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We develop a theory of non-smooth analysis in infinite dimensional Banach homogenous groups and
extend the Fritz John necessary condition for minimizers of a Lipschitz function subject to Lipschitz
constraints.

1. Introduction

The study of minimization is one of the cornerstone uses of calculus. Typically, to min-
imize a given function f : Rn → R, one is often reduced to find the zeros of Df . This
simple algorithm is the foundation for much of the calculus of variations. Indeed, given an
open bounded domain Ω of Rn and boundary values u ∈W 1,2(Ω), the harmonic function
h+ u with h ∈W 1,2

0 (Ω) is the unique minimum to the functional

Lu(φ) =

∫

Ω

|∇(u+ φ)|2

across W 1,2
0 (Ω). Many of the analytic properties of h follows from considering the deriva-

tive of Lu. Indeed since h minimizes Lu we then see that

DLu(h) = 0

which implies that for each φ ∈ C∞
c (Ω),

∫

Ω

〈∇(u+ h),∇φ〉 = 0.

Nonsmooth analysis deals with the case where the function f : Rn → R or the functional
L are not continuously differentiable. Its main technique is to replace the derivative with
a set of sub-derivatives. Indeed, following F. H. Clarke see [3, Chapter 2], ifX is a Banach
space and L : X → R is locally Lipschitz, one defines the generalized derivative of L at
a point p as the set of all ζ ∈ X∗ (where X∗ is the space of continuous real valued linear
maps) so that

ζ(·) ≤ L◦(p; ·)
where

L◦(p; v) = lim sup
q→p,λ↓0

L(q + λv)− L(q)
λ

.
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It is well known that the the class of locally Lipschitz functions is much larger than the
class of continuously differentiable functions. Further, starting with any such function f
and performing composition, multiplication or addition with smooth or non-smooth func-
tions, one can produce examples of locally Lipschitz functions which are not differentiable.

Recently there has been active research on homogenous groups also known as Carnot
groups as introduced by Folland and Stein in [6]. We do not give a full list of the results
in the area of analysis in Carnot groups, but we do mention the works [11], [2], [8], [1],
[7], [10], [13] and [9]. A Carnot group G is topologically R

n, but the group operation
one employs is not the standard vector addition. This group operation is typically non-
commutative. However, for each λ > 0 there is a non-homogenous dilation δλ which is
a group isomorphism. The metric used on a Carnot group produces the same topology
as the Euclidean metric, but has a much richer class of locally Lipschitz functions than
the Euclidean case. Moreover, when doing analysis in Carnot groups of a real valued
function f , one examines ∇Hf the horizontal gradient of f rather than the full gradient
of f . The class of functions whose horizontal gradient exists and is continuous is denoted
by C1

sub. There are functions f ∈ C1
sub which are not locally Lipschitz with respect to the

Euclidean metric, but to minimize such functions one just needs to find the zeros of the
horizontal gradient. The horizontal gradient at a point p of a function f can be calculated
by examining DHf(p) the horizontal derivative of f at p which is an element of L(G;R).
The set L(G;R) is the set of all continuous maps φ : G → R for which φ(p·q) = φ(p)+φ(q)
and φ ◦ δλ = λφ, i.e., L(G;R) is the Carnot group analogue of the of space of continuous
real valued linear maps, refer to Section 2 for the definition of δλ. When f ∈ C1

sub, DHf(p)
is the unique element in L(G;R) for which

DHf(p)(g) = lim
λ→0

f(p · δλ(g))− f(p)

λ

whenever g ∈ G. With this in mind a natural way to extend the Clarke theory of non-
smooth analysis to Carnot groups (see Section 2 for the definitions) is to say ζ ∈ L(G;R)
is a sub-derivative of a locally Lipschitz function u at p if

ζ(·) ≤ u◦(p; ·)

where

u◦(p; g) = lim sup
q→p,λ↓0

u(qδλ(g))− u(q)

λ

and we will write ζ ∈ ∂u(p). It is worth noting that if u ∈ C1
sub, then ∂u(p) = {DHu(p)},

see Corollary 3.16. We will define an infinite dimensional analogue of Carnot groups
which we call Banach homogenous groups which will allow us, together with the theorems
developed within, to examine minimization problems for which the standard tools of the
calculus of variations do not apply. In the classical case of where the domain of u is
a Banach space, the Hahn-Banach theorem assures us there are always sub-derivatives
of a locally Lipschitz function u at a point p. Our first theorem, Theorem 3.11, allows
us to use the Hahn-Banach theorem even in the setting of Banach homogenous groups.
Our main theorem is an analogue of the Fritz John necessary conditions of minimizing a
locally Lipschitz functions subject to locally Lipschitz constraints:

Theorem 1.1. Let G be an infinite (or finite) dimensional Banach homogenous group
and U an open subset of G. Let u : U → R, v : U → R

m and w : U → R
n be locally
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Lipschitz functions (with G given the Carnot-Carathéodory metric). If x0 ∈ S so that
u(x0) = infS u where

S := {x ∈ U | v(x) ≤ 0, w(x) = 0},
then there exists α = (λ0, γ, λ) ∈ {0, 1} × R

m × R
n which is non-zero with γ ≥ 0 and

〈γ, v(x)〉 = 0 so that

0 ∈ ∂(λ0f + 〈γ, v〉+ 〈λ,w〉)(x0).

Here for vector γ ∈ R
m we write γ ≥ 0 if each component of γ is non-negative.

One corollary of Theorem 1.1 is a Lagrange multiplier rule for C1
sub functions on Carnot

groups.

Corollary 1.2. Let u, h1, . . . , hm be real valued C1
sub

functions defined on an open sub-
set U of a Carnot group G so that for each p ∈ S where S = ∩m

j=1h
−1
j (0), the vectors

{∇Hhj(p)}mj=1 are linearly independent. If p0 ∈ S so that u(p0) = infS u, then there exists
λ ∈ R

m so that

0 = ∇H(u+ 〈λ, h〉)(p0)
where h = (h1, h2, . . . , hm).

The simplest example of a Banach homogenous group whose metric is different from the
Euclidean metric is the first Heisenberg group H1. As a set H1 is R

3, but the metric
is so that the measure of a ball of radius R is comparable to R4. Moreover the class of
locally Lipschitz function with respect to the metric of H1 is much richer than the class
of functions which are locally Lipschitz with respect to the Euclidean metric.

Corollary 1.2 in the Heisenberg group setting opens the window to calculating minimum
of functions defined on surfaces which are not smooth, or even algebraic varieties. Indeed,
F. Serra Cassano and B. Kirchheim in [12] have constructed a function f : R2 → R whose
graph is (locally) the zero set of a Lipschitz function on the Heisenberg group but has
Euclidean Hausdorff dimension 21

2
. In fact, the graph is (locally) the zero set of a C1

sub

function whose horizontal gradient is non-zero.

The paper is organized as follows. In Section 2 we state our basic definitions and give
examples of Banach homogenous groups. In Section 3 we prove some of basic properties
of these concepts. In Section 4 we present the proof to our main theorem, Theorem 1.1
and also give proofs for a mean value theorem and a chain rule for generalized derivatives
of functions defined on Banach homogenous groups.

2. Definitions

Let G = V1 × V2 × . . .× Vn with each Vi a Fréchét space (i.e. each Vi is a complete metric
space with a topological vector space structure) and V1 is a Banach space. For each
1 ≤ i ≤ n, let di denote the metric on Vi (note that d1(x, y) = ||x − y||1 where || · ||1 is
the norm of V1) and set πi : G → Vi as projection. For an element v ∈ G we will write
vi = πi(v) and v = (v1, v2, . . . , vn). We make G into a Fréchét space using the metric
d0(v, w) =

∑

di(vi, wi). We let || · ||∗1 denote the norm on V ∗
1 produced by || · ||1, i.e., for

φ ∈ V ∗
1 ,

||φ||∗1 = sup
x∈V1, ||x||1=1

|φ(x)|.
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Definition 2.1. We say that G with a continuous group structure that makes the identity
0 and a function || · ||CC : G → [0,∞) is an n-step Banach homogenous group if it satisfies
the following.

(1) The group operation has the form

x · y = x+ y +Q(x, y)

with π1 ◦Q = 0, for 2 ≤ i ≤ n, πi(Q(x, y)) = Qi((xj)
i−1
j=1, (yj)

i−1
j=1) and for each x ∈ G

and λ ∈ R we require that Q(x, λx) = 0.

(2) For each λ > 0 the map given by

δλ(v1, v2, . . . , vn) = (λv1, λ
2v2, . . . , λ

nvn)

is a group isomorphism. Recall that we will write an element v ∈ G as v =
(v1, v2, . . . , vn) where vi = πi(v).

(3) The function || · ||CC : G → [0,∞) is a gauge, i.e.,
(i) for each λ > 0, ||δλ(x)||CC = λ||x||CC ,
(ii) ||x · y||CC ≤ ||x||CC + ||y||CC ,
(iii) || − x||CC = ||x||CC and
(iv) ||x||CC = 0 if and only if x = 0.

(4) The left invariant metric dCC(x, y) := ||x−1 · y||CC is complete and the topologies
induced by dCC and d0 are equivalent. We will call dCC the Carnot-Carathéodory
metric on G. We will write BCC(p, r) as the set of all those x ∈ G for which
dCC(x, p) < r.

Note that each Banach space (V, || · ||V ) with the group structure x · y = x + y with its
norm is a one step Banach homogenous group.

For two Banach homogenous groups G1 and G2 we define

L(G1;G2) := {φ : G1 → G2 | φ is a continuous group homomorphism

so that for each λ > 0, φ ◦ δλ = δλ ◦ φ}.
We will say a function f : U → R where U is an open subset of G is locally Lipschitz, if
for each p ∈ U there exists r > 0 and K ∈ R so that for each x, y ∈ BCC(p, r),

|f(x)− f(y)| ≤ KdCC(x, y).

Remark 2.2. The definition of a Banach homogenous group is motivated by the form
of the group law of Carnot groups in exponential coordinates. Indeed in exponential
coordinates (i.e., on the Lie algebra) the group law of a Carnot group is of the form

x · y = x+ y +Q(x, y)

where Q is a finite sum of iterated brackets generated by the Baker-Campbell-Hausdorff
formula. Analogously to both Carnot groups and Banach spaces, a Banach homogenous
group possesses the following properties.

(A) The fact that Q(x, λx) = 0 implies that x · λx = (λ + 1)x, in particular for each
m ∈ Z and x ∈ G, xm = mx. Thus, x−1 = −x and ||x−1||CC = ||x||CC . Additionally,
for each x1 ∈ V1, δs+t(x1) = δs(x1) · δt(x1). Moreover, since Q0 = 0, for g ∈ G and
h ∈ π−1

1 (0), we see that π1(gh) = π1(hg) = π1(g). We also see that for each k, if
πj(g) = πj(h) = 0 for 1 ≤ j ≤ k, then πj(g · h) = 0 for 1 ≤ j ≤ k as well.
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(B) For each k ≥ 1, if πj(v) = 0 for 1 ≤ j < k, then there exists wi ∈ Vi for k ≤ i ≤ n
so that v = wk ·wk+1 · . . . ·wn and wk = πk(v). Indeed, if k = n, then v ∈ Vn and we
are done. Inductively, if v is such that πj(v) = 0 for 1 ≤ j < k, let x = πk(v)

−1v.
The group law (item (1) of Definition 2.1) then gives us that for 1 ≤ j < k,

πj(x) = πj(v) +Qj(0, 0) = 0

and
πk(x) = πk(−v + v) +Qk(0, 0) = 0.

Thus the induction hypothesis implies that x = wk+1 · . . . · wn with wi ∈ Vi. Thus,
v = vk ·x = πk(v) ·wk+1 · . . . ·wn as needed. Also note that the above implies that if
v ∈ G with πj(v) = 0 for 1 ≤ j < k, then there exists wi ∈ Vi for k ≤ i ≤ n so that
v = wn · wn−1 · . . . · wk and wk = πk(v). Indeed, let v be as above and let x = v−1.
Then (A) gives us that x = −v and thus πj(x) = 0 for 1 ≤ j < k. Hence there
exists aj ∈ Vj for k ≤ j ≤ n so that x = ak · ak+1 · . . . · an with ak = πk(x). Thus

v = x−1 = (ak · ak+1 · . . . · an)−1 = (an)−1 · (an−1)
−1 · . . . · (ak)−1

.

Letting wj = (aj)
−1

= −aj we see that wj ∈ Vj, w
k = πk(v) and v = wn·wn−1·. . .·wk.

(C) In the case where each of the Vi’s are Banach spaces and Q is continuously differ-
entiable, Q and it’s derivatives have polynomial growth. Indeed, since δλ is a group
homomorphism, we see that for 2 ≤ i ≤ n,

Qi((λ
jxj)

i−1
j=1, (λ

jyj)
i−1
j=1) = λiQi((xj)

i−1
j=1, (yj)

i−1
j=1). (1)

Recall that the Fréchét derivative of Qi when it exists at a point (x, y) ∈ G denoted
by DQi(x, y) is the unique continuous linear map from G × G to Vi for which

lim
v,w→0

||Qi(x+ v, y + w)−Qi(x, y)−DQi(x, y)(v, w)||i
||v||0 + ||w||0

= 0

where || · ||i is the norm on Vi and ||v||0 =
∑

i ||vi||i . Using equation (1) one has
that for each λ > 0, x, y ∈ G and vj, wj ∈ Vj (with 1 ≤ j < i),

DQi(δλ(x), δλ(y))(vj, wj) = λi−jDQi(x, y)(vj, wj).

In particular,

||DQi(δλ(x), δλ(y))|| ≤ ||DQi(x, y)|| ·
i−1
∑

j=1

λj

where ||DQi(x, y)|| is the operator norm of DQi(x, y). Since Qi is continuously
differentiable, there is a neighborhood of 0 for which ||DQi|| is bounded by a constant
M . Hence, using the above we see that ||DQi|| has polynomial growth. If we let
τx(y) = x · y, then the above gives a polynomial Φ : R2 → R so that ||Dτx(y)|| ≤
Φ(||x||0, ||y||0).

(D) If each of the Vi are Banach spaces, then we have a ball-box theorem on G, i.e.,
there exists a constant C > 0 so that for each r > 0

1

C
Box(0, r) ⊆ BCC(0, r) ⊆ CBox(0, r)
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where for each r > 0 and λ > 0

λBox(0, r) := {(v1, v2, . . . , vn) ∈ G | for 1 ≤ i ≤ n, ||vi||i < λri}.

Indeed, since the topologies produced by the metrics dCC and d0 are equivalent there
exists C > 0 so that

1

C
Box(0, 1) ⊆ BCC(0, 1) ⊆ CBox(0, 1).

Let v ∈ BCC(0, r) and set w = δ1/r(v). Then w ∈ BCC(0, 1) and thus also w ∈
CBox(0, 1). Hence for each i, ||wi||i ≤ C. Now v = δr(w). Thus for each i,
||vi|| = ri||wi|| ≤ Cri, i.e., v ∈ CBox(0, r). Hence BCC(0, r) ⊆ CBox(0, r). On
the other hand if v ∈ 1

C
Box(0, r), let w = δ1/r(v). Then ||wi||i = 1

ri
||vi||i ≤ 1

C
, i.e.,

w ∈ 1
C
Box(0, 1) and thus w ∈ BCC(0, 1). Now v = δr(w), thus v ∈ BCC(0, r).

Along similar lines by using a continuity argument, one can show that if Vi is a
Banach space (without assuming weather or not the other components of G are
Banach spaces) that there exists a constant C > 0 so that for each vi ∈ Vi,

1

C
||vi||i ≤ ||vi||iCC ≤ C||vi||i.

(E) By homogeneity, a group homomorphism ζ between two Banach homogenous group
G1 and G2 which commutes with δλ for each λ > 0 is continuous if and only if

||φ||L(G1;G2) := sup
||g||CC≤1

||φ(g)||CC <∞.

For the case where G2 is R we make L(G;R) into a normed linear space by using
the above norm. Additionally, for each Banach homogenous group G, L(G;G) also
becomes a group by composition for which each λ > 0 induces a group isomorphism,
∆λ(φ) = δλ◦φ. Additionally, for each φ1, φ2 ∈ L(G;G), ||φ1◦φ2||L(G;G) ≤ ||φ1||L(G;G) ·
||φ2||L(G;G). Moreover, a standard proof (see for instance [5]) to the Open Mapping
theorem can be adapted to Banach homogenous groups to conclude the following
Open Mapping theorem for Banach homogenous groups:

Theorem 2.3. Let G1 and G2 be Banach homogenous groups and ζ ∈ L(G1;G2) so that ζ
is onto. Then ζ is also an open map. In particular, if ζ is a continuous group isomorphism,
then ζ−1 is continuous.

One useful corollary of the above theorem is:

Theorem 2.4. Let G with || · ||CC be a Banach homogenous group. If ||| · |||CC is another
gauge on G which makes G into a Banach homogenous group for which there exists a
constant K > 0 so that || · ||CC ≤ K||| · |||CC, then there exists another constant K ′ > 0
so that ||| · |||CC ≤ K ′|| · ||CC.

Some examples of Banach homogenous groups follow.

Example 2.5. All Carnot groups are Banach homogenous groups. Indeed, let G be a
Carnot group whose Lie algebra G admits the stratification G = V1 ⊕ V2 ⊕ . . . ⊕ Vr, i.e.,
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span[V1, Vi] = Vi+1 for 1 ≤ i ≤ n − 1 and [V1, Vn] = 0. Let 〈·, ·〉0 be an inner product on
G and define a Riemannian metric, 〈·, ·〉x on G by letting

〈Dτx(0)(v), Dτx(0)(w)〉x = 〈v, w〉0
for each v, w ∈ T0G where τx(p) = x · p, i.e., the above inner product is the left-invariant
inner product produced by 〈·, ·〉0. Given an interval I of R, we say a piecewise smooth
curve γ : I → G is horizontal if for a.e. t ∈ I, γ′(t) ∈ Dτγ(t)(0)(V1). Define the Carnot-
Carathéodory metric on G as

dCC(p, q) = inf{l(γ) | γ is a horizontal curve connecting p to q}

where

l(γ) =

∫

〈γ′(t), γ′(t)〉1/2γ(t) dt.

By Chow’s theorem, dCC(p, q) is finite for each pair p, q ∈ G. Since G and G are diffeo-
morphic through the exponential map we can identify G and G. The Baker-Campbell-
Hausdorff formula gives that on G, the group law is given by

x · y = x+ y +Q(x, y)

where Q is a finite sum of iterated brackets. Hence Q satisfies item (1) of Definition 2.1.
Additionally, for each λ > 0 we have that the map δλ : G → G given by πi(δλ(v)) = λiπi(v)
is a group homomorphism where πi : G → Vi is projection. The function ||x||CC =
dCC(0, x) is a gauge because dCC is a left invariant metric with dCC(−x, 0) = dCC(x, 0)
and dCC(δλ(x), 0) = λdCC(x, 0) for all x ∈ G and λ > 0.

Example 2.6. A less traditional example is an infinite dimensional Heisnenberg group.
Fix an infinite dimensional real Hilbert space (HR, 〈·, ·〉R) and let (HC, 〈·, ·〉C) be the
complexification of HR, i.e., HC = HR ×HR and

〈(x1, y1), (x2, y2)〉C = 〈x1, x2〉R + 〈y1, y2〉R − i 〈x1, y2〉R + i 〈y1, x2〉R .

Let G = HC × R with the group operation

(x, s) · (y, t) = (x+ y, s+ t+
1

2
Im 〈x, y〉C).

Analogous to the Heisenberg setting, we define the horizontal plane at a point p ∈ G as

HpG := Dτp(0)(HC × 0)

where τp(x) := p ·x. Given and interval I of R, we say a piecewise smooth curve γ : I → G
where I is an interval of R is horizontal if for a.e. t, γ′(t) ∈ Hγ(t)G. Let 〈·, ·〉0 be the real
inner-product on G produced when viewing G as H2

R×R and || · ||0 be the norm produced
by 〈·, ·〉0. For each p ∈ G we create a new inner product as

〈Dτp(0)(v), Dτp(0)(w)〉p = 〈v, w〉0 .

For (x, s) ∈ G, let V be a one dimensional complex vector subspace of HC containing x,
i.e., if x 6= 0, then V = spanC(x). The set V ×R with the above group action is isomorphic
to the first Heisenberg group H1 through the map ι : H1 → V × R defined by

ι(c, t) = (cz, t) (2)
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where z ∈ V is fixed with 〈z, z〉C = 1. Moreover, if a smooth curve γ : I → H1 is
horizontal, then the curve ι ◦ γ is horizontal in G. Hence by Chow’s theorem on the first
Heisenberg group, we see that for each p ∈ G there exists a piecewise horizontal smooth
curve γ : I → G connecting p to (0, 0). This allows us to define a Carnot-Carathéodory
metric on G, dCC as

dCC(g, h) := inf{l(γ) | γ is a horizontal curve connecting g to h}

where

l(γ) :=

∫

I

〈γ′(t), γ′(t)〉γ(t) dt.

Just as in the case of a Carnot group, the above metric is left invariant because a curve
γ is horizontal if and only if for each p ∈ G and λ > 0, the curves τp ◦ γ and δλ ◦ γ are
horizontal. Hence the function ||x||CC = dCC(x, 0) is a gauge and for each pair of points
p, q ∈ G, dCC(p, q) = ||p−1q||CC .

Since Dτ−(z,t)(q)(w, s) = (w, s) + (0, 1
2
Im 〈−z, w〉C) we see that for each v ∈ G and p ∈ G

〈v, v〉0 = 〈Dτ−p(p)(Dτp(0)(v)), Dτ−p(p)(Dτp(0)(v))〉0
≤ ||Dτ−p(p)||2 〈Dτp(0)(v)), Dτp(0)(v))〉0
≤ (1 + ||p||0)2 〈v, v〉p .

In particular, for each R > 0 and each pair of points p and q with ||p||0 < R and
||q||0 < R we have that dCC(p, q) ≥ 1

C(R)
||p − q||0. We claim that the metric dCC still

produces the same topology. Indeed, let p = (x, t) ∈ G and let V be a one complex
dimensional subspace of HC containing x endowed with the inner-product from 〈·, ·〉0.
Then the subgroup V × R is isomorphic to H1 by the map ι : H1 → V × R given
by (2) so that dCC(ι(p), 0) ≤ dCC(p, 0). Now the Carnot-Carathéodory metric on H1

satisfies dCC((z, t), 0) ≤ C(||z|| + |t|1/2). In particular, ||(x, t)||CC ≤ C(||x||0 + |t|1/2).
Thus, dCC((x, s), (y, t)) ≤ C(||x − y||0 + |t − s − 1

2
Im 〈x, y〉C |1/2) which goes to zero as

||(x − y, t − s)||0 → 0, i.e., dCC is a complete metric and produces the same topology as
the Hilbert space structure. We conclude that the function ||p||CC := dCC(p, 0) will make
G a Banach homogenous group. Note that if we took HR = R

n, then G would be the n-th
Heisenberg group, Hn.

Following the notation found in Example 2.6 we define the following for a Banach ho-
mogenous group G = V1 × V2 × . . . Vn where each Vi is a Hilbert space.

Definition 2.7. Let G = V1 × . . . ,×Vn be a Banach homogenous group where each Vi
is a Hilbert space with inner-product 〈·, ·〉i and the group law is smooth. Let 〈v, w〉0 =
∑ 〈vi, wi〉i. For each p ∈ G create the inner-product 〈·, ·〉p as

〈Dτp(0)(v), Dτp(0)(w)〉p = 〈v, w〉0 ,

i.e.,
〈v, w〉p = 〈Dτ−p(p)(v), Dτ−p(p)(w)〉0

where τp(x) = p · x. This inner-product is the left invariant inner-product produced by
〈·, ·〉0. For each p ∈ G we let HpG be the horizontal space at p defined by

HpG = Dτp(0)(V1 × 0× . . .× 0).
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For each p ∈ G we let πp : G → HpG be orthogonal projection onto HpG with respect to
inner-product 〈·, ·〉p, i.e.,

πp = Dτp(0) ◦ π1 ◦Dτp(0)∗

where π1 is orthogonal projection onto V1 with respect to the inner-product 〈·, ·〉0 and
Dτp(0)

∗ denotes the adjoint of Dτp(0). For a function u : G → R, we say u has a
horizontal gradient at p if the function up : V1 → R

up(v) = u(τp(v))

has a Fréchét derivative at v = 0, i.e., there exists φ ∈ V ∗
1 so that

lim
v→0,v∈V1

|up(v)− up(0)− φ(v)|
〈v, v〉1/21

= 0.

We set ∇Hu(p) = Dτp(0)(wp) where wp is the unique element in V1 so that φ(·) = 〈·, wp〉1.
We say u ∈ C1

sub if the map p→ ∇Hu(p) is continuous as a map between G and V1 when
V1 is given the topology generated by the norm || · ||1. Note that if u is C1, then u is also
C1

sub and

∇Hu(p) = Dτp(0)(π1(∇(u ◦ τp)(0)))
= πp(∇u(p)).

Definition 2.8. For the case where not all of Vi are Hilbert spaces we can still define
the horizontal derivative DHu of a real valued function u as follows. We say a function u
defined on a open neighborhood of p has a horizontal derivative at p ∈ G if the function
up : U → R where U ⊆ V1 is an open neighborhood 0 in V1

up(x) = u(p · x)

has a Fréchét derivative at x = 0, i.e., there exists φ ∈ V ∗
1 so that

lim
x→0

|up(x)− up(0)− φ(x)|
||x||1

= 0

where the limit is across all x ∈ V1 going to zero and || · ||1 is the norm on V1. We set
DHu(p) = φ. We will say u ∈ C1

sub if for each p, u has a horizontal derivative and the
function p → DHu(p) is continuous as a map between G and V ∗

1 when V ∗
1 is given the

topology generated by the norm || · ||∗1. Note that if each of the Vi are Hilbert spaces and
the group law is smooth, then

DHu(p)(v1) = 〈∇Hu(p), Dτp(v1)〉p

where ∇Hu(p) and 〈·, ·〉p are as in Definition 2.7. Moreover if each of the Vi are Banach
spaces and the group law is smooth, then

DHu(p) = D(u ◦ τp)(0) ◦ π1

where π1 is projection onto V1. In particular, if u is smooth, then u is also C1
sub.
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3. Basics

Throughout we let G = V1 × V2 × . . . × Vn be a Banach homogenous group. Recall that
we say a real valued function f defined on an open subset U ⊆ G is locally Lipschitz if
for each p ∈ U , there exists a constant K and an ǫ > 0 so that for x, y ∈ BCC(p, ǫ),
|f(x)− f(y)| ≤ KdCC(x, y).

Proposition 3.1. If L ∈ L(G;R), then L restricted to V1 is an element of V ∗
1 and

L = L ◦ π1. Moreover, given φ ∈ V ∗
1 , φ ◦ π1 ∈ L(G;R). In particular, for a map

u : G → R, DHu(p) ∈ L(G;R) whenever DHu(p) is defined.

Proof. We first claim that for each i > 1 and vi ∈ Vi, L(vi) = 0. Indeed, δ2(vi) = 2ivi
and for each m ∈ N, (vi)

m = mvi. Thus

2L(vi) = L(δ2(vi)) = L(2ivi) = L((vi)
2i) = 2iL(vi)

which implies that L(vi) = 0. By Remark 2.2(B), we have for each v ∈ G there exist
w2 ∈ V2, w

3 ∈ V3, . . . , w
n ∈ Vn so that v = π1(v) · w2 · . . . · wn. Hence

L(v) = L(π1(v) · w2 · w3 · . . . · wn)

= L(π1(v)) + L(w2) + L(w3) + . . .+ L(wn)

= L(π1(v)).

Moreover, for x, y ∈ V1,

L(x+ y) = L(π1(x · y)) = L(x · y) = L(x) + L(y)

and for λ > 0,
L(λx) = L(δλ(x)) = λL(x).

Since x−1 = −x, the above implies that L : V1 → R is linear. That L restricted to V1 is
continuous follows from the fact that L is continuous on G.
On the other hand, given φ ∈ V ∗

1 , the map φ ◦ π1 is continuous on G because π1 : G → V1
is continuous. For each x, y ∈ G,

φ(π1(x · y)) = φ(π1(x) + π1(y)) = φ(π1(x)) + φ(π1(y))

and for each λ > 0,
φ(π1(δλ(x))) = φ(λπ1(x)) = λφ(π1(x))

which implies that φ ◦ π1 ∈ L(G;R) as needed.

Corollary 3.2. Let ζ ∈ L(G;R). Then for each g ∈ π−1
1 (0) and h ∈ G,

ζ(gh) = ζ(hg) = ζ(h).

In light of Proposition 3.1, we will say a sequence ζn of elements in L(G;R) converges
weak∗ to an element ζ ∈ L(G;R) if for each g ∈ G, ζn(g) → ζ(g), which is equivalent to
requiring that ζn → ζ weak∗ as elements of V ∗

1 .

Definition 3.3. We call a function ρ : G → R a bounded signed gauge if the following
three conditions are satisfied.
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(1) For each g, h ∈ G, ρ(gh) ≤ ρ(g) + ρ(h).

(2) For each g ∈ G and λ > 0, ρ(δλ(g)) = λρ(g).

(3) There exists a constant K > 0 so that for each g ∈ G we have ρ(g) ≤ K||g||CC .

Remark 3.4. By using the fact that dCC(g, h) = ||h−1g||CC = ||g−1h||CC , one can easily
derive that if (1)-(3) hold with K, then for each g, h ∈ G,

|ρ(g)− ρ(h)| ≤ KdCC(g, h),

i.e., ρ is K-Lipschitz. Moreover, if a function ρ : G → R satisfies (1) and (2) of above,
then homogeneity implies that ρ satisfies (3) if and only if ρ is continuous.

Definition 3.5. Let u be a real valued locally Lipschitz function defined on a neighbor-
hood of p ∈ G. Following Clarke, we define the generalized directional derivative of u at
p in the (right) direction g as

u◦(p; g) = lim sup
q→p,λ↓0

u(qδλ(g))− u(q)

λ
.

Proposition 3.6. If u is C1
sub

on a neighborhood of p ∈ G, then u◦(p; g) = DHu(p)(g)
whenever g ∈ V1 where DHu(p) is the horizontal derivative of u at p as defined in Def-
inition 2.8. Moreover, if v is Lipschitz on a neighborhood of p, then (u + v)◦(p; g) =
u◦(p; g) + v◦(p; g) for each g ∈ V1.

Proof. Let g ∈ V1. We first claim that if u is C1
sub, then for q close to p the map

fq(t) = u(q · δt(g))

is C1 on (0, ǫ) for some ǫ > 0. Since u is C1
sub, for p close to q, the map uq : V1 → R

defined as uq(v1) = u(q · v1) has a Fréchét derivative Duq(0) ∈ V ∗
1 at v1 = 0, hence for

each g ∈ V1,

lim
λ→0

uq(λg)− uq(0)

λ
= Duq(0)(g).

Now for t > 0,

lim
h→0

fq(t+ h)− fq(t)

h
= lim

h→0

u(qδt+h(g))− u(qδt(g)

h

= lim
h→0

u(qδt(g) · δh(g))− u(qδt(g))

h

= lim
h→0

uqδt(g)(hg)− uqδt(g)(0)

h
= Duqδt(g)(0)(g)

= DHu(qδt(g))(g)

which because DHu is continuous, is a continuous function in t. In particular, fq is C1.
For each q near p and λ > 0 near 0, the Mean Value theorem produces a t(λ, q) ∈ (0, λ)
so that

fq(λ)− fq(0)

λ
= f ′(t(λ, q)).
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Hence,

u◦(p; g) = lim sup
q→p,λ↓0

u(qδλ(g))− u(q)

λ

= lim sup
q→p,λ↓0

fq(λ)− fq(0)

λ

= lim sup
q→p,λ↓0

f ′(t(λ, q))

= lim sup
q→p,λ↓0

DHu(qδt(λ,q)(g))(g)

= DHu(p)(g)

where the last line comes from the fact that DHu is continuous. The above also shows us
that

u◦(p; g) = lim
q→p,λ↓0

u(qδλ(g))− u(q)

λ

which gives us for any real valued locally Lipschitz function v defined on a neighborhood
of p that (u+ v)◦(p; g) = u◦(p; g) + v◦(p; g) for g ∈ V1.

Proposition 3.7. Let u be a real valued K-Lipschitz function defined on a neighborhood
of p. We then have the following.

(1) The function g → u◦(p; g) is a bounded signed gauge with constant K.

(2) If pn → p and gn → g, then

lim sup
n→∞

u◦(pn; gn) ≤ u◦(p; g).

Proof. We first show that ρ(g) = u◦(p; g) is a bounded signed gauge with constant K.
Indeed, for each pair g, h ∈ G, we have

u◦(p; gh) = lim sup
q→p,λ↓0

u(qδλ(gh))− u(q)

λ

= lim sup
q→p,λ↓0

(

u(qδλ(gh))− u(qδλ(g))

λ
+
u(qδλ(g))− u(q)

λ

)

≤ lim sup
q→p,λ↓0

u(qδλ(g)δλ(h))− u(qδλ(g))

λ
+ lim sup

q→p,λ↓0

u(qδλ(g))− u(q)

λ

≤ u◦(p;h) + u◦(p; g).

The last line follows from the fact that if λ ↓ 0 and q → p, then qδλ(g) → p. Also, for
each µ > 0 we have

u◦(p; δµ(g)) = lim sup
q→p,λ↓0

u(qδλ(δµ(g)))− u(q)

λ

= lim sup
q→p,λ↓0

u(qδ(λ·µ)(g))− u(q)

λ

= µ · lim sup
q→p,λ↓0

u(qδ(λ·µ)(g))− u(q)

λ · µ
= µ · u◦(p; g).
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Since u is K-Lipschitz on a neighborhood of p and

dCC(qδλ(g), q) = ||q−1qδλ(g)||CC = λ||g||CC

we get that u◦(p; g) ≤ K||g||CC . To show item (2), let pn → p and gn → g. For each n,
let 0 < λn < 2−n and qn ∈ G with dCC(qn, pn) < 2−n so that

u◦(pn; gn) ≤ 2−n +
u(qnδλn

(gn))− u(qn)

λn
.

Now qn → p and λn ↓ 0, hence

u◦(p; g) ≥ lim sup
n→∞

u(qnδλn
(g))− u(qn)

λn

= lim sup
n→∞

u(qnδλn
(gn))− u(qn)

λn
− u(qnδλn

(gn))− u(qnδλn
(g))

λn
≥ lim sup

n→∞
u◦(pn; gn)− 2−n −KdCC(gn, g)

= lim sup
n→∞

u◦(pn; gn)

as needed, completing the proof.

Analogous to the definitions of non-smooth analysis in Banach spaces (see Clarke [3,
Chapter 2]), we define the generalized derivative of a real valued locally Lipschitz function
as follows.

Definition 3.8. Let u be a real valued Lipschitz function defined on a neighborhood of
p. We call ζ ∈ L(G;R) a generalized derivative of u at p if for each h ∈ G,

ζ(h) ≤ u◦(p;h)

and we write ζ ∈ ∂u(p).

Remark 3.9. From the definition we conclude the following.

(1) If u is locally Lipschitz, then for each constant k, (u + k)◦(p; g) = u◦(p; g). Hence,
for for each constant k we have ∂(u+ k)(p) = ∂u(p).

(2) Let u and v be Lipschitz functions on a neighborhood of p ∈ G. If for each g ∈ G,
u◦(p; g) ≤ v◦(p; g), then ∂u(p) ⊆ ∂v(p).

(3) If u is a real valued K-Lipschitz function defined on a neighborhood of p and ζ ∈
∂u(p), then ||ζ||L(G;R) ≤ K. Indeed, for each g ∈ G,

|ζ(g)| ≤ |u◦(p; g)| ≤ lim sup
q→p,λ↓0

|u(qδλ(g))− u(q)|
λ

≤ K||g||L(G;R).

(4) If α > 0, then (αu)◦(p; g) = αu◦(p; g) whenever u is locally Lipschitz. Hence, for
α > 0 we have ∂(αu)(p) = α∂u(p). Additionally, a direct computation yields that
u◦(p; g) = (−u)◦(p; g−1) which together with the above implies that for each α ∈ R,
∂(αu)(p) = α∂u(p).

Proposition 3.10. Let u be a real valued K-Lipschitz function defined on a neighborhood
of p ∈ G. If pn → p and ζn → ζ weak∗ so that ζn ∈ ∂u(pn) for each n, then ζ ∈ ∂u(p). In
particular, ∂u(p) is a weak∗ closed subset of V ∗

1 .
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Proof. Fix h ∈ G. We then have that for each n,

ζn(h) ≤ u◦(pn;h).

Proposition 3.7 then gives us that

ζ(h) = lim sup
n→∞

ζn(h) ≤ lim sup
n→∞

u◦(pn;h) ≤ u◦(p;h)

as needed.

Proposition 3.1 shows us that for ζ ∈ L(G;R), ζ(g) = ζ(π1(g)) for all g ∈ G. Hence, if
ζ ∈ ∂u(p), then for each g ∈ G,

ζ(g) ≤ inf
h∈π−1

1
(0)
u◦(p; gh).

Our next proposition when coupled with the Hahn-Banach theorem shows us that ∂u(p)
is never empty whenever u is Lipschitz on a neighborhood of p.

Theorem 3.11. Let ρ : G → R be a bounded signed gauge with constant K. Then the
function

f(v) := inf
v2∈V2,...,vn∈Vn

ρ(v, v2, . . . , vn)

is a Minkowski functional on V1 with f(v) ≤ K||v||CC, where || · ||CC is the gauge on G.
In particular by Remark 2.2(D), there is a constant C independent of ρ so that for each
v1 ∈ V1, f(v1) ≤ CK||v1|| where || · ||1 is the norm of V1. Moreover, f satisfies the relation

f(v) = ρ(v, 0, . . . , 0).

Proof. We first do the proof when G has step 2. The step n case we outline at the end
of the proof.

Once we have shown that f is finite valued, it is a straightforward calculation to check
that f is a Minkowski functional on V1. For each g ∈ V2, define ρg as ρg(h) = ρ(gh). We
note that

|ρg(h)− ρg(k)| = |ρ(gh)− ρ(gk)| ≤ KdCC(gh, gk) = KdCC(g, h)

i.e., for each g, ρg isK-Lipschitz. Hence, f = infg∈V2
ρg which is an infimum ofK-Lipschitz

functions. Thus to show that f is finite valued it suffices to show that f(0) is not −∞.
Indeed, let θ(t) = ρ(0, t) and note that f(0) = infV2

θ. We will now show that θ ≥ 0 on
V2. Since ρ is a bounded signed gauge we have

θ(2t) = ρ(0, 2t) =
√
2ρ(0, t) = θ(t)

√
2

on the other hand

θ(2t) = ρ(0, 2t) = ρ((0, t) · (0, t)) ≤ 2ρ(0, t) = 2θ(t)

which implies that θ(t)
√
2 ≤ 2θ(t). Hence, θ(t) ≥ 0 for all t ∈ V2 which implies that f is

a finite valued function.
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We will now show that f(z) = ρ(z, 0) for each z ∈ V1. For each z ∈ V1 and ǫ > 0 define
the non-empty closed set

Sǫ
z := {t ∈ V2 | ρ(z, t) ≤ ǫ+ f(z)}.

To finish, we need to show that 0 ∈ ∩ǫ>0S
ǫ
z. Since ρ is a bounded signed gauge, we have

for each λ > 0,
λρ(z, t) = ρ(λz, λ2t).

Hence, t ∈ Sǫ
z if and only if for each λ > 0, λ2t ∈ Sλǫ

λz. Let z ∈ V1 and t ∈ Sǫ
z. Since ρ is a

bounded signed gauge, using Remark 2.2(A) gives us that for each m ∈ N,

ρ(mz,mt) = ρ((z, t)m) ≤ mρ(z, t) ≤ m(ǫ+ f(z)) = f(mz) +mǫ.

I.e., if t ∈ Sǫ
z, then mt ∈ Smǫ

mz. Combining with the fact that for each w ∈ V1, s ∈ Sǫ
w

implies that λ2s ∈ Sλǫ
λw and letting λ = 1/m we see that if t ∈ Sǫ

z, then for each m ∈ N,
t/m ∈ Sǫ

z. However, Sǫ
z is a non-empty closed set, thus 0 ∈ Sǫ

z for each ǫ > 0, which
completes the proof for the step 2 case.

For the general case note that by Remark 2.2(A) and (B) that f(v) = infg∈π−1

1
(0) ρg(v) is

an infimum of K-Lipschitz functions. The first part is to show that f(0) is not −∞. First
consider the function on Vn as θn(vn) = ρ(vn). Just as in the proof of the step 2 case, one
can use the fact that ρ is sub-additive and that it commutes with dilations to conclude
that infVn

θn ≥ 0 whenever n > 1. Now define the function θn−1 on G as

θn−1(g) = inf
vn∈Vn

ρvn(g).

Since the above is an infimum of Lipschitz functions, and infVn
θn ≥ 0, the above function

is again a finite valued Lipschitz function. Moreover because of the nature of the group
structure (i.e., items(A) and (B) of Remark 2.2) we see that θn−1 is also a bounded
signed gauge. If n − 1 > 1 then the same proof as in the step 2 case will imply that
infVn−1

θn−1 ≥ 0. Continue this process until one reaches V1, where the produced function
will then be θ1. It is straightforward to check that for each i, θi is a bounded signed gauge
and θi(g) ≤ KdCC(0, g). Also the group structure on G insures that θ1(v) = θ1(π1(v)).
Hence, for v1 ∈ V1, f(v1) = θ1(v1). The fact that θ1 is sub-additive and commutes
with dilations implies that f is a Minkowski functional defined on V1. The fact that
f(v) = ρ(v, 0, . . . , 0) follows from an analogues argument as in the step 2 case.

An immediate consequence of the above proposition is the following

Corollary 3.12. Let u be a real valued K-Lipschitz function defined on a neighborhood
of p ∈ G. Then ζ ∈ ∂u(p) if and only if for each g ∈ V1, ζ(g) ≤ u◦(p; g).

Corollary 3.13. (L(G;R), || · ||L(G;R)) is homeomorphicily isomorphic to V ∗
1 via the map

ι(φ) = φ ◦ π1.
In particular, there exists a constant C > 0 so that for each r > 0,

BV ∗

1
(0,

r

C
) ⊆ BL(G;R)(0, r) ⊆ BV ∗

1
(0, Cr)

where BL(G;R)(0, r) is the closed ball of radius r under the norm || · ||L(G;R) and BV ∗

1
(0, r)

is the close ball of radius r under the norm || · ||∗1 which is the norm in V ∗
1 produced by the

norm on V1, || · ||1.
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Proof. Since || · ||CC is a gauge, Theorem 3.11 implies that for each (v1, v2, . . . , vn) ∈ G,

||(v1, v2, . . . , vn)||CC ≥ ||(v1, 0, . . . , 0)||CC .

Now, for each ζ ∈ L(G;R),
ζ(v) = ζ(π1(v)).

Hence for each ζ ∈ L(G;R) we see that

||ζ||L(G;R) = sup
v∈V1,||v||CC≤1

|ζ(v1)|.

By Remark 2.2(D), for v ∈ V1 we have that ||v||CC is comparable to ||v||1, thus ||ζ||L(G;R)
is comparable to

||ζ||L(G;R)′ = sup
v∈V1,||v||1≤1

|ζ(v)|.

Proposition 3.1 shows us that each element of L(G;R) is really just an element of V ∗
1 .

Combined with the above we then conclude that L(G;R) with ||·||L(G;R)′ is homeomorphicly
isomorphic to V ∗

1 equipped with the operator norm.

By using Theorem 3.11 and the Hahn-Banach theorem we obtain the following Corollary:

Corollary 3.14. Let u be a real valued K-Lipschitz function defined on a neighborhood of
p ∈ G. Then ∂u(p) is a non-empty weak∗ closed convex bounded subset of V ∗

1 . Moreover,
for each v ∈ V1,

u◦(p; v) = sup
ζ∈∂u(p)

ζ(v).

In particular, for each pair of real valued Lipschitz functions defined on a neighborhood of
p, ∂u(p) ⊆ ∂v(p) if and only if for each g ∈ V1, u

◦(p; g) ≤ v◦(p; g).

Proof. Proposition 3.10 gives us that ∂u(p) is a weak∗ closed subset of V ∗
1 . The definition

of ∂u(p) guarantees that it is convex. Moreover, since u is K-Lipschitz near p, we see
that for each g ∈ G, u◦(p; g) ≤ K||g||CC which implies that for all φ ∈ ∂u(p) and g ∈ G,
|φ(g)| ≤ K||g||CC , i.e., ||φ||L(G;R) ≤ K which with Corollary 3.13, implies that ∂u(p) is a
bounded subset of V ∗

1 . Now, by Theorem 3.11 the function ρ(v) = u◦(p; v) is a Minkowski
functional on V1. Moreover since u is K-Lipschitz we have by Remark 2.2(D) that for
each v ∈ V1

|ρ(v)| ≤ K||v||CC ≤ CK||v||1.
Given v ∈ V1 define the linear function φ on spanR(v) as φ(λv) = λρ(v). Since ρ is a
Minkowski functional, φ ≤ ρ on spanR(v). We now employ the Hahn-Banach theorem to
extend φ to all of V1 so that φ ≤ ρ on V1. Since |ρ(v)| ≤ CK||v||1, we have that φ is
continuous, in particular, φ ∈ V ∗

1 . Thus φ◦π1 ∈ L(G;R) and for g ∈ V1, φ◦π1(g) ≤ u◦(p; g)
which implies that φ ◦ π1 ∈ ∂u(p). Moreover, φ ◦ π1(v) = φ(v) = u◦(p; v). Hence for all
v ∈ V1 we have

u◦(p; v) ≤ sup
ζ∈∂u(p)

ζ(v).

That
u◦(p; z) ≥ sup

ζ∈∂u(p)

ζ(z)

follows from the definition of ∂u(p).
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Corollary 3.15. Let u and v be Lipschitz functions defined on a neighborhood of p. We
then have that

∂(u+ v)(p) ⊆ ∂u(p) + ∂v(p).

Proof. Suppose there exists ζ ∈ ∂(u+ v)(p) which is not an element of the weak∗ closed
convex set ∂u(p) + ∂v(p). Since ∂u(p) and ∂v(p) are convex weak∗ closed subsets of V ∗

1 ,
a standard separation theorem gives us a c ∈ R and a z ∈ V1 so that

ζ(z) > c ≥ ζ1(z) + ζ2(z)

whenever ζ1 ∈ ∂u(p) and ζ2 ∈ ∂v(p). The definition of ∂(u+ v)(p) then implies that

(u+ v)◦(p; z) > c ≥ ζ1(z) + ζ2(z)

whenever ζ1 ∈ ∂u(p) and ζ2 ∈ ∂v(p). Easily, (u + v)◦(p;h) ≤ u◦(p;h) + v◦(p;h). Hence
we have

ζ1(z)− u◦(p; z) + ζ2(z)− v◦(p; z) < 0

for each ζ1 ∈ ∂u(p) and ζ2 ∈ ∂v(p). Corollary 3.14 (using the fact that both ∂u(p) and
∂v(p) are weak∗ closed bounded convex subsets of V ∗

1 ) implies there exists ζ1 ∈ ∂u(p) and
ζ2 ∈ ∂v(p) so that ζ1(z) = u◦(p; z) and ζ2(z) = v◦(p; z). Hence the above implies that
0 < 0, a contradiction.

Corollary 3.16. Let u ∈ C1
sub

be a real valued locally Lipschitz function defined on a
neighborhood of p ∈ G. Then ∂u(p) = {DHu(p)◦π1} where π1 : G → V1 is projection onto
V1. Moreover, for each locally Lipschitz real valued function v defined on a neighborhood
of p, ∂(u+ v)(p) = ∂u(p) + ∂v(p).

Proof. By Proposition 3.6, we see that for g ∈ V1, u
◦(p; g) = DHu(g). Thus, DHu(p) ◦

π1 ∈ ∂u(p). If φ ∈ ∂u(p) we then have that φ ∈ V ∗
1 and φ ≤ DHu(p). Since both φ and

DH(p) are linear, we see that φ = DHu(p). By Corollary 3.15 and that both ∂u(p) and
∂(−u)(p) are singletons, we see that ∂(u+ v)(p) = ∂u(p) + ∂v(p).

One interesting corollary of the proof of Theorem 3.11 is that one can create a simpler
Banach homogenous group from a given one:

Corollary 3.17. Let G = V1×V2× . . .×Vn be an n-step Banach homogenous group with
n ≥ 2 under the gauge ρG. Then H = V1 × V2 × . . . × Vn−1 is an (n − 1)-step Banach
homogenous group under the gauge ρH:

ρH(v1, . . . , vn−1) = ρG(v1, . . . , vn−1, 0).

Proof. The proof of Theorem 3.11 shows us that ρH is a bounded signed gauge on G
since

ρG(v1, . . . , vn−1, 0) = inf
vn∈Vn

ρG(v1, . . . , vn−1, vn)

= inf
vn∈Vn

ρG((v1, . . . , vn−1, 0) · (0, . . . , 0, vn)).
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A quick calculation shows that if p is a local minimum or maximum of a locally Lipschitz
function u, then u◦(p;h) ≥ 0 for each h ∈ G. Hence we have the following proposition:

Proposition 3.18. If p ∈ G is a local minimum or local maximum of a locally Lipschitz
function u, then 0 ∈ ∂u(p).

The next proposition is useful in the proof of our main theorem, Theorem 1.1.

Proposition 3.19. Let u : G → (−∞,∞] be a lower semi-continuous function which is
bounded below and not identically equal to infinity. If p0 ∈ G and ǫ > 0 so that

u(p0) < ǫ+ inf
G
u,

then there exists a pǫ ∈ G so that the function

uǫ(x) = u(x) +
√
ǫdCC(x, pǫ)

achieves its infimum uniquely at x = pǫ and dCC(pǫ, x) <
√
ǫ. In particular (by Corollary

3.13, Remark 3.9(3) and Corollary 3.15), there exists a constant C > 0 so that if u is
Lipschitz on a neighborhood of pǫ, then for x near pǫ,

∂uǫ(x) ⊆ ∂u(x) +BV ∗

1
(0, C

√
ǫ)

and in particular,
0 ∈ ∂u(pǫ) +BV ∗

1
(0, C

√
ǫ)

where BV ∗

1
(0, r) is the closed ball of radius r in V ∗

1 .

Proof. This proposition is actually just an application of the following minimization
principle, [4, Theorem 1.1].

Theorem 3.20. Let X be a complete metric space with metric dX and f : X → (−∞,∞]
be a lower semi-continuous function which is not identically equal to infinity and bounded
from below. If x0 ∈ X and ǫ > 0 so that f(x0) < ǫ + infX f , then for each λ > 0, there
exist xλ ∈ X with dX(x0, xλ) < λ so that

(1) f(xλ) ≤ f(x0) and

(2) for each x 6= xλ, f(x) > f(xλ)− ǫ
λ
dX(x, xλ),

i.e., the function

fλ(x) = f(x) +
ǫ

λ
dX(x, xλ)

attains its infimum at exactly one point, xλ.

We prove the Proposition by using the above theorem and letting λ =
√
ǫ and noting

that for each fixed y ∈ G the function x→ dCC(x, y) is 1-Lipschitz.

4. Main Results

Equipped with the material of Sections 2 and 3, we can now prove our main theorem,
Theorem 1.1 and also prove analogues of a mean value theorem and a chain rule in the
context of non-smooth analysis on Banach homogenous groups. It is worth noting that
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these proofs are almost straight adaptions of the proofs of the analogous theorems in
Banach spaces. The key results needed for these proofs to work in Banach homogenous
group are Theorem 3.11 and its corollaries.

Our first order of business is to prove Theorem 1.1: Let G be a Banach homogenous group
and W an open subset of G. Let u : W → R, v : W → R

l and w : W → R
k all be locally

Lipschitz. Let
S := {p ∈W | v(p) ≤ 0, w(p) = 0}

where we write a = (a1, a2, . . . , al) ≤ 0 if and only if for each j, aj ≤ 0. If p0 ∈ S so that
u(p0) = infS u, then there exists α = (λ0, γ, λ) ∈ R× R

l × R
m with

(1) α 6= 0,

(2) λ0 ∈ {0, 1},
(3) γ ≥ 0 and

(4) 〈v(p0), γ〉 = 0

so that
0 ∈ ∂(λ0u+ 〈γ, v〉+ 〈λ,w〉)(p0).

Proof of Theorem 1.1. Our proof closely mirrors the proof of the Fritz John necessary
conditions found in [3, pp. 100–101]. Since u,v and w are locally Lipschitz there exists
r > 0 so that u,v and w are Lipschitz on V = {x ∈ G | dCC(x, p0) ≤ r}. Define the
compact set

A := {α = (λ0, γ, λ) ∈ R× R
l × R

m | λ0 ≥ 0, γ ≥ 0, ||α|| = 1}

where || · || is the Euclidean norm on R
1+l+m.

For each ǫ > 0 define the maps Uǫ : V → R
1+m+l and θǫ : V → R by

Uǫ(p) := (u(p)− u(p0) + ǫ, v(p), w(p)),

θǫ(p) := sup
α∈A

〈α, Uǫ(p)〉 .

Because u, v and w are Lipschitz on V , there exists K > 0 so that Uǫ and θǫ are K-
Lipschitz on V .

We first claim that θǫ ≥ 0 on V . Indeed, let p ∈ V . If p ∈ S, then u(p0) ≤ u(p), hence

θǫ(p) ≥ 〈(1,0,0), Uǫ(p)〉
= u(p)− u(p0) + ǫ ≥ ǫ.

For p /∈ S, either w(p) 6= 0 or there exists a j so that vj(p) > 0. Let λ = w(p) and
γi = vi(p) if vi(p) > 0 and γi = 0 if vi(p) ≤ 0. Then the vector β = (0, γ, λ) is non-zero
and α = 1

||β||
β is an element of the set A. Thus

θǫ(p) ≥ 〈α, Uǫ(p)〉 = ||β|| > 0

as needed. Hence we have shown that on V , θǫ > 0. That θǫ(p0) = ǫ follows from the
fact that u restricted to S is minimized at p0. Extend the function θǫ as infinity outside
of V . Because V is closed, we see that θǫ : G → (−∞,∞] is lower semi-continuous. We
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now invoke Proposition 3.19 to conclude that there exists a pǫ ∈ BCC(p0, 2
√
ǫ) so that

the function
Ψǫ(p) = θǫ(p) + 2

√
ǫdCC(p, pǫ)

attains its unique minimum at p = pǫ. Since V contains an open neighborhood of p0, for
ǫ small enough, pǫ ∈ int(V ). Hence,

0 ∈ ∂θǫ(pǫ) +BV ∗

1
(0, 2C

√
ǫ)

where C is as in Corollary 3.13 and BV ∗

1
(0, r) is the closed ball of radius r in V ∗

1 . The
next lemma will give us a better handle on the set ∂θǫ(pǫ).

Lemma 4.1. Let U be an open subset of G and F : U → R
N be locally Lipschitz and

B ⊂ R
N be compact. Define the locally Lipschitz function G(p) := supβ∈B 〈F (p), β〉. If

there exists a unique β ∈ B so that G(q0) = 〈β, F (q0)〉, then

∂G(q0) ⊆ ∂ 〈F (·), β〉 (q0).

Proof. By Remark 3.9(2), it suffices to show that for each g ∈ G,

G◦(q0; g) ≤ 〈F (·), β〉◦ (q0; g).

Let qn → q0 and λn ↓ 0 so that

G◦(q0; g) = lim
n→∞

G(qnδλn
(g))−G(qn)

λn
.

For each n, since B is compact there exists βn ∈ B so that

G(qnδλn
(g)) = 〈βn, F (qnδλn

(g))〉 .

Since B is compact, we can find a convergent subsequence of {βn} that converges to an
element α ∈ B. Passing to that subsequence (without relabelling) we then have

G◦(q0; g) = lim
n→∞

G(qnδλn
(g))−G(qn)

λn

≤ lim sup
n→∞

〈βn, F (qnδλn
(g))− F (qn)〉
λn

≤ lim sup
n→∞

(〈α, F (qnδλn
(g))− F (qn)〉
λn

+K||βn − α||
)

where F is K-Lipschitz on a neighborhood of q0. Hence we have

G◦(q0; g) ≤ lim sup
n→∞

〈α, F (qnδλn
(g))− F (qn)〉
λn

≤ 〈F (·), α〉◦ (q0; g).

We now claim that α = β. Indeed we have

G(q0) = lim
n→∞

G(qnδλn
(g))

= lim
n→∞

〈βn, F (qnδλn
(g))〉

= 〈α, F (q0)〉 ,

but β was the unique point in B so that G(q0) = 〈β, F (q0)〉. Hence α = β completing the
proof to the lemma.
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With the above lemma in mind, we are now going to show that there is a unique αǫ ∈ A
so that θǫ(pǫ) = 〈αǫ, Uǫ(pǫ)〉. If pǫ ∈ S, then αǫ = (1,0,0) is that unique element. For
pǫ /∈ S, let

λ0 = max(0, u(pǫ)− u(p) + ǫ)

γi = max(0, vi(pǫ))

λ = w(pǫ),

β = (λ0, γ, λ) and α = 1
||β||

β. Then α is the unique element of A that does the job. Note

that in each of these two cases, 〈γ, v(pǫ)〉 ≥ 0. Putting things together, we have for each
ǫ > 0 an αǫ ∈ A so that

0 ∈ ∂ 〈αǫ, Uǫ(·)〉 (pǫ) +BV ∗

1
(0, 2C

√
ǫ).

Let ǫi ↓ 0 and for each i let αi = αǫi , fi = fǫi and pi = pǫi . By passing to a subsequence,
there exists α ∈ A so that αi → α. Note that

〈αi, Ui〉 = 〈α, Ui〉+ 〈αi − α, Ui〉

which with Remark 3.9(1) and the previous implies that

0 ∈ ∂(〈α, Ui〉)(pi) +BV ∗

1
(0, 2C

√
ǫi)

Let U = (u, v, w). Since Ui − U is a constant function, we then have

0 ∈ ∂(〈α, U〉)(pi) +BV ∗

1
(0, 2C

√
ǫi)

for each i. Letting || · ||∗1 denote the norm on V ∗
1 produced by || · ||1, we see that for each

i, there exists ζi ∈ ∂(〈α, U〉)(pi) and ωi ∈ V ∗
1 with ||ωi||∗1 ≤ 2C

√
ǫi so that 0 = ζi + ωi.

Because ǫi → 0, we conclude that ||ζi||∗1 → 0. In particular, ζi → 0 weak∗ in V ∗
1 . Applying

Proposition 3.10 gives us that
0 ∈ ∂(〈α, U〉)(p0)

with α = (λ0, γ, λ) ∈ A. Since α ∈ A, λ0 ≥ 0 and γ ≥ 0. Also for each i, we have that
〈v(pi), γi〉 ≥ 0. Since v is continuous and γi → γ we have that 〈v(p0), γ〉 ≥ 0. Which
together with v(p0) ≤ 0 implies that 〈v(p0), γ〉 = 0. If λ0 = 0 then we are done, otherwise
replace α by α/λ0. Using Remark 3.9(4) gives

0 ∈ ∂(λ0u+ 〈γ, v〉+ 〈λ,w〉)(p0)

with

(1) (λ0, γ, λ) 6= 0,

(2) λ0 ∈ {0, 1},
(3) γ ≥ 0 and

(4) 〈v(x), γ〉 = 0

completing the proof to the theorem.

Corollary 3.16 with the above theorem gives us the following Corollary which is an exact
analogue of Lagrange multiplier in the setting of Carnot groups.
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Corollary 4.2. Let u, h1, . . . , hm be real valued locally Lipschitz C1
sub

functions defined on
a Carnot group G so that for each p ∈ S where S = ∩m

j=1h
−1
j (0), the vectors {∇Hhj(p)}mj=1

are linearly independent. If p0 ∈ S so that u(p0) = infS u, then there exists λ ∈ R
m so

that
0 = ∇H(u+ 〈λ, h〉)(p0)

where h = (h1, h2, . . . , hm).

The next theorem is a mean value theorem for Lipschitz functions on Banach homogenous
groups.

Theorem 4.3. Let f : G → R be locally Lipschitz. For each p ∈ G and g ∈ V1 there
exists 0 < t < 1 and ζ ∈ ∂(f)(pδt(g)) so that

f(pg)− f(p) = ζ(g).

Proof. Define φ(t) = p · (tg), and let ψ = f ◦ φ. Since g is horizontal we have that
δt(g) = tg for t > 0 and δ−t(g) = −tg for t < 0. We can see that ψ : R → R is a locally
Lipschitz function. We first claim that

∂ψ(t) ⊆ {ζ(g) | ζ ∈ ∂(f)(φ(t))}.

Indeed, since both sets in question are closed, bounded, convex subsets of R, it suffices to
check that for v = 1 and v = −1 that

sup{αv | α ∈ ∂ψ(t)} ≤ sup{vζ(g) | ζ ∈ ∂(f)(φ(t))}.

Since g is horizontal, by Corollary 3.14 we have that

f ◦(pδt(g); vg) = sup
ζ∈∂(f)(pδt(g))

ζ(vg).

Moreover, since R is a step one Carnot group, the same Corollary gives us that

ψ◦(t; v) = sup{αv | α ∈ ∂ψ(t)}.

Hence it suffices to check that for v = 1,−1 that

ψ◦(t; v) ≤ f ◦(pδt(g); vg).

Indeed we see that

ψ◦(t; v) = lim sup
s→t,λ↓0

ψ(s+ λv)− ψ(s)

λ

= lim sup
s→t,λ↓0

f(pδs+λ(vg))− f(pδs(vg))

λ

≤ f ◦(pδt(g); vg)

which completes the proof of the claim. To finish the proof of the theorem, define

θ(t) = f(pδt(g)) + t(f(p)− f(pg)) = ψ(t)− t(f(p)− f(pg)).
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Since θ is continuous and θ(0) = θ(1) there exists 0 < t < 1 so that θ achieves a local
maximum or a local minimum at t. Thus, 0 ∈ ∂θ(t), which implies that

0 ∈ ∂ψ(t) + {f(p)− f(pg)}

which then gives us that

f(pg)− f(p) ∈ ∂ψ(t) ⊆ {ζ(g) | ζ ∈ ∂(f)(pδt(g))},

completing our proof.

Remark 4.4. Theorem 4.3 is false if g is not assumed to be horizontal. As an example
let G be H1 and f(z, t) = t. Let p = (0, 0) and g = (0, 1). Then for every ζ ∈ L(H1;R),
ζ(g) = 0 but f(pg)− f(p) = 1.

We close this section with a chain rule.

Theorem 4.5. Let G be as in Theorem 4.3 and F : G → R
k be a locally Lipschitz map

(with respect to the Carnot-Carathéodory metric on G and the Euclidean metric on R
k)

and ψ : Rk → R also be locally Lipschitz. Then we have that

∂(ψ ◦ F )(x0) ⊆ co{ζ | ζ ∈ ∂(γ ◦ F )(x0) for some γ ∈ ∂(ψ)(F (x0))}

where co(S) denotes the closure of the convex hull of S.

Proof. Define the set

S = {ζ | ζ ∈ ∂(γ ◦ F )(x0) for some γ ∈ ∂(ψ)(F (x0))}.

We are to show that ∂(ψ ◦ F )(x0) ⊆ co(S). Define a function ρ : V1 → R as

ρ(v) = sup
ζ∈co(S)

ζ(v).

Because S is bounded, ρ is finite valued. Easily, ρ is a Minkowski functional as well. We
first claim that (ψ ◦ F )◦(x0; v) ≤ ρ(v) for all v ∈ V1. Indeed, let v1 ∈ V1 and xi → x0 and
λi ↓ 0 so that

(ψ ◦ F )◦(x0; v) = lim
i→∞

ψ(F (xiδλi
(v)))− ψ(F (xi))

λi
.

Let ai = F (xiδλi
(v)) and bi = F (xi). Applying Theorem 4.3 to the one step Carnot

group R
k on the function ψ at the point ai on the horizontal element bi − ai produces a

0 < si < 1 and a γi ∈ ∂ψ(ai + si(bi − ai)) so that

γi(bi − ai) = ψ(bi)− ψ(ai).

Since F is continuous and ψ is locally Lipschitz, the γi are uniformly bounded in norm.
Thus we can extract a subsequence of γi that converges to an element γ in the space
L(Rk;R) endowed with the operator norm. By Proposition 3.10 and the fact that both
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ai and bi converge to F (x0) we get that γ ∈ ∂(ψ)(F (x0)). Without bothering to relabel,
we can conclude that

(ψ ◦ F )◦(x0; v) = lim
i→∞

γi

(

F (xiδλi
(v))− F (xi)

λi

)

= lim
i→∞

γ

(

F (xiδλi
(v))− F (xi)

λi

)

= lim
i→∞

(γ ◦ F )(xiδλi
(v))− (γ ◦ F )(xi)
λi

.

In the above we needed that F was Lipschitz near x0 and that ||γi − γ|| → 0. We now
apply Theorem 4.3 to the function γ ◦F at the point xi and the horizontal element δλi

(v)
to produce 0 < ti < 1 and ζi ∈ ∂(γ ◦ F )(xiδtiλi

(v)) so that

(γ ◦ F )(xiδλi
(v))− (γ ◦ F )(xi)
λi

= ζi(v).

Taking advantage of the fact that γ ◦ F is locally Lipschitz gives us that the ζi’s are
uniformly bounded in V ∗

1 . Hence, there exists a subsequence which converges weak∗ to
an element ζ. Since xi → x0, Proposition 3.10 implies that ζ ∈ ∂(γ ◦ F )(x0). Eschewing
relabelling, we then have that

(ψ ◦ F )◦(x0; v) = lim
i→∞

ζi(v) = ζ(v)

which implies that (ψ ◦ F )◦(x0; v) ≤ ρ(v). To finish, let φ ∈ ∂(ψ ◦ F )(x0). Then by
definition and combined with the previous gives us that φ(v) ≤ supζ∈co(S) ζ(v) for each
v ∈ V1 which implies that φ ∈ co(S).

5. Closing Remarks

Our definition of a Banach homogenous group does not guarantee that the components
of a Banach homogenous group are coupled. As a consequence functions can be C1

sub but
not be locally Lipschitz. Indeed, let V1 = R and V2 = R. We let the group law be given
by the usual vector addition of R2, i.e.,

(x1, y1) · (x2, y2) = (x1 + x2, y1 + y2).

We define the dilation by λ > 0 as

δλ(x, y) = (λx, λ2y).

Finally we define the gauge as

||(x, y)|| = |x|+
√

|y|.
It is straightforward to check that the above is sub-additive with respect to vector addition.
However, the class of Lipschitz functions with respect to the metric created by our gauge
is just those functions f : R

2 → R which are Lipschitz in the first argument and 1
2
-

Hölder continuous in the second argument. The class of C1
sub functions are those for

which the partial derivative in the first argument exists at every point and is continuous.
For example the function

f(x, y) = x+ χQ(y),

where χQ is the characteristic function of the rational numbers, is C1
sub, but not even

continuous.
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