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1. Introduction and summary

In his paper concerning Hadamard “s inequality Schur[7] introduced and characterized a
class of functions which were later called Schur-convex or simply S-convex. This char-
acterization was completed by Ostrowski [6]. Hardy, Littlewood and Pdlya attached
importance to these functions in presenting and proving many results in their book [3],
while Marshall and Olkin [5] used the S-functions as a key in creating an unified theory
of inequalities.

Both Schur and Ostrowski characterized the S-functions in terms of their differential
coefficients. Some further results described relations between S-convexity and convexity
(in the sense of Jensen). Among others, it is now well known, that any symmetric convex
function is S-convex, but not vice versa.

The aim of this paper is to present a simple and effective characterization of S-convexity.
As we will see, this characterization leads directly to some known and unknown results
in this subject. Applications of the characterization are also provided.

2. Definitions and main result

Let us consider a subset A of the real euclidean space R™, where n > 1. Any element of
A will be presented as a row-vector x = (z1,...2,). The set A is said to be symmetric
if (z1,...,2,) € A implies that (z;,,...,2;,) € A for any permutation z;,,...,x;, of the
numbers z1,...,x,. Moreover, a real function ¢ on a symmetric set A is said to be
symmetric, if o(x1,...,x,) = @(zi,...,x;, ). We say that a vector y in a symmetric set
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A C R™ majorizes x € A, and write x < vy, if

k
maX{inj 1<y <idpg <...<ip <n}
j=1
k
maX{Zyi]. 1<ip<ig<..<ip<n}fork=1,...,n—-1
j=1

IN

and Zn: T, = 2”: Yi-
i=1 i=1

The relation < possesses the usual properties of preordering, i.e.

() x <z foranyx € A,
(xx) ifz <yand y < z then z < z for all ,y,z € A.

A real function ¢ on a convex set A CR" is said to be convez if

e(Ax 4+ (1 = N)y) < Ap(x) + (1 — N)p(y) for any 2,y € A. and X € (0,1). (1)

Let us mention (cf. [3]) that any continuous function ¢ on a convex set A is convex, if

and only if,

Tty
2

o ) < Slp(w) + p(y)] for any z,y € A. (2)

DN | —

The following lemma will be useful in Section 3.

Lemma 2.1 (cf. [5], Proposition 16.B.7). Let f be a convex function on a convex set
A and g be a nondecreasing convez function on R. Then the composition ¢(x) = g(f(x))
s convex on A. Moreover, if f is strictly convex and g is increasing strictly convex then
¢ 1s strictly convex.

Proof. By definition of ¢, ¢(Ax + (1 — N)y) = g(f(Az + (1 — N)y)). Since f is convex
and g is nondecreasing, we get g(f(Az + (1 — N)y)) < g(Af(x) + (1 — N)f(y)). Now the
desired result follows by the convexity of g. m

Definition 2.2. A real function ¢ on a symmetric set A is said to be Schur-convex (or
simply S-convex) if it is isotonic relative to the preordering <, that is, if < y implies
o(x) < p(y) for any x,y € A. The function ¢ is said to be strictly S-convex if the strict
inequality ¢(x) < ¢(y) does hold for any pair x,y € A, such that z < y but y can not be
obtained from x by permutation of its components.

Remark 2.3. By definition of the preordering < , any function ¢ is (strictly) S-convex,
if and only if, for arbitrary real functions ¢ and h, such that g is positive, the function
g i wi)p(z) +h(D 7, x;) is (strictly) S-convex. Hence, S-convex function may not be
continuous, or even measurable.

It is well known (cf. [6, 7]) that a continuously differentiable function ¢ defined on the
cartesian product I™ of an open interval I C R is S-convex, if and only if,
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(a) @(x) = p(x1,...,2,) is a symmetric, and,
(b) (i — ;) (0 (7) — @y (x)) > 0 for all z € I", where ¢, (z) = Oo(z)

oxy,

It is also known, that any symmetric convex function ¢ defined on a symmetric convex
set A in R™ is S-convex (see [7], or [5] ).
We shall prove the following
Theorem 2.4. Let ¢ be any function defined on a symmetric convex set A in R™. Then
(A)  The function ¢ is S-convez if and only if

(Z) V(Zlfl, l‘n) ceAVI<i< 7 <n, 30(1‘1, ey Lj1 Ly i 1y ooy Ljm1y Ty Tjt1, ...,QTn) =

90(3:1, ceey [IZ‘l',l’iL’j, Lit1y -y l’jfl, X, f]?j+1, vy iL’n), and
(11) V(21,..7p) € AV 0 <A< 1, oAz + (1 = N)xg, Azo + (1 — Nz, 23, ..., Ty) <

o(T1, .y Ty).
(B) The function ¢ is strictly S-convex if and only if it satisfies the conditions (i) and (i)
with the strict inequality < instead of < for all (x4, ...,x,) € A such that x1 # x.

Remark 2.5. The condition () is equivalent to symmetry of ¢, while (¢7) is weaker than
either convexity or quasiconvexity (see [5], Sec. 3.C, for definition).
Proof. Part (A). Necessity of the conditions (i) and (7).

Necessity of (i) is evident. To show the necessity of (ii) we note that (Azy+(1—\)zg, Axo+
(1 = Naxy, 3, ..., z,) = 2T, where

A 1=X 00 ...0
I-A2 X 00 .. 0
T = 0 0 10 0

Since T is a doubly stochastic matrix, we get T < z (cf. [5], Th. 2.A.4). Now the
necessity of (ii) follows by definition of S-convexity.

Sufficiency of (7) and (i7). Let x and y be arbitrary vectors in A such that = < y. Then, by
Theorem of Muirhead (see [3], or [5], Lemma 2.B.1) there exist matrices T, k = 1,..n—1,
such that © = yT175...T,,_1, while each T}, may be rewritten in the form (¢;;) with

A if eithert =j=rori=j=s,

1 if i=75%#ms,

1— X ifeithert=rand j=sori=sand j=r,
0 otherwise,

tij -

where r = r(k) and s = s(k) are positive integers not greater than n and A = A(k) belongs
to the interval (0,1). Let us define vectors y*), k = 0,1, ...,n — 1, by setting y® = y and
y*®) = o*k=DT for k = 1,..,n — 1. To see that ¢(z) < ¢(y) we only need to notice that
the conditions (i) and (i) imply p(y*)) < p(y*=V) for k=1,....,n — 1.

The part (B) of this Theorem may be proved in the same way. [

From Theorem 2.4 we get the following corollaries.
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Corollary 2.6 (Schur [7], Marshall and Olkin [5], Th. 3.C.2). Any symmetric con-
vex function defined on a symmetric convex set A is S-convex.

Corollary 2.7 (Marshall and Olkin [5], Th. 3.C.3). If ¢ is a symmetric function

defined on a symmetric conver set A in R™ satisfying the condition p(Ax + (1 — N)y) <
max{p(z),¢(y)} for all X € (0,1) and for all z,y € A then ¢ is S-convez.

3. Further results and applications
We shall start from some auxiliary results.

Lemma 3.1. Any real measurable function f defined on an open interval I in R is convex,
if and only if,

fOz+ (A =Ny)+ fQy+ (1= Nzx) < f(x)+ f(y) for any z,y € I and X € (0,1). (3)
Moreover, f is strictly convez, if and only if, the inequality in (3) is strict.

Proof. For necessity we shall use the fact that any measurable convex function ¢ on
an open interval I C R is continuous (cf. [4]). Let us recall that, in this case, the
conditions (1) and (2) are equivalent. Thus, if f is convex, then by (1), f(Az+(1—=XN)y) <
M)+ (1=XN)f(y) and fF(Ay+(1—=N)z) < Af(y)+(1—=A)f(x) for z,y € T and X € (0,1).

This implies (3). Conversely, by setting in (3) A = 3 we get (2). O

Remark 3.2. By Bernstein-Doetsch Theorem (see [1]) the word "measurable” in Lemma
3.1 and throughout this section may be replaced by ”locally bounded”.

The following lemma is a direct consequence of Theorem 2.4 and Lemma 3.1.

Lemma 3.3 (Propositions 3.C.1 and 3.C.1.c in [5]). For a given measurable func-
tion f on an open interval I C R the following are equivalent:

(a)  The function f is (strictly) convex on I.
(b)  The function o(x) = > ", f(z;) is (strictly) S-convex on I™.

Taking into account Remark 2.3, one can state the following theorem.

Theorem 3.4. For arbitrary real functions f, g and h on an open interval I C R, such
that g is positive and f is measurable, the following are equivalent:

(a)  The function f is (strictly) convez,
(b)  The function ¢,(x1,....;xn) = 9O i i) Yoiy flzi) + R0, i) is (strictly) S-

convezx.

Now, for a given f, let us consider the function ¢, (z) = [[;_, f(z;). To state a necessary
and sufficient condition for the S-convexity of 1),, we need some notion.

A positive function f on an interval I C R is said to be logconvez if In f is convex.

Remark 3.5. We note that f is logconvex, if and only if, log, f is convex for some
a > 1. Moreover, by Lemma 2.1, any logconvex function is convex. However, a convex
function may not be logconvex. For instance, the function f(x) = z? is convex, while
In f(z) = 2Inx is concave.
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The following theorem is an extension of Proposition 3.E.1 in [5].

Theorem 3.6. For arbitrary real functions f, g and h on an open interval I C R, such
that g is positive and f is measurable and positive, the following are equivalent:

(a)  The function f is (strictly) logconvez,

(b)  The function ¥, (x1,....xn) = 9O i i) [y f(zi) + RO 1, @) is (strictly) S-

convezx.

Proof. By Remark 2.3, we only need to consider the case v, (z) = [[;—, f(x;). Since g
is positive, the condition (i7) in Theorem 2.4 may be equivalently replaced by 1, (Az +
(1 =XNy), \y + (1 = N)z) < 1y(x) + ¥5(y), and, by definition of ,,, the last one reduces
tolnf(Ax + (1 —=Ny)+Inf(Ay+ (1 — AN)zx) < In f(x) + In f(y). Now the desired result
follows from Theorem 3.4. ]

Let us present some applications of Theorems 3.4 and 3.6.

Example 3.7. In descriptive statistics the ratio v = 2, where T = %le and s =

L5 (x; — T)?, is said to be the variation coefficient in the sample z = (21, ..., z,),

providing T # 0. In general, the set of possible values of v is not bounded, but if z4, ..., x,
are nonnegative and »_ x; > 0, then it is so. One can suspect that, under this additional
condition, the coefficient v is normalized, in the sense that 0 < v < 1. We shall show that
this conjecture is false.

Given 7 the function s?(z) may be presented in the form s?(z) = —5 (¢, (z) —n@?), where
¢, (z) = >_ 2. Thus, by Theorem 3.4, s*(z) is S-convex. Therefore, its maximal value is

attained for the maximal element in the set
A= {(xl,...,xn) c oy >0, le = nf}

with respect to the ordering <. It is well known that this element is y = (0, ..., 0, nZ),
and hence max s?(z) = $*(y) = =5 (3" y? — nz?) = n T2 Therefore, the function v is not
xe

normalized but - is so.
N

Example 3.8. Any quadratic form of z = (z1, ..., z,,) may be expressed as ¢(z) = vAxT,
where A is a symmetric matrix of n x n. It is evident that such a function is symmetric,
if and only if, A = al + b1, a,b € R, where 1 is n X n matrix of ones. Thus, in this
case, tAzT = a > 22 + b(>_ x;)?. Hence, by Theorem 3.4, a quadratic form ¢(z) = rAz”
is S-convex, if and only if, A = al + b1 with a > 0, and strictly S-convex, if and only if,
a > 0.

Example 3.9. Let us consider the function ¢(x) = g(3 x;)e"**" + h(>" x;), where z =
(21, ...,2,), while g and h satisfy the assumptions of Theorem 3.6. We are seeking for
a necessary and sufficient condition to ¥ be S-convex. It follows from Example 3.8, via
Remark 2.3, that a necessary one is A = al + b1 with a > 0. To show its sufficiency, we
only need to set in Theorem 3.6 f(x) = e*. Similarly, 1 is strictly S-convex, if and only
if, a > 0.

Some interesting applications of Schur-convex functions in statistics can be found in [§]

and [9)].
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