
V5. Since p is a bounded signed gauge we have

0(2t) = p(0,2t) = V2p(0,t) = O(t)V/2
on the other hand
0(2t) = p(0,2t) = p((0,¢) - (0,¢)) < 2p(0,¢) = 26(2)

which implies that 6(¢)v/2 < 20(t). Hence, 6(t) > 0 for all ¢ € V5 which implies that f is
a finite valued function.
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We will now show that f(z) = p(z,0) for each z € Vj. For each z € V} and € > 0 define
the non-empty closed set

S={teValp(zt) <e+ f(2)}

To finish, we need to show that 0 € N.(S%. Since p is a bounded signed gauge, we have
for each A > 0,

Mo(z,t) = p(Az, \*t).
Hence, t € S¢ if and only if for each A > 0, A\*t € S3<. Let z € V; and t € S¢. Since p is a
bounded signed gauge, using Remark 2.2(A) gives us that for each m € N,

p(mz, mt) = p((z,)"™) < mp(z,t) < m(e + f(2)) = f(mz) + me.

Le., if t € S, then mt € S)'c. Combining with the fact that for each w € V4, s € S,
implies that A%s € S and letting A = 1/m we see that if t € S¢, then for each m € N,
t/m € SS. However, S¢ is a non-empty closed set, thus 0 € S¢ for each € > 0, which
completes the proof for the step 2 case.

For the general case note that by Remark 2.2(A) and (B) that f(v) = inf ¢ 1) py(v) is
an infimum of K-Lipschitz functions. The first part is to show that f(0) is not —oo. First
consider the function on V,, as 6,,(v,,) = p(v,,). Just as in the proof of the step 2 case, one
can use the fact that p is sub-additive and that it commutes with dilations to conclude

that infy; 6, > 0 whenever n > 1. Now define the function 6,,_; on G as
On-1(g9) = inf py.(g).

Since the above is an infimum of Lipschitz functions, and infy, 6,, > 0, the above function
is again a finite valued Lipschitz function. Moreover because of the nature of the group
structure (i.e., items(A) and (B) of Remark 2.2) we see that 6,_; is also a bounded
signed gauge. If n — 1 > 1 then the same proof as in the step 2 case will imply that
infy, , 6,-1 > 0. Continue this process until one reaches V;, where the produced function
will then be 6;. It is straightforward to check that for each 7, 6; is a bounded signed gauge
and 6;(g9) < Kdcc(0,g). Also the group structure on G insures that 6,(v) = 61(m(v)).
Hence, for v; € Vi, f(v1) = 61(v1). The fact that 6; is sub-additive and commutes
with dilations implies that f is a Minkowski functional defined on Vj. The fact that
f(v) = p(v,0,...,0) follows from an analogues argument as in the step 2 case. [

An immediate consequence of the above proposition is the following

Corollary 3.12. Let u be a real valued K -Lipschitz function defined on a neighborhood
of p€G. Then ¢ € du(p) if and only if for each g € Vi, ((g) < u°(p;g).

Corollary 3.13. (L(G;R),|| - ||z@mwr)) is homeomorphicily isomorphic to Vi* via the map
U¢) = pom.
In particular, there exists a constant C > 0 so that for each r > 0,

_ r _ _
By; (0, 5) C Brgr)(0,7) € By« (0,Cr)

where B gr)(0,7) is the closed ball of radius r under the norm || - ||zgw) and By=(0,7)
is the close ball of radius r under the norm || -||5 which is the norm in V;* produced by the
norm on Vq, || - |]1.
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Proof. Since || - ||cc is a gauge, Theorem 3.11 implies that for each (vq,vs,...,v,) € G,

[|(v1,v2, ..., ) llce > ||(v1,0,...,0)||cc-

Now, for each ¢ € L(G;R),
(v) = ((m(v)).
Hence for each ¢ € L(G;R) we see that

<] 2gir) = sup [C(v)]-
UEV17HUHCCS1
By Remark 2.2(D), for v € V; we have that ||v||cc is comparable to [[v||1, thus ||C]|zgm)
is comparable to

ICllz@gry = sup  [C(v)].
veVL,|v][1<1

Proposition 3.1 shows us that each element of £(G;R) is really just an element of V}*.
Combined with the above we then conclude that £(G;R) with ||-||z(g;ry is homeomorphicly
isomorphic to V}* equipped with the operator norm. Il

By using Theorem 3.11 and the Hahn-Banach theorem we obtain the following Corollary:

Corollary 3.14. Letu be a real valued K -Lipschitz function defined on a neighborhood of
p € G. Then Ou(p) is a non-empty weak® closed convexr bounded subset of Vi*. Moreover,
for each v € V7,

u®(p;v) = sup ((v).
¢€du(p)

In particular, for each pair of real valued Lipschitz functions defined on a neighborhood of
p, 9u(p) C Ov(p) if and only if for each g € Vi, u°(p; g) < v°(p; 9)-

Proof. Proposition 3.10 gives us that du(p) is a weak* closed subset of V}*. The definition
of du(p) guarantees that it is convex. Moreover, since u is K-Lipschitz near p, we see
that for each g € G, u°(p; 9) < K||g||cc which implies that for all ¢ € du(p) and g € G,
16(9)| < Kl|gllcc, ie., ||@]|z@r) < K which with Corollary 3.13, implies that du(p) is a
bounded subset of V}*. Now, by Theorem 3.11 the function p(v) = u°(p;v) is a Minkowski
functional on V;. Moreover since u is K-Lipschitz we have by Remark 2.2(D) that for
each v e V}
p(0)] < Kllvllce < CKJulls.

Given v € Vj define the linear function ¢ on spang(v) as ¢(Av) = Ap(v). Since p is a
Minkowski functional, ¢ < p on spang(v). We now employ the Hahn-Banach theorem to
extend ¢ to all of V} so that ¢ < p on V;. Since |p(v)| < CK]||v||1, we have that ¢ is
continuous, in particular, ¢ € Vj*. Thus ¢om; € L(G;R) and for g € V1, ¢pomi(g) < u®(p; g)
which implies that ¢ o w1 € du(p). Moreover, ¢ o w1 (v) = ¢(v) = u°(p;v). Hence for all
v € V| we have
u®(p;v) < sup ((v).
(€u(p)
That

u’(p;z) > sup ((z)
¢€du(p)

follows from the definition of du(p). O
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Corollary 3.15. Let u and v be Lipschitz functions defined on a neighborhood of p. We
then have that

O(u+v)(p) C du(p) + dv(p).

Proof. Suppose there exists ¢ € d(u+ v)(p) which is not an element of the weak* closed
convex set du(p) + dv(p). Since du(p) and Jv(p) are convex weak™ closed subsets of V{*,
a standard separation theorem gives us a ¢ € R and a z € V; so that

((2) > ¢ 2 G(2) + G(2)

whenever (; € du(p) and (» € Jv(p). The definition of O(u + v)(p) then implies that
(u+v)°(p;2) > c > Gi(z) + G(2)

whenever (; € Ju(p) and (» € du(p). Easily, (u+ v)°(p; h) < u°(p;h) + v°(p; h). Hence
we have

G(2) —u’(pr2) + Go(2) —v°(pi2) <0

for each ¢; € Ou(p) and (; € dv(p). Corollary 3.14 (using the fact that both du(p) and
Ov(p) are weak* closed bounded convex subsets of V}*) implies there exists (; € du(p) and
(2 € Ovu(p) so that (1(z) = u°(p;z) and (a(z) = v°(p; z). Hence the above implies that
0 < 0, a contradiction. Il

Corollary 3.16. Let u € CL, be a real valued locally Lipschitz function defined on a

neighborhood of p € G. Then du(p) = {Dyu(p) om } where my : G — Vi is projection onto
Vi. Moreover, for each locally Lipschitz real valued function v defined on a neighborhood

of p, 9(u+w)(p) = du(p) + dv(p).

Proof. By Proposition 3.6, we see that for g € Vi, u°(p;g) = Dgu(g). Thus, Dyu(p) o
m € Ou(p). If ¢ € Ou(p) we then have that ¢ € V;* and ¢ < Dyu(p). Since both ¢ and
Dy (p) are linear, we see that ¢ = Dyu(p). By Corollary 3.15 and that both du(p) and
Jd(—u)(p) are singletons, we see that d(u + v)(p) = du(p) + dv(p). O

One interesting corollary of the proof of Theorem 3.11 is that one can create a simpler
Banach homogenous group from a given one:

Corollary 3.17. Let G =V, x Vo x ... xV,, be an n-step Banach homogenous group with
n > 2 under the gauge pg. Then H = Vi x Vo x ... x V,_1 is an (n — 1)-step Banach
homogenous group under the gauge py:

p'H(Ulv cee 7Un—1> = pg(vh s 7Un—170>'

Proof. The proof of Theorem 3.11 shows us that py is a bounded signed gauge on G
since

pg(Ul,...,Unfl,O) = Ul]él‘f; pg(vla"wvnflavn)
= wilrel‘f/npg((vl,...,vn,l,O)~(O,...,0,fun)).
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A quick calculation shows that if p is a local minimum or maximum of a locally Lipschitz
function u, then u°(p; h) > 0 for each h € G. Hence we have the following proposition:

Proposition 3.18. Ifp € G is a local minimum or local maximum of a locally Lipschitz
function u, then 0 € du(p).

The next proposition is useful in the proof of our main theorem, Theorem 1.1.

Proposition 3.19. Let u: G — (—o0, 0] be a lower semi-continuous function which is
bounded below and not identically equal to infinity. If po € G and € > 0 so that

u(po) < €+ iIglfu,

then there exists a p. € G so that the function

uc(r) = u(z) + Vedoo(z, pe)

achieves its infimum uniquely at x = p. and doc(pe, x) < v/€. In particular (by Corollary
3.13, Remark 3.9(3) and Corollary 3.15), there exists a constant C > 0 so that if u is
Lipschitz on a neighborhood of p., then for x near p.,

Ou(z) C du(z) + Byy(0,CVe)

and in particular,
0 € du(pe) + By (0, CV/e)

where By+(0,7) is the closed ball of radius r in Vy* .

Proof. This proposition is actually just an application of the following minimization
principle, [4, Theorem 1.1].

Theorem 3.20. Let X be a complete metric space with metric dx and f : X — (—o0, 0]
be a lower semi-continuous function which is not identically equal to infinity and bounded
from below. If o € X and € > 0 so that f(xy) < € + infx f, then for each A > 0, there
exist )y € X with dx(xg,z)) < A so that

(1) f(xx) < f(xo) and
(2)  for each x # xy, f(x) > f(zy) — $dx(z,2)),

i.€., the function

Ale) = flz) + de@;, )

attains its infimum at exactly one point, x.

We prove the Proposition by using the above theorem and letting A = /e and noting
that for each fixed y € G the function x — dee(x,y) is 1-Lipschitz. O

4. Main Results

Equipped with the material of Sections 2 and 3, we can now prove our main theorem,
Theorem 1.1 and also prove analogues of a mean value theorem and a chain rule in the
context of non-smooth analysis on Banach homogenous groups. It is worth noting that
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these proofs are almost straight adaptions of the proofs of the analogous theorems in
Banach spaces. The key results needed for these proofs to work in Banach homogenous
group are Theorem 3.11 and its corollaries.

Our first order of business is to prove Theorem 1.1: Let G be a Banach homogenous group
and W an open subset of G. Let u: W — R, v: W — R! and w : W — R* all be locally
Lipschitz. Let

S:={peW |v(p) <0,w(p) =0}

where we write a = (a1, as,...,q;) <0 if and only if for each j, a; < 0. If py € S so that
u(py) = infs u, then there exists a = (Mg, 7, A) € R x R x R™ with

(1) a#0,
(2) Ao €{0,1},
(3) v>0 and
(4) (v(po),7) =0
so that
0 € d(Aou + (v, v) + (A, w))(po)-

Proof of Theorem 1.1. Our proof closely mirrors the proof of the Fritz John necessary
conditions found in [3, pp. 100-101]. Since w,v and w are locally Lipschitz there exists
r > 0 so that u,v and w are Lipschitz on V = {z € G | dec(x,py) < r}. Define the
compact set

A={a= (7N ERXR xR™ | Xy > 0,7 >0,||a]| =1}

where || - || is the Euclidean norm on RTH+m,

For each € > 0 define the maps U, : V — R+ and §, : V — R by

Ue(p) := (u(p) — ulpo) + €,v(p), w(p)),
a@w:ggwium»

Because u, v and w are Lipschitz on V, there exists K > 0 so that U. and 0. are K-
Lipschitz on V.

We first claim that . > 0 on V. Indeed, let p € V. If p € S, then u(py) < u(p), hence

0 (p) = ((1,0,0),Uc(p))
= u(p) —ulpo) +€=e.

For p ¢ S, either w(p) # 0 or there exists a j so that v;(p) > 0. Let A = w(p) and
vi = vi(p) if v;(p) > 0 and ; = 0 if v;(p) < 0. Then the vector B = (0,7, \) is non-zero
and o = ﬁﬁ is an element of the set A. Thus

0(p) = (a, Uc(p)) = 6] > 0

as needed. Hence we have shown that on V, 6. > 0. That 6.(py) = € follows from the
fact that u restricted to S is minimized at py. Extend the function 6. as infinity outside
of V. Because V is closed, we see that 0. : G — (—o0, o0] is lower semi-continuous. We
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now invoke Proposition 3.19 to conclude that there exists a p. € Beoe(po, 21/€) so that
the function

V. (p) = 0.(p) + 2\/edcc(p, pe)

attains its unique minimum at p = p.. Since V contains an open neighborhood of pg, for
e small enough, p. € int(V'). Hence,

0 € 96.(pe) + By (0,2C/e)

where C' is as in Corollary 3.13 and EVI*(O,T) is the closed ball of radius r in Vj*. The
next lemma will give us a better handle on the set 96 (p.).

Lemma 4.1. Let U be an open subset of G and F : U — RY be locally Lipschitz and
B C RY be compact. Define the locally Lipschitz function G(p) := supgep (F(p), B). If
there exists a unique 3 € B so that G(qo) = (3, F(qo)), then

9G(qo) € O (F(-), B) (o)-
Proof. By Remark 3.9(2), it suffices to show that for each g € G,
G°(q0;9) < (F (), 8)° (q0; 9)-
Let g, — qo and A\, | 0 so that

G(g0: g) = lim G (gn0r,(9)) = Glgn)

n—00 )\n

For each n, since B is compact there exists 3, € B so that

G(gnox,(9)) = (Bn: F(qnox,(9))) -

Since B is compact, we can find a convergent subsequence of {3,} that converges to an
element o € B. Passing to that subsequence (without relabelling) we then have

G(qnor,(9)) — G(qn)

G(q0;9) = lim X
< limsup (Bn, F(gn0n, A(9)) — Flqn))

where F'is K-Lipschitz on a neighborhood of ¢y. Hence we have

Go(qo; g) < lim sup <Oé, F(qné)\n(g)) B F(qn)>

n—oo >\Tl

<(F(),a)° (903 9)-
We now claim that a = 3. Indeed we have

Glg) = lim G(gadx,(9))
= lim (5., Fgndr.(9)))
= <047F((10)>,

but 4 was the unique point in B so that G(qy) = (5, F(qo)). Hence v = (3 completing the
proof to the lemma. Il
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With the above lemma in mind, we are now going to show that there is a unique a, € A
so that 0.(p.) = (a,Uc(pe)). If pe € S, then a. = (1,0,0) is that unique element. For
pe ¢S, let

Ao = max(0, u(pe) — u(p) + €)

i = max(0, v;(pe))

A= w(pe)a

8= (No,v,A) and a = ﬁﬁ. Then « is the unique element of A that does the job. Note

that in each of these two cases, (v,v(p.)) > 0. Putting things together, we have for each
e >0 an a. € A so that

0€d <O[€, UE()) (pe> +EV1* (07 20\/2)

Let €; | 0 and for each ¢ let o; = «,, fi = fe, and p; = p.,. By passing to a subsequence,
there exists o € A so that o; — «. Note that

(i, Up) = (o, Up) + (i — a, Uy)
which with Remark 3.9(1) and the previous implies that
0 € 9({ev, Ui))(pi) + By (0,2CV/e)
Let U = (u,v,w). Since U; — U is a constant function, we then have

0 € 9({a, U))(pi) + By; (0,20V/&)

for each i. Letting || - ||} denote the norm on Vj* produced by || - ||1, we see that for each
i, there exists ¢; € 0({a, U))(pi) and w; € Vi* with |lw;]|; < 2C,/€; so that 0 = §; + w;.
Because ¢; — 0, we conclude that ||(;||] — 0. In particular, ¢; — 0 weak® in V}*. Applying
Proposition 3.10 gives us that

0 € 9({e, U))(po)

with a = (A, 7, A) € A. Since a € A, Ay > 0 and v > 0. Also for each i, we have that
(v(pi),v:) > 0. Since v is continuous and 7; — 7 we have that (v(pg),v) > 0. Which
together with v(py) < 0 implies that (v(pg),y) = 0. If A\g = 0 then we are done, otherwise
replace o by a/\g. Using Remark 3.9(4) gives

0 € d(Aou + (v, v) + (A, w))(po)
with

(1) (Ao,7,A) #0,
(2) Ao €{0,1},

(3) v>0and
(4)  (v(x),7) =0
completing the proof to the theorem. n

Corollary 3.16 with the above theorem gives us the following Corollary which is an exact
analogue of Lagrange multiplier in the setting of Carnot groups.
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Corollary 4.2. Let u,hy,. .., hy, be real valued locally Lipschitz C}, functions defined on

a Carnot group G so that for each p € S where S = N7 h ' (0), the vectors {Vh;(p)}r,
are linearly independent. If py € S so that u(py) = infgu, then there exists A € R™ so
that

0= Vu(u+ (A h)(p)
where h = (hy, ha, ..., hy).

The next theorem is a mean value theorem for Lipschitz functions on Banach homogenous
groups.

Theorem 4.3. Let f : G — R be locally Lipschitz. For each p € G and g € V; there
erists 0 <t <1 and ¢ € O(f)(pd(g)) so that

f(pg) — f(p) = C(9).

Proof. Define ¢(t) = p- (tg), and let ¢p = f o ¢. Since g is horizontal we have that
di(g) =tg for t > 0 and 0_4(g) = —tg for t < 0. We can see that ¢ : R — R is a locally
Lipschitz function. We first claim that

ay(t) € {Clg)[¢ € a(f)(o(1)}-

Indeed, since both sets in question are closed, bounded, convex subsets of R, it suffices to
check that for v =1 and v = —1 that

sup{av | a € 0¢(t)} < sup{v¢(g)[¢ € O(f)(4(1))}-

Since g is horizontal, by Corollary 3.14 we have that

fo(poi(g);vg) = sup  ((vg).
cea(f) (poi(a))

Moreover, since R is a step one Carnot group, the same Corollary gives us that
Vo (t;v) = sup{av | a € IP(t)}.
Hence it suffices to check that for v = 1, —1 that
Vo (tv) < f2(pdi(g);vg).

Indeed we see that

P(s + Av) = 9(s)

Y°(t;v) = limsup

s—t,A10 A
ey L 09)) = S5, (19)
s—t,A0 A

< f°(po(g);vg)

which completes the proof of the claim. To finish the proof of the theorem, define

0(t) = f(pdi(g)) +t(f(p) — f(pg)) = ¥(t) —t(f(p) — f(pg)).
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Since 6 is continuous and 6(0) = 0(1) there exists 0 < ¢ < 1 so that € achieves a local
maximum or a local minimum at ¢. Thus, 0 € 90(t), which implies that

0€ov(t)+{f(p) — f(pg)}

which then gives us that

fpg) = f(p) € 0(t) € {C(9) [€ € O(f)(Poe(9))},

completing our proof. 0

Remark 4.4. Theorem 4.3 is false if ¢ is not assumed to be horizontal. As an example
let G be Hy and f(z,t) =t. Let p=(0,0) and g = (0,1). Then for every ( € L(H1;R),
¢(g) = 0 but f(pg) — fp) = 1.

We close this section with a chain rule.

Theorem 4.5. Let G be as in Theorem 4.3 and F : G — R* be a locally Lipschitz map
(with respect to the Carnot-Carathéodory metric on G and the Euclidean metric on R¥)
and 1 : R¥ — R also be locally Lipschitz. Then we have that

I o F)(xg) Cco{C|C € O(yo F)(xg) for some v € (V) (F(xo))}

where ©o(S) denotes the closure of the convex hull of S.

Proof. Define the set

§={C1¢ € Dy o F) (o) for some 7 € A()(F(0))}-

We are to show that d(¢ o F)(xo) C ©0(S). Define a function p: V; — R as

p(v) = sup ((v).

¢eco(9)

Because S is bounded, p is finite valued. Easily, p is a Minkowski functional as well. We
first claim that (¢ o F')°(zg;v) < p(v) for all v € V;. Indeed, let v, € V; and x; — zo and
Ai 1 0 so that

F(x;0,, — (F(x;
(0 F)*(agev) = tim PEOD 0]
Let a; = F(x;0,,(v)) and b; = F(z;). Applying Theorem 4.3 to the one step Carnot
group R* on the function v at the point a; on the horizontal element b; — a; produces a
0<s;<1landa-~y €0Y(a;+ si(b; — a;)) so that

Yi(bi — ai) = ¥(bi) — ¥(as).

Since F' is continuous and ¢ is locally Lipschitz, the ; are uniformly bounded in norm.
Thus we can extract a subsequence of 7; that converges to an element ~ in the space
L(R*;R) endowed with the operator norm. By Proposition 3.10 and the fact that both
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a; and b; converge to F'(zg) we get that v € 9(¢0)(F(x)). Without bothering to relabel,
we can conclude that

(Vo F)(apv) = Mn%(

- (Pl =)
= lim (7 © F)(ZL'I(S)\Z(’U)) - ('7 o F)(xz)

In the above we needed that F' was Lipschitz near zo and that ||y; — v|| — 0. We now
apply Theorem 4.3 to the function vy o F' at the point x; and the horizontal element J,, (v)
to produce 0 < t; < 1 and ¢; € 9(7y o F)(z;0,»,(v)) so that

(7 0 F)(@i0,(v)) — (v © F)(x:)
Taking advantage of the fact that v o F' is locally Lipschitz gives us that the (;’s are
uniformly bounded in Vj*. Hence, there exists a subsequence which converges weak®* to

an element (. Since z; — o, Proposition 3.10 implies that { € 9(y o F)(zo). Eschewing
relabelling, we then have that

(¥ 0 F)*(a;) = lim Gi(v) = ((v)

which implies that (¢ o F')°(xo;v) < p(v). To finish, let ¢ € 9(¢p o F')(xp). Then by
definition and combined with the previous gives us that ¢(v) < sup;cqys)((v) for each
v € V4 which implies that ¢ € ¢o(.5). O

5. Closing Remarks

Our definition of a Banach homogenous group does not guarantee that the components
of a Banach homogenous group are coupled. As a consequence functions can be C1, but

not be locally Lipschitz. Indeed, let V; = R and V;, = R. We let the group law be given
by the usual vector addition of R, i.e.,

(@1,91) - (22, 92) = (21 + 22, 41 + 12)-
We define the dilation by A > 0 as

(5)\(%, y) = ()\xa )‘2y)
Finally we define the gauge as

(2,9l = Izl + V/1yl.

It is straightforward to check that the above is sub-additive with respect to vector addition.
However, the class of Lipschitz functions with respect to the metric created by our gauge
is just those functions f : R? — R which are Lipschitz in the first argument and %—
Holder continuous in the second argument. The class of C!, functions are those for

which the partial derivative in the first argument exists at every point and is continuous.
For example the function

flz,y) =2+ xo(y),

where g is the characteristic function of the rational numbers, is CL, but not even
continuous.
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