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In this paper, we extend the notion of cone-subconvexlikeness of set-valued maps on topological linear
spaces to set-valued maps on linear spaces, (that is, general linear spaces without any particular topology),
and we provide several characterizations. An alternative theorem is also established for this kind of
maps. Using the notion of vector closure introduced recently by Adán and Novo, we also provide, in
this framework, an adaptation of the proper efficiency in the sense of Benson for set-valued maps. The
previous notion and results are then applied to obtain optimality conditions of weak efficiency and a
characterization of Benson proper efficiency by means of scalarization and multipliers rules.
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1. Introduction

In the research area of vector optimization one investigates optimization problems involv-
ing more than one objective. This kind of optimization problems appear in mathematical
modeling of processes ocurring in management science, operations research, networks, in-
dustrial systems and control theory. Since the set of (weak) efficient solutions is often too
large and since the condition of convexity is too strong, research about proper efficient so-
lutions (see, for example, Borwein [7], Benson [6]) and weaker convexity assumptions (see,
for example, Jeyakumar [17], Jahn [15], Khanh [18], Yang [26, 27]) are two basic topics in
vector optimization. The usual framework of the above papers is that of partially ordered
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topological linear spaces. In [2, 3, 4, 5], Adán and Novo have extended weak and proper
efficiency and cone-convexity to vector optimization problems on partially ordered linear
spaces, that is, general linear spaces without any particular topology, using only algebraic
concepts. In most cases, the obtained optimality conditions require some generalization
of a separation or alternative theorem.

On the other hand, recently, for its extensive application in many fields such as optimal
control, fuzzy programming or stochastic programming, several authors have turned their
research work to vector optimization problems with set-valued maps, obtaining optimality
conditions in terms of set-valued maps. For instance, Corley [9, 10] established several
existence results and a Lagrangian duality theory for vector optimization of set-valued
maps, Song [24] proved a cone separation theorem and gave optimality conditions for
weakened convex valued-maps in locally convex spaces, Lin [23] generalized a Moreau-
Rockafellar type theorem and a Farkas-Minkowski type theorem to set-valued maps, and
obtained some necessary and sufficient conditions for vector optimization problems with
set-valued maps, Li and Chen [22] gave a multipliers rule for the existence of a weak mini-
mizer under convexlikeness, Li [20, 21] extended the concept of cone subconvexlikeness of
single-valued map to set-valued maps in topological linear spaces, obtained an alternative
theorem, scalarization theorems and Lagrange multipliers theorems to study the weak ef-
ficiency and characterized Benson proper efficiency in vector optimization problems with
set-valued maps. The same author in [19], working in ordered topological linear spaces
and under cone-subconvexlikeness of set-valued maps, established optimality conditions
for weak efficiency by using an alternative theorem. More recently, Huang [13] gave a
Farkas-Minkowski type alternative theorem under nearly semiconvexlike for set-valued
maps and has obtained optimality conditions for set-valued optimization problems.

In this work, we introduce a new concept of proper efficiency in the sense of Benson for
an optimization problem with set-valued maps in real linear spaces, and we characterize
this concept by scalarization under suitable conditions. Since, in this work our notion
of cone-subconvexlikeness for set-valued maps is weaker than Li’s definition [20], who
works in topological linear spaces, our results can be considered extensions of Li’s results
[20, 21, 19].

In order to achieve this goal, in Section 2, we introduce the vectorial Benson efficiency
by using concepts and results given by Adán and Novo [1, 2, 3, 4, 5]. In Section 3, we
extend the notion of cone-subconvexlikeness of set-valued maps on linear spaces and give
several characterizations. We establish separation theorems and an alternative theorem
for solid convex cones. We also analyze the behaviour of a cone-subconvexlike set-valued
map via a positive linear operator. In Section 4, two necessary optimality conditions
for weak efficiency are presented under cone-subconvexlikeness for set-valued maps. We
prove scalarization theorems and characterize the vectorial Benson efficiency for cone-
subconvexlikeness of set-valued maps. In addition, in Section 5, we obtain optimality
conditions for some other vectorial efficiency concepts. In Section 6, using a new general-
ized Slater constraint qualification, we obtain a Lagrange multiplier rule of algebraic type
for vector optimization problems with set-valued maps.
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2. Notations and preliminaries

Throughout this paper we consider a real linear space Y partially ordered by a convex
cone K in Y . Let A ⊂ Y , we denote by cone(A), conv(A), aff(A), span(A) and L(A) =
span(A−A) the generated cone, convex hull, affine hull, linear hull and associated linear
subspace of A, respectively.

In order to avoid topological concepts we use analogous algebraic concepts. The core
(algebraic interior) and the intrinsic core (relative algebraic interior) are defined as

cor(A) = {x ∈ A : ∀v ∈ Y, ∃t0 > 0, ∀t ∈ [0, t0], x+ tv ∈ A},

icr(A) = {x ∈ A : ∀v ∈ L(A), ∃t0 > 0, ∀t ∈ [0, t0], x+ tv ∈ A}.

In the case when cor(A) 6= ∅ we say that A is solid. Analogously, we say that A is
relatively solid if icr(A) 6= ∅. It is clear that if cor(A) 6= ∅ then cor(A) = icr(A) because
L(A) = Y .

For finite dimensional spaces, obviously, there exist sets which are not solid but they are
relatively solid, for example any segment, ray or line in R

2. For an example in infinite
dimension see Example 2.2.

The so called algebraic closure of a set A is defined by

lin(A) = A ∪ {x ∈ Y : ∃a ∈ A, [a, x) ⊂ A}.

Except for solid convex sets, this concept is not satisfactory as a substitute for topological
closure. In order to solve this problem, in [4] Adán and Novo have introduced a weaker
closure of algebraic type, which was called vector closure. This vector closure coincides
with the algebraic closure for convex sets, and coincides with the topological closure for
solid convex sets whenever Y is a real topological linear space.

Definition 2.1. Let A be a nonempty subset of Y . The vector closure of A is the set

vcl(A) = {b ∈ Y : ∃v ∈ Y, ∀α > 0, ∃t ∈ (0, α], b+ tv ∈ A}.

It is clear that b ∈ vcl(A) if and only if there exist v ∈ Y and a sequence tn → 0+ such
that b+ tnv ∈ A for all n ∈ N.

The set A is called vectorially closed if A = vcl(A).

We say that a cone K is pointed if K ∩ (−K) = {0}. It is well-known that for a convex
cone K, whose relative algebraic interior is non-empty, icr(K) ∪ {0} is a convex cone,
icr(K) +K = icr(K) and icr(icr(K)) = icr(icr(K) ∪ {0}) = icr(K).

The algebraic dual of Y is denoted by Y ′, the positive dual of a subset A of Y is

A+ = {ϕ ∈ Y ′ : ϕ(a) ≥ 0, ∀a ∈ A},

and A+s = {ϕ ∈ Y ′ : ϕ(a) > 0, ∀a ∈ A \ {0}} is the strict positive dual of A. It is known
that A+ is a vectorially closed convex cone and

[cone(A)]+ = cone(A+) = [conv(A)]+ = conv(A+) = A+.
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It is clear that A ⊂ lin(A) ⊂ vcl(A). So, if A is vectorially closed, it will be algebraically
closed too.

Other properties that will be used and appear in Adán and Novo [4, 5] are the following:
Let A,B ⊂ Y

if A ⊂ B ⇒ vcl(A) ⊂ vcl(B),

[vcl(cone(conv(A)))]+ = A+.

If Y is a topological linear space, the interior and the closure of a set A are denoted by
int(A) and cl(A), respectively. It is clear that vcl(A) ⊂ cl(A).

To illustrate the notions above we give an example in nonfinite dimension.

Example 2.2. Let Y be the vector space of all sequences of real numbers, let S be the
subspace of Y of all bounded sequences:

S = {a = (an) ∈ Y : ∃β > 0 such that |an| ≤ β ∀n},

and let K be the subset of S of all nonnegative sequences:

K = {a = (an) ∈ S : an ≥ 0 ∀n}.

It is clear that K is a pointed convex cone. Furthermore, the vector space generated by
K is S, i.e., L(K) = K −K = S.

For the cone K we have the following facts:

(i) icr(K) = {a ∈ K : inf{an} > 0},

(ii) K is vectorially closed, i.e., vcl(K) = K.

(i) Let a ∈ K such that δ = inf{an} > 0, and let us see that a ∈ icr(K), i.e., that
∀v ∈ S = L(K), ∃t0 > 0 such that a+ tv ∈ K, ∀t ∈ (0, t0].

As the sequence v = (vn) ∈ S, it is bounded, and then there exists β > 0 such that
|vn| ≤ β ∀n. In consequence,

−δ ≤
δ

β
vn ≤ δ ∀n.

As δ is the infimum of the numbers an, we have δ ≤ an ∀n, and therefore

0 ≤ an − δ ≤ an − δt ≤ an +
δ

β
tvn ≤ an + δt ∀t ∈ (0, 1].

Defining t0 = δ/β one has that a+ tv ∈ K, ∀t ∈ (0, t0].

Now choose a ∈ icr(K). As icr(K) ⊂ K we have inf{an} ≥ 0. Suppose that inf{an} = 0.
Since a ∈ icr(K), given v ∈ S defined by vn = −1 for all n ∈ N, there exists t0 > 0 such
that a + tv ∈ K, ∀t ∈ (0, t0], i.e., an − t ≥ 0 for 0 < t ≤ t0 and for all n. But since we
are supposing inf{an} = 0, for this t0 > 0 there exists n0 such that an0

< t0, and this is a
contradiction.

(ii) We only have to prove the inclusion vcl(K) ⊂ K. Let us choose a ∈ vcl(K). Then
there exist v ∈ S and a sequence tj → 0+ such that a + tjv ∈ K ∀j. Suppose that for
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some n ∈ N, an < 0. Then limj→∞(an + tjvn) = an < 0. Hence, there exists j0 ∈ N such
that an+ tjvn < 0 ∀j ≥ j0, but this is in contradiction to the fact that a+ tjv ∈ K. Thus,
a ∈ K.

The following cone separation theorem is due to Adán and Novo [5, Theorem 2.2].

Theorem 2.3 (Separation Theorem). Let M , K be two vectorially closed and rela-

tively solid convex cones in Y . If K+ is solid and M ∩K = {0}, then there exists a linear

functional ϕ ∈ Y ′\{0} such that ∀k ∈ K, m ∈ M , ϕ(k) ≥ 0 ≥ ϕ(m) and furthermore

∀k ∈ K\{0}, ϕ(k) > 0, i.e., ϕ ∈ K+s.

Remark 2.4. Notice that if cor(K+) 6= ∅ and K is a convex cone then K is pointed [16,
Lemmas 1.25 and 1.27] whenever Y ′ separates points in Y .

Throughout this paper, we assume that, unless indicated otherwise, X is a set, Y and Z
are real linear spaces, K ⊂ Y and D ⊂ Z are pointed relatively solid convex cones, and
F : X −→ 2Y and G : X −→ 2Z are set-valued maps with domain X.

The following unconstrained (P ) and constrained (CP ) vector optimization problems with
set-valued maps will be considered:

(P )

{

K −Min{F (x)}

subject to x ∈ X,

(CP )

{

K −Min{F (x)}

subject to x ∈ X; G(x) ∩ (−D) 6= ∅.

The feasible set of (CP ) is

Ω = {x ∈ X : G(x) ∩ (−D) 6= ∅}. (1)

The image of a subset A ⊂ X under F is denoted by F (A) =
⋃

x∈A

F (x).

In [3], [4] and [5] Adán and Novo have introduced several concepts of efficient points of
a set S ⊂ Y in the framework of vector optimization problems in partially ordered real
linear spaces as follows.

Definition 2.5. (a) The set of Hurwicz-vectorial (HuV) proper efficient points of S ⊂ Y
is defined by

HuV(S) = {y ∈ S : vcl[conv(cone((S − y) ∪K))] ∩ (−K) = {0}}.

(b) The set of Benson-vectorial (BeV) proper efficient points of S ⊂ Y is defined by

BeV(S) = {y ∈ S : vcl(cone(S − y +K)) ∩ (−K) = {0}}.

(c) The set of weakly-vectorial (WeV) efficient points of S ⊂ Y is defined by

WeV(S) = {y ∈ S : (S − y) ∩ (− icr(K)) = ∅}.
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It is clear that HuV(S) ⊂ BeV(S) ⊂ WeV(S). If we assume that Y is a topological linear
space, and in this definition we replace the vector closure by the topological closure,
and “icr� by “int� we obtain the usual Hurwicz (Hu) (see [14]), Benson (Be) proper
efficiency defined in [6] and weak efficiency (We). Because of vcl(S) ⊂ cl(S), it follows
that Hu(S) ⊂ HuV(S), Be(S) ⊂ BeV(S) and We(S) = WeV(S) (if int(K) 6= ∅).

The following diagram illustrates these relationships:

Hu ⇒ Be ⇒ We

⇓ ⇓ m

HuV ⇒ BeV ⇒ WeV

For a vector optimization problem with set-valued maps, we introduce the following con-
cepts of efficient solution.

Definition 2.6. (a) A point x ∈ X is called a Hurwicz-vectorial (HuV) proper efficient
solution of problem (P ) if there exists

y ∈ F (x) ∩ HuV(F (X)).

The pair (x, y) is called a Hurwicz-vectorial proper minimizer of (P ).

(b) A point x ∈ X is called a Benson-vectorial (BeV) proper efficient solution of problem
(P ) if there exists

y ∈ F (x) ∩ BeV(F (X)).

The pair (x, y) is called a Benson-vectorial proper minimizer of (P ).

(c) A point x ∈ X is called a weak-vectorial (WeV) efficient solution of problem (P ) if
there exists

y ∈ F (x) ∩WeV(F (X)).

The pair (x, y) is called a weak-vectorial proper minimizer of (P ).

3. Cone-subconvexlike set-valued maps

Fan [11] introduced the concept of convexlikeness for a real-valued function and Yu [28]
called K-convex to a set A such that A + K is convex. Later Jeyakumar [17] extended
this concept in real topological linear spaces, establishing sub-convexlikeness and Yang
[26] proposed new concepts of generalized convexity. Adán and Novo [1] extended these
concepts to the framework of real linear spaces.

Let X be a set, let F : X −→ 2Y be a set-valued map whose domain is X and let K ⊂ Y
be a pointed relatively solid convex cone.

Definition 3.1. (a) F is said to be K-convexlike on X if ∀x, x′ ∈ X, ∀α ∈ (0, 1)

αF (x) + (1− α)F (x′) ⊂ F (X) +K.

(b) F is said to be K-subconvexlike on X if ∃k0 ∈ icr(K) such that ∀x, x′ ∈ X, ∀α ∈
(0, 1), ∀ε > 0,

εk0 + αF (x) + (1− α)F (x′) ⊂ F (X) +K.
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Notice that, from the definition, if F is K-convexlike on X then F is K-subconvexlike on
X (choosing as k0 any element of icr(K)).

It is well-known that F is K-convexlike on X if and only if F (X)+K is a convex set [22,
Proposition 1.(iii)]. Let us see a similar result for K-subconvexlikeness and some other
characterizations.

Proposition 3.2. The following statements are equivalent:

(a) F is K-subconvexlike on X.

(b) ∀k′ ∈ icr(K), ∀x, x′ ∈ X, ∀α ∈ (0, 1),

k′ + αF (x) + (1− α)F (x′) ⊂ F (X) + icr(K).

(c) ∀x, x′ ∈ X, ∀α ∈ (0, 1), ∃k ∈ K such that ∀ε > 0

εk + αF (x) + (1− α)F (x′) ⊂ F (X) +K. (2)

(d) F (X) + icr(K) is a convex set.

Proof. The implications (b) ⇒ (a) ⇒ (c) are clear. Let us see (c) ⇒ (b). Let k′ ∈ icr(K),
x, x′ ∈ X, α ∈ (0, 1). Then, by assumption, ∃k ∈ K such that ∀ε > 0 condition (2) holds.
As k′ ∈ icr(K) = icr(icr(K)), for −k ∈ L(K) = L(icr(K)) = K −K there exists ε0 > 0
such that k0 = k′ + ε0(−k) ∈ icr(K). So,

k′ + αF (x) + (1− α)F (x′) = [ε0k + αF (x) + (1− α)F (x′)] + k0

⊂ F (X) +K + k0 ⊂ F (X) + icr(K)

(the last inclusion is true because K + icr(K) ⊂ icr(K)).
(b) ⇒ (d). Let u, u′ ∈ F (X) + icr(K), α ∈ (0, 1). Then, u = y + k, u′ = y′ + k′ with
y ∈ F (x), y′ ∈ F (x′), k, k′ ∈ icr(K), x, x′ ∈ X. Therefore

αu+ (1− α)u′ = α(y + k) + (1− α)(y′ + k′) = αk + (1− α)k′ + αy + (1− α)y′.

As icr(K) is a convex set, k0 = αk + (1− α)k′ ∈ icr(K). So,

αu+ (1− α)u′ ∈ k0 + αF (x) + (1− α)F (x′) ⊂ F (X) + icr(K).

(d) ⇒ (b). Let k′ ∈ icr(K), x, x′ ∈ X, α ∈ (0, 1), y ∈ F (x), y′ ∈ F (x′), then

k′ + αy + (1− α)y′ = α(y + k′) + (1− α)(y′ + k′) ∈ F (X) + icr(K)

because F (X) + icr(K) is a convex set by assumption, and y + k′, y′ + k′ ∈ F (X) +
icr(K).

In view of proposition (d), a remarkable property of cone-subconvexlikeness is that it is
kept by translation: if F is K-subconvexlike on X, then F − y is K-subconvexlike on X
for all y ∈ Y .

Remark 3.3. Of course, we may define that F is K-subconvexlike on X in the sense of
Li [19] if ∃k0 ∈ icr(K), ∀x, x′ ∈ X, ∀α ∈ (0, 1), ∀ε > 0, ∃x′′ ∈ X such that

εk0 + αF (x) + (1− α)F (x′) ⊂ F (x′′) +K.

However, this notion is more restrictive than Definition 3.1(b) (see Example 3.4 below).
When cor(K) 6= ∅, this notion becomes Definition 2.1 in Li [19] (see also [21, Definition
1.2]).
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Example 3.4. Consider X0 = {x = (x1, x2) ∈ R
2 : x1 < 0, x2 = −x1}, a = (1, 0),

X = X0 ∪ {a}, F : X −→ 2R
2

given by F (x) = {x, a} and K = R
2
+. We have that

cor(R2
+) = icr(R2

+) = int(R2
+) 6= ∅. It is clear that F is K-subconvexlike on X because

F (X) + icr(K) = {x ∈ R
2 : x2 > 0, x2 > −x1}

is a convex set (see Proposition 3.2). However, F is notK-subconvexlike onX in the sense
of Li [19]. Indeed, given k0 = (r, s) ∈ cor(K), we take x = (−1, 1) ∈ X, x′ = (−3, 3) ∈ X,

α = 1/2, and ε =
1

4
Min

{

1

r
,
1

s

}

, then ∀x′′ ∈ X

εk0 + αF (x) + (1− α)F (x′) 6⊂ F (x′′) +K

as can be checked.

We obtain another counterexample with the same data changing K for K = R+ × {0}.
Now, cor(K) = ∅ and icr(K) 6= ∅.

Proposition 3.2 generalizes Lemmas 3.1 and 3.2 in Li [20], which are valid in a topological
linear space Y provided with a convex cone K with int(K) 6= ∅.

In this paper, the relative solidity of the convex set F (X) + icr(K) which appears in
Proposition 3.2(d) is very important, so we give a new definition.

Definition 3.5. A set-valued map F : X −→ 2Y is relatively solid K-subconvexlike on
X if the following conditions hold:

(i) F is K-subconvexlike on X,

(ii) icr(F (X) + icr(K)) 6= ∅.

Remark 3.6. (a) If Y is finite dimensional, condition (ii) is always true whenever F is
K-subconvexlike because F (X) + icr(K) is a convex set.
(b) If cor(K) 6= ∅ then condition (ii) is satisfied because cor(F (X) + cor(K)) = F (X) +
cor(K) by [4, Proposition 6(iii)].

In Theorem 3.10 we establish an alternative theorem forK-subconvexlike set-valued maps
and K solid. Previously, in Theorem 3.9 we establish a partial result of alternative type
when K is only a relatively solid cone, and two lemmas.

Lemma 3.7. Let A, B be two subsets of Y . If B is a cone, then (A+B)+ = A+ ∩B+.

Proof. The inclusion A+ ∩ B+ ⊂ (A + B)+ is clear. Let us see the converse. Let ϕ ∈
(A+B)+, i.e., ϕ(a+b) ≥ 0 ∀a ∈ A, b ∈ B. Then the function t 7→ ϕ(a+tb) = ϕ(a)+tϕ(b)
is affine and satisfies that ϕ(a)+ tϕ(b) ≥ 0 ∀t > 0 and ∀a ∈ A, b ∈ B since a+ tb ∈ A+B.
So, ϕ(a) ≥ 0 and ϕ(b) ≥ 0.

Note that in the proof of Lemma 3.7 is not necessary to consider 0 ∈ B.

Lemma 3.8. If A is a relatively solid convex subset of Y , then A+ = [icr(A)]+.

Proof. We only have to prove that [icr(A)]+ ⊂ A+. Choose ϕ ∈ [icr(A)]+, then ϕ(a′) ≥ 0
∀a′ ∈ icr(A). Pick a0 ∈ icr(A), then [a0, a) ⊂ icr(A) ∀a ∈ A [4, Proposition 3(ii)]. Hence,
ϕ(a+ t(a0 − a)) ≥ 0 ∀t ∈ (0, 1], and therefore limt→0+ ϕ(a+ t(a0 − a)) = ϕ(a) ≥ 0.
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Theorem 3.9. Let K ⊂ Y be a pointed relatively solid convex cone. Assume that F :
X → 2Y is relatively solid K-subconvexlike on X. If there is no x ∈ X such that

F (x) ∩ (− icr(K)) 6= ∅, (3)

then there exists ϕ ∈ K+ \ {0} such that

ϕ(y) ≥ 0 ∀y ∈ F (X). (4)

Proof. The set F (X) + icr(K) is convex by Proposition 3.2. From (3) it follows that
0 /∈ F (X)+ icr(K). So, 0 /∈ icr(F (X)+ icr(K)). Using the support theorem [12, Theorem
6.C], there exists ϕ ∈ Y ′ \ {0} such that

ϕ(y + k) ≥ 0 ∀y ∈ F (X), ∀k ∈ icr(K)

(and ϕ is strictly positive on icr(F (X)+icr(K))), this is ϕ ∈ (F (X)+icr(K))+. Applying
Lemmas 3.7 and 3.8 we conclude that ϕ ∈ K+ and ϕ ∈ F (X)+, i.e., equation (4) holds.

Theorem 3.10. Let K be a pointed solid convex cone. If F is K-subconvexlike on X,

then exactly one of the following systems is consistent:

(i) ∃x ∈ X such that F (x) ∩ (− cor(K)) 6= ∅.
(ii) ∃ϕ ∈ K+ \ {0} such that ∀y ∈ F (X), ϕ(y) ≥ 0.

Proof. By Remark 3.6(b), condition (ii) in Definition 3.5 is satisfied. Therefore, by
Theorem 3.9, not (i) ⇒ (ii).

If we assume that both (i) and (ii) are satisfied, then there exist x ∈ X, y ∈ F (x) ∩
(− cor(K)) and ϕ ∈ K+ \ {0} such that ϕ(y) ≥ 0. But, since y ∈ − cor(K) and ϕ ∈ K+ \
{0}, we deduce that ϕ(y) < 0 (see Corollary 3.15 below), and this is a contradiction.

Remark 3.11. This theorem is slightly more general than Theorem 2.1 of Li [21] because
the notion of K-subconvexlikeness of this author is more restrictive than the our one, even
when cor(K) 6= ∅ (see Remark 3.3). If we consider that Y is a topological linear space
then Theorem 3.10 collapses into Lemma 3.3 in [20]. Indeed, when Y is a topological
linear space and int(K) 6= ∅, then int(K) = cor(K) and the linear functional ϕ satisfying
condition (ii) is continuous by Theorem 3.7 in [25]. We can apply this theorem because
the open set int(K) is contained in the set {y ∈ Y : ϕ(y) > 0} by Corollary 3.15 since
ϕ ∈ K+ \ {0}.

Let us note that if cor(K) = ∅ and icr(K) 6= ∅, then both (i) (with icr(K) instead of
cor(K)) and (ii) can be true. For instance, in R

2, K = R+×{0}, X = {(x, 0) : x ∈ (0, 1]},
F (x, 0) = (x, 0)−K and ϕ(x, y) = y.

Next we analyze the postcomposition of aK-subconvexlike set-valued map with a positive
linear map.

Let L(Y, Z) be the set of all linear maps ϕ from Y to Z, let L+(Y, Z) be the subset of
positive linear maps, i.e., ϕ(K) ⊂ D, and

L++(Y, Z) = {ϕ ∈ L+(Y, Z) : ϕ(icr(K)) ⊂ icr(D)}.

Lemma 3.12. Let ϕ ∈ L+(Y, Z) and let k0 ∈ icr(K) fixed.
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(i) If ϕ(k0) ∈ icr(D), then ϕ(icr(K)) ⊂ icr(D), i.e., ϕ ∈ L++(Y, Z).

(ii) If ϕ(k0) = 0, then ϕ(k) = 0 ∀k ∈ K.

(iii) If ϕ(k0) ∈ D \ [icr(D) ∪ {0}], then

ϕ(icr(K)) ⊂ D \ [icr(D) ∪ {0}] and ϕ(K) ⊂ D \ icr(D).

Proof. (i) Choose k1 ∈ icr(K). Then ϕ(k1) ∈ D since ϕ(K) ⊂ D. As ϕ(k0) ∈ icr(D) it
follows that (ϕ(k1), ϕ(k0)] ⊂ icr(D) [4, Proposition 3(ii)], this is,

ϕ(k1 + t(k0 − k1)) = ϕ(k1) + t(ϕ(k0)− ϕ(k1)) ∈ icr(D) ∀t ∈ (0, 1].

As k1−k0 ∈ L(K) and k1 ∈ icr(K), by the definition of icr(K) and using that K is convex
we have k1+t(k0−k1) ∈ K ∀t ∈ [−δ, 1] for some δ > 0. Hence ϕ(k1−δ(k0−k1)) ∈ D since
ϕ(K) ⊂ D. But (ϕ(k1 − δ(k0 − k1)), ϕ(k0)] ⊂ icr(D), and consequently, ϕ(k1) ∈ icr(D)
because k1 ∈ (k1 − δ(k0 − k1), k0].

(ii) Assume that ϕ(k) 6= 0 for some k ∈ K. As k0 ∈ icr(K), for k0−k ∈ L(K) there exists
t0 > 0 such that k0 + t0(k0 − k) ∈ K. So, ϕ(k0 + t0(k0 − k)) ∈ D because ϕ(K) ⊂ D. But

ϕ(k0 + t0(k0 − k)) = −t0ϕ(k) ∈ −D \ {0},

and we have a contradiction because D is pointed.

(iii) The first assertion follows from parts (i) and (ii). Let us show the second one. If for
some k ∈ K, ϕ(k) ∈ icr(D), then (k0, k) ⊂ icr(K) and ϕ[(k0, k)] = (ϕ(k0), ϕ(k)) ⊂ icr(D).
As (k0, k) 6= ∅, from (i) it follows that ϕ(icr(K)) ⊂ icr(D) and this is a contradiction with
assumption because k0 ∈ icr(K).

Example 3.13. To illustrate the above lemma, consider the following data:

(a) ϕ1 : R
3 → R

2 given by ϕ1(x, y, z) = (x, y), K = R
3
+ and D = R

2
+.

(b) ϕ2 : R
2 → R given by ϕ2(x, y) = y, K = R+ × {0} and D = R+.

(c) ϕ3 : R
2 → R

3 given by ϕ3(x, y) = (x, y, 0), K = R
2
+ and D = R

3
+.

These data provide instances of types (i), (ii) and (iii), respectively, in Lemma 3.12.

Lemma 3.12 allows us to split the set L+(Y, Z) into three classes:

1) the class L++(Y, Z),

2) the class L+0(Y, Z) = {ϕ ∈ L+(Y, Z) : ϕ(k) = 0 ∀k ∈ K}, and
3) the class L+b(Y, Z) = {ϕ ∈ L+(Y, Z) : ϕ(icr(K)) ⊂ D \ [icr(D) ∪ {0}]}.

We have
L+(Y, Z) = L++(Y, Z) ⊔ L+0(Y, Z) ⊔ L+b(Y, Z), (5)

where ⊔ denotes disjoint cup.

Remark 3.14. When Z = R and D = R+, the last set in (5) is empty, therefore if we
denote

K+i := L++(Y,R) = {ϕ ∈ K+ : ϕ(y) > 0 ∀y ∈ icr(K)} and K+0 := L+0(Y,R),

we have
K+ = K+i ⊔K+0.
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If, in addition, cor(K) 6= ∅, then K+0 = {0}. Indeed, let ϕ ∈ K+0 and let us choose
k ∈ cor(K). Then for all v ∈ Y there exists t0 > 0 such that k′ = k + t0v ∈ K. Hence,

v = t−1
0 (k′−k) and ϕ(v) = t−1

0 (ϕ(k′)−ϕ(k)) = 0. Therefore, ϕ = 0. Thus we have proved
the following result, whose part (ii) is Lemma 2.2 in [19].

Corollary 3.15. Assume that K is a relatively solid convex cone.

(i) If ϕ ∈ K+ \K+0 then ϕ(k) > 0 ∀k ∈ icr(K).

(ii) If K is solid, ϕ ∈ K+ and ϕ 6= 0, then ϕ(k) > 0 ∀k ∈ cor(K).

It is clear that in general the inclusion {0} ⊂ K+0 is strict if K is only relatively solid. In
order to see this fact, we consider Y = R

3, K = {(x, y, 0) : x, y ≥ 0} and ϕ(x, y, z) = z.
Then ϕ ∈ K+0 and ϕ 6= 0.

The relationship between K+i and K+s is immediate from the definitions:

K+s ⊂ K+i.

Notice that K+s = K+i = ∅ whenever 0 ∈ icr(K).

To study the composition of a set-valued map with a linear map, we need Proposition
3.17, whose proof will be easier with a previous result.

Lemma 3.16. Let S1 be a relatively solid convex set of Y and S2 ⊂ Y . If S1 ⊂ S2 and

vcl(S1) = vcl(S2), then icr(S1) = icr(S2).

Proof. One has aff(S1) = aff(S2) because by assumption vcl(S1) = vcl(S2) and for any
set S ⊂ Y , aff(S) = aff(vcl(S)). Hence, as S1 ⊂ S2 we deduce that icr(S1) ⊂ icr(S2). On
the other hand, S2 ⊂ vcl(S2) = vcl(S1) and as S2 and vcl(S1) have the same affine hull,
we get that icr(S2) ⊂ icr(vcl(S1)) = icr(S1). The last equality is true by Proposition 4(i)
in [4]. Consequently, the conclusion follows.

Proposition 3.17. Let S be a relatively solid convex subset of Y and ϕ : Y → Z a linear

map. Then

ϕ(icr(S)) = icr(ϕ(S)).

Proof. Firstly let us see that

ϕ(icr(S)) ⊂ icr(ϕ(S)). (6)

(as a consequence, ϕ(S) is relatively solid).

It is obvious that ϕ(L(S)) = L(ϕ(S)). Take a ∈ icr(S) and let us prove that ϕ(a) ∈
icr(ϕ(S)). Given w ∈ L(ϕ(S)), there exists v ∈ L(S) satisfying ϕ(v) = w. As a ∈ icr(S),
for v ∈ L(S) there exists t0 > 0 such that a+ tv ∈ S ∀t ∈ (0, t0]. From here,

ϕ(a) + tw = ϕ(a+ tv) ∈ ϕ(S) ∀t ∈ (0, t0],

and therefore, ϕ(a) ∈ icr(ϕ(S)).

Now, the reverse inclusion: icr(ϕ(S)) ⊂ ϕ(icr(S)). For this aim, let us see that ϕ(S) and
ϕ(icr(S)) have the same vector closure. We have that

ϕ(vcl(S)) ⊂ vcl(ϕ(S)). (7)
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Indeed, choose b ∈ vcl(S), then there exists v ∈ Y such that ∀α′ > 0 ∃α ∈ (0, α′] such
that b+ αv ∈ S. Hence, ϕ(b) + αϕ(v) ∈ ϕ(S). This means that ϕ(b) ∈ vcl(ϕ(S)).

The following inclusions are clear in view of (7):

ϕ(S) ⊂ ϕ(vcl(S)) = ϕ(vcl(icr(S))) ⊂ vcl[ϕ(icr(S))] ⊂ vcl(ϕ(S)).

From this chain, we select the following:

ϕ(S) ⊂ vcl[ϕ(icr(S))] ⊂ vcl(ϕ(S)).

Taking vector closure and using that vcl(vcl(B)) = vcl(B), if B is a relatively solid convex
set, by [4, Proposition 3(iii)] (as ϕ(icr(S)) = ϕ(icr(icr(S))) ⊂ icr[ϕ(icr(S))], by condition
(6) and as S is relatively solid, ϕ(icr(S)) is relatively solid too) we have that:

vcl(ϕ(S)) ⊂ vcl(ϕ(icr(S))) ⊂ vcl(ϕ(S)).

Therefore, vcl(ϕ(S)) = vcl[ϕ(icr(S))], and by Lemma 3.16, icr(ϕ(S)) = icr[ϕ(icr(S))] ⊂
ϕ(icr(S)). Using (6), the conclusion follows.

Proposition 3.18. Let F : X −→ 2Y be K-subconvexlike on X and let ϕ ∈ L+(Y, Z).

(i) If ϕ ∈ L++(Y, Z), then ϕ ◦ F is D-subconvexlike on X.

(ii) If ϕ ∈ L+0(Y, Z), then ϕ ◦ F is {0}-convexlike on X.

(iii) If ϕ ∈ L+b(Y, Z), then ϕ ◦ F is ϕ(K)-subconvexlike on X.

Furthermore, if F is relatively solid K-subconvexlike on X, then ϕ ◦ F is relatively solid

ϕ(K)-subconvexlike on X in part (iii) and icr((ϕ◦F )(X)) 6= ∅ in part (ii). If, in addition,

ϕ(icr(K)) = icr(D), then ϕ ◦ F is relatively solid D-subconvexlike on X in part (i).

Proof. (i) By assumption, ∃k0 ∈ icr(K), ∀x, x′ ∈ X, ∀y ∈ F (x), ∀y′ ∈ F (x′), ∀α ∈ (0, 1),
∀ε > 0 we have

εk0 + αy + (1− α)y′ ∈ F (X) +K,

and therefore,

εϕ(k0) + αϕ(y) + (1− α)ϕ(y′) ∈ (ϕ ◦ F )(X) + ϕ(K) ⊂ (ϕ ◦ F )(X) +D. (8)

As ϕ ∈ L++(Y, Z), ϕ(k0) ∈ icr(D), and the conclusion follows.

(ii) It is similar to (i).

(iii) It is obvious that ϕ(K) is a convex cone. It is pointed because ϕ(K) ∩ −ϕ(K) ⊂
D ∩ −D = {0}. Now, the conclusion follows from (8) and Proposition 3.17 because of
ϕ(k0) ∈ ϕ(icr(K)) = icr(ϕ(K)).

The last claims follow from Definition 3.5 since

∅ 6= ϕ[icr(F (X) + icr(K))] = icr[(ϕ ◦ F )(X) + ϕ(icr(K))]

= icr[(ϕ ◦ F )(X) + icr(ϕ(K))]

by Proposition 3.17.

Proposition 3.19. Let (F,G) : X −→ 2Y×Z be K ×D-subconvexlike on X.
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(i) If ϕ ∈ K+i then (ϕ ◦ F,G) is R+ ×D-subconvexlike on X.

(ii) If ϕ ∈ K+ \K+i = K+0 then (ϕ ◦ F,G) is {0} ×D-subconvexlike on X.

(iii) If ψ ∈ L+(Z, Y ) then F + ψ ◦G is K-subconvexlike on X.

Furthermore, if (F,G) is relatively solid, then (ϕ◦F,G) is relatively solid in parts (i) and
(ii), and F + ψ ◦G is relatively solid in part (iii).

Proof. (i) Define (ϕ× i) : Y ×Z → R×Z given by (ϕ× i)(y, z) = (ϕ(y), z). It is easy to
verify that (ϕ× i) is a positive linear map with respect to the cones K ×D and R+ ×D.
As ϕ ∈ K+i, by definition of K+i, we have that ϕ(icr(K)) = icr(R+), and therefore, since
icr(K × D) = icr(K) × icr(D), we obtain (ϕ × i)(icr(K) × icr(D)) = icr(R+) × icr(D).
Consequently, (ϕ × i) ∈ L++(Y × Z,R × Z), and Proposition 3.18(i) is applicable to
(ϕ× i) ◦ (F,G) = (ϕ ◦ F,G).

The proof of part (ii) is similar to the one above (we only have to take into account the
definition of K+0) and apply Proposition 3.18(iii) because (ϕ× i)(K×D) = {0}×D and
(ϕ× i) ∈ L+b(Y × Z,R× Z).

(iii) Let ϕ : Y × Z → Y be defined by ϕ(y, z) = y + ψ(z). It is easy to verify that
ϕ is a positive linear map (in Y × Z we consider the cone K × D). Let us see that
ϕ ∈ L++(Y ×Z, Y ). Let (y, z) ∈ icr(K×D) = icr(K)× icr(D), then ϕ(y, z) = y+ψ(z) ∈
icr(K) because ψ(z) ∈ K (since ψ ∈ L+(Z, Y )) and icr(K) +K ⊂ icr(K).

Finally, F + ψ ◦G = ϕ ◦ (F,G) and we can apply Proposition 3.18(i).

The last part of this proposition follows from the last part of Proposition 3.18. For the
set-valued map F +ψ ◦G we have to take into account that ϕ(icr(K×D)) = icr(K) since
ϕ(K ×D) = K and ϕ(icr(K ×D)) = icr(ϕ(K ×D)) = icr(K), where ϕ is the linear map
used in the proof of part (iii).

4. Necessary optimality conditions

In the following results we establish necessary conditions of weak vectorial efficiency for
the unconstrained (P ) and constrained (CP ) optimization problems.

Theorem 4.1. Let K be a pointed relatively solid convex cone. Assume that F : X → 2Y

is relatively solid K-subconvexlike on X. If x0 ∈ X is a weak-vectorial efficient solution

for problem (P ), then there exist ϕ ∈ K+ \ {0}, y0 ∈ F (x0) such that

Miny∈F (X) ϕ(y) = ϕ(y0).

Proof. By hypothesis there exists y0 ∈ F (x0) such that y0 ∈ WeV(F (X)), i.e.

(F (X)− y0) ∩ − icr(K) = ∅. (9)

Let H : X −→ 2Y be defined by H(x) = F (x) − y0. Then it is clear that H is relatively
solid K-subconvexlike on X because H(X) + icr(K) = F (X) + icr(K)− y0 is a relatively
solid convex set. So applying Theorem 3.9, taking into account condition (9), there exists
ϕ ∈ K+ \ {0} such that ϕ(z) ≥ 0 for all z ∈ H(X) = F (X)− y0, and therefore

ϕ(y) ≥ ϕ(y0) for all y ∈ F (X).

Hence, Miny∈F (X) ϕ(y) = ϕ(y0).
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Notice that ϕ ◦ F is relatively solid R+-subconvexlike or {0}-convexlike by Proposition
3.18 taking into account Remark 3.14.

Theorem 4.2. Assume the following:

(a) (x0, y0) is a weak-vectorial minimizer for problem (CP ).

(b) (F,G) : X −→ 2Y×Z is relatively solid K ×D-subconvexlike on X.

Then there exists (ϕ, ψ) ∈ K+ ×D+, (ϕ, ψ) 6= (0, 0), such that

Minx∈X{(ϕ ◦ F )(x) + (ψ ◦G)(x)} = ϕ(y0),

Min{(ψ ◦G)(x0)} = 0.

Proof. By hypothesis
−(F (Ω)− y0) ∩ icr(K) = ∅. (10)

We consider the following set-valued map

H(x) = (F (x)− y0)×G(x) = F (x)×G(x)− (y0, 0)

defined from X to 2Y×Z . Since (F,G) : X −→ 2Y×Z is a K ×D-subconvexlike set-valued
map on X and icr((F,G)(X) + icr(K ×D)) 6= ∅, we have that H is K ×D-subconvexlike
on X and icr(H(X) + icr(K ×D)) 6= ∅, i.e. H is relatively solid K ×D-subconvexlike on
X. Furthermore

H(x) ∩ (− icr(K ×D)) 6= ∅ for all x ∈ X. (11)

Suppose that this is false. Then there exists (y − y0, z) ∈ H(x) such that (y − y0, z) ∈
− icr(K × D) with y ∈ F (x) and z ∈ G(x) for some x ∈ X. By Lemma 2.2 in [1],
icr(K×D) = icr(K)× icr(D). Hence z ∈ − icr(D) ⊂ −D and (F (x)−y0)∩− icr(K) 6= ∅,
which contradicts (10) since x ∈ Ω.

Taking into account condition (11), if we apply Theorem 3.9 there exists (ϕ, ψ) ∈ (K ×
D)+ \ {(0, 0)} = K+ ×D+ \ {(0, 0)} such that ϕ(F (x)− y0) +ψ(G(x)) ≥ 0 for all x ∈ X.
Therefore

(ϕ ◦ F )(x) + (ψ ◦G)(x) ≥ ϕ(y0) for all x ∈ X. (12)

Since x0 ∈ Ω then there exists z0 ∈ G(x0) such that z0 ∈ −D. Choosing x = x0,
y0 ∈ F (x0) and z0 ∈ G(x0) in (12) we derive

ϕ(y0) + ψ(z0) ≥ ϕ(y0),

and therefore ψ(z0) ≥ 0. But ψ ∈ D+, so ψ(z0) = 0. It follows that

Minx∈X{(ϕ ◦ F )(x) + (ψ ◦G)(x)} = ϕ(y0).

If we choose again x = x0 in (12), we obtain

(ϕ ◦ F )(x0) + (ψ ◦G)(x0) ≥ ϕ(y0);

so (ψ ◦G)(x0) ≥ 0, and then we deduce that

Min{(ψ ◦G)(x0)} = 0.

If in the theorems above we considerK solid, taking into account Theorem 3.10, we obtain
Theorems 3.1 and 3.2 in Li [19].
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5. Scalarization

In this section we characterize the Benson-vectorial efficiency, for a pointed relatively solid
convex cone and cone-subconvexlike set-valued maps, through scalarization. We also show
necessary conditions for a Hurwicz-vectorial proper minimizer. As in the previous section,
X is a set, Y is a linear space and K ⊂ Y is a pointed relatively solid convex cone.

Let ϕ ∈ L(Y,R). We can associate to problem (P ) the following scalar optimization
problem with a set-valued map:

(SPϕ)

{

Min {(ϕ ◦ F )(x)}

subject to x ∈ X.

Definition 5.1. If x0 ∈ X, y0 ∈ F (x0) and

ϕ(y0) ≤ ϕ(y) ∀y ∈ F (X),

then x0 is called a minimal solution of problem (SPϕ), and (x0, y0) is called a minimizer
of problem (SPϕ).

Theorem 5.2. Let ϕ ∈ K+s. If (x0, y0) is a minimizer of (SPϕ) then (x0, y0) is a

Hurwicz-vectorial proper minimizer of (P ) and therefore (x0, y0) is a Benson-vectorial

proper minimizer of (P ).

Proof. As (x0, y0) is a minimizer of (SPϕ) we have ϕ(y) ≥ 0 for all y ∈ F (X) − y0 and
the same is true for all y ∈ K because ϕ ∈ K+s. Since ϕ is linear, we deduce that

ϕ ∈ [cone(conv((F (X)− y0) ∪K))]+.

As [vcl(S)]+ = S+ and cone(conv(S)) = conv(cone(S)) for any S ⊂ Y (see [5] and [1]) it
follows that

ϕ ∈ {vcl[conv(cone((F (X)− y0) ∪K))]}+. (13)

On the other hand, ϕ(y) > 0 for all y ∈ K\{0}, then we obtain

vcl[conv(cone((F (X)− y0) ∪K))] ∩ (−K) = {0}.

In fact, if z ∈ vcl[conv(cone((F (X)− y0)∪K))]∩ (−K) and z 6= 0 then ϕ(z) ≥ 0 by (13)
which is a contradiction because ϕ ∈ K+s and z ∈ −K \ {0} imply ϕ(z) < 0.
Therefore (x0, y0) is a Hurwicz-vectorial proper minimizer of (P ).

As a consequence of the previous result, if we consider a topological linear space Y and we
replace the vector closure by the topological closure, the previous proof is valid too when-
ever ϕ is continuous. Therefore, the result above includes as a particular case Theorem
4.1 in Li [20].

To establish sufficient conditions we need some convexity properties and the following
lemma.

Lemma 5.3. Let S be a relatively solid convex set of Y . Then

icr(S) ⊂ icr(cone(S)). (14)
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Proof. Firstly, let us prove that

L(cone(S)) = aff(S ∪ {0}) =

{

L(S) if 0 ∈ aff(S)

L(S) + span(s0) if 0 /∈ aff(S),
(15)

where s0 is an arbitrary element of S and span(s0) is the linear subspace generated by s0.

Indeed, the statement is obvious when 0 ∈ aff(S). Thus, assume that 0 /∈ aff(S). The
vector subspace L(S)+ span(s0) is the smallest affine variety containing S ∪{0} because:

1) S ⊂ L(S) + s0 ⊂ L(S) + span(s0) and {0} ⊂ L(S) + span(s0).

2) If V is an affine variety containing S ∪ {0}, then aff(S) = L(S) + s0 ⊂ V and V is
a linear subspace of Y . So, L(S) ⊂ V − s0 = V and span(s0) ⊂ V since s0 ∈ S ⊂ V .
Therefore, L(S) + span(s0) ⊂ V .

Secondly, let us see that equation (14) holds. Let a ∈ icr(S), we have to prove that
∀u ∈ L(cone(S))

∃t0 > 0 such that a+ tu ∈ cone(S) ∀t ∈ (0, t0]. (16)

Taking into account equation (15), it is enough to prove (16) in the following cases: (i)
u ∈ L(S), (ii) u = s0 and (iii) u = −s0.

(i) Let u ∈ L(S). As a ∈ icr(S), then there is t0 > 0 such that a + tu ∈ S ⊂ cone(S)
∀t ∈ (0, t0], i.e., (16) is satisfied.

(ii) Now, u = s0. Then, as a, s0 ∈ cone(S) we have a+ ts0 ∈ cone(S) ∀t ≥ 0 since cone(S)
is a convex cone.

(iii) Finally, u = −s0. As a ∈ icr(S) ⊂ S and s0 ∈ S (so a − s0 ∈ L(S)), there exists
γ > 0 such that

s1 := s0 + (1 + γ)(a− s0) = a+ γ(a− s0) ∈ S.

The equation a + t(−s0) = ρs1 in the unknown (t, ρ) has solution (t0, ρ0) where t0 =
γ/(1+γ) > 0 and ρ0 = 1/(1+γ) > 0. Hence a+ t0(−s0) = ρ0s1 ∈ cone(S), and therefore
[a, a+ t0(−s0)] ⊂ cone(S) (i.e., (16) is true).

Theorem 5.4. Assume that K is vectorially closed and cor(K+) 6= ∅. Let F be relatively

solid K-subconvexlike on X. If (x0, y0) is a Benson-vectorial proper minimizer of (P )
then there exists ϕ ∈ K+s such that (x0, y0) is a minimizer of (SPϕ).

Proof. Since (x0, y0) is a Benson-vectorial proper minimizer then

− vcl[cone(F (X)− y0 +K)] ∩K = {0}. (17)

As vcl[cone(F (X)− y0 + icr(K))] ⊂ vcl[cone(F (X)− y0 +K)] then

− vcl[cone(F (X)− y0 + icr(K))] ∩K = {0}. (18)

Let us see that vcl[cone(F (X) − y0 + icr(K))] is vectorially closed and relatively solid
convex cone. It is clear that vcl[cone(F (X)− y0 + icr(K))] is a cone.
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Because of F is relatively solid K-subconvexlike on X, icr[F (X) + icr(K)] 6= ∅ and
F (X) + icr(K) is a convex set, then icr[F (X)− y0 + icr(K)] 6= ∅ and F (X)− y0 + icr(K)
is convex too. Therefore, cone(F (X) − y0 + icr(K)) is convex and applying Lemma 5.3
we obtain that

icr[cone(F (X)− y0 + icr(K))] 6= ∅.

From here, applying Proposition 3(iii)-(iv) in [4], we obtain that vcl[cone(F (X) − y0 +
icr(K))] is vectorially closed and convex. On the other hand, by Proposition 4(i) in [4],
vcl[cone(F (X)− y0 + icr(K))] is a relatively solid set.

In these conditions we can apply the separation Theorem 2.3, so taking into account
condition (18), there exists ϕ ∈ K+s \ {0} such that

ϕ(v) ≥ 0 for all v ∈ vcl[cone(F (X)− y0 +K)].

Since F (X)− y0 ⊂ cone(F (X)− y0 +K) ⊂ vcl[cone(F (X)− y0 +K)] we have

ϕ(y − y0) ≥ 0 for all y ∈ F (X).

Therefore (x0, y0) is a minimizer of (SPϕ).

From the theorems above we obtain the following corollary, which gives us a characteri-
zation of Benson-vectorial minimality under cone-subconvexlikeness.

Corollary 5.5. Let K+ be solid and K be vectorially closed. Let F be relatively solid

K-subconvexlike on X. Then (x0, y0) is a Benson-vectorial proper minimizer of (P ) if

and only if (x0, y0) is a minimizer of (SPϕ) for some ϕ ∈ K+s.

Therefore if we consider a topological linear space Y and int(K) 6= ∅ then Theorem 5.4 and
Corollary 5.5 can be considered extensions of Theorem 4.2 and Corollary 4.1, respectively,
in Li [20].

6. Lagrange multiplier rules

We shall consider the same notations as in the previous section. X is a set, Y is a linear
space and K ⊂ Y is a vectorially closed and pointed relatively solid convex cone.

Definition 6.1. We say that the optimization problem (CP ) satisfies the generalized
Slater constraint qualification if there exists x ∈ X such that G(x) ∩ − icr(D) 6= ∅.

Theorem 6.2. Consider problem (CP ). Assume that cor(K+) 6= ∅, (F,G) is relatively

solid K ×D-subconvexlike on X, F is relatively solid K-subconvexlike on Ω and

aff(D) = aff(G(X) + icr(D)). (19)

If (CP ) satisfies the generalized Slater constraint qualification and (x0, y0) is a Benson-

vectorial proper minimizer of (CP ) then there exists T ∈ L+(Z, Y ) such that 0 ∈ T (G(x0))
and (x0, y0) is a Hurwicz-vectorial proper minimizer of the following unconstrained prob-

lem
{

K −Min{(F + T ◦G)(x)}

subject to x ∈ X.
(20)
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Proof. Since F is relatively solid K-subconvexlike on Ω, we can apply Theorem 5.4, then
there exists a linear functional ϕ ∈ K+s such that (x0, y0) is a minimizer of the scalar
problem

Min{ϕ[F (x)] : x ∈ Ω},

i.e.

ϕ(y) ≥ ϕ(y0) for all y ∈ F (Ω). (21)

Let H : X −→ 2R×Z be the set-valued map defined by

H(x) = [ϕ(F (x))− ϕ(y0)]×G(x) = ϕ(F (x))×G(x)− (ϕ(y0), 0).

As a consequence of (21) we have

H(X) ∩ − icr(R+ ×D) = ∅. (22)

Since ϕ ∈ K+s ⊂ K+i and (F − y0, G) is relatively solid K×D-subconvexlike on X then,
by Proposition 3.19, we have that H = (ϕ ◦ (F − y0), G) = (ϕ ◦F −ϕ(y0), G) is relatively
solid R+ ×D-subconvexlike on X. Together with (22), by Theorem 3.9 applied to H, we
obtain that there exists (r, ψ) ∈ R+ ×D+\{(0, 0)} such that

r[ϕ(F (x)− y0)] + ψ[G(x)] ≥ 0 for all x ∈ X (23)

and (see the proof of Theorem 3.9)

(r, ψ)(y′, z′) > 0 for all (y′, z′) ∈ icr(M), (24)

where M = (ϕ ◦ (F − y0), G)(X) + icr(R+ ×D).

We note that r > 0. Otherwise, if r = 0 then from condition (24) it results

ψ(z′) > 0 for all (y′, z′) ∈ icr(M). (25)

Let π : R× Z → Z be the projection on second space. By Proposition 3.17,

π(icr(M)) = icr[π(M)] = icr[G(X) + icr(D)] (26)

as π(M) = G(X) + icr(D). In view of (25) and (26) we derive that

ψ(z′) > 0 for all z′ ∈ icr[G(X) + icr(D)]. (27)

As a consequence of the generalized Slater constraint qualification, 0 ∈ G(X)+ icr(D), so

D = 0 +D ⊂ G(X) + icr(D) +D = G(X) + icr(D).

Using assumption (19) it follows

icr(D) ⊂ icr[G(X) + icr(D)]

and by (27) we obtain that

ψ(icr(D)) > 0. (28)
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Again, because of the generalized Slater constraint qualification, there exist x′ ∈ X and
z′ ∈ G(x′)∩− icr(D), and consequently, by (28), ψ(z′) < 0 and by (23), ψ(z′) ≥ 0, which
is a contradiction. Thus, r > 0.

Since x0 ∈ Ω there exists z0 ∈ G(x0) ∩ −D, and as ψ ∈ D+ then ψ(z0) ≤ 0. Taking
x = x0, y0 ∈ F (x0) and z0 ∈ G(x0) in (23) we have that ψ(z0) ≥ 0, so ψ(z0) = 0. Hence,

0 ∈ ψ[G(x0)]. (29)

As r 6= 0 and ϕ ∈ K+s, we can choose k ∈ K such that

rϕ(k) = 1. (30)

We define the linear operator T : Z −→ Y by

T (z) = ψ(z)k. (31)

It is clear that T (D) ⊂ K, i.e., T ∈ L+(Z, Y ). By (29), 0 ∈ T (G(x0)) and consequently

y0 ∈ F (x0) ⊂ F (x0) + T (G(x0)). (32)

Now, from (23), (30) and (31) we have that for all x ∈ X

rϕ[F (x) + T (G(x))] = rϕ[F (x)] + ψ[G(x)]rϕ(k) = rϕ[F (x)] + ψ[G(x)] ≥ rϕ(y0).

So if we divide this inequality by r > 0 we obtain that (x0, y0) is a minimizer of the scalar
problem

K −Min{(ϕ ◦ (F + T ◦G))(x) : x ∈ X}.

According to Theorem 5.2, (x0, y0) is a Hurwicz-vectorial proper minimizer of the uncon-
strained problem

K −Min{F (x) + T [G(x)] : x ∈ X}.

Remark 6.3. (a) Since (F,G) is relatively solid K × D-subconvexlike on X, it follows
from Proposition 3.18 (considering that ϕ : Y × Z → Z is the projection) that G is
relatively solid D-subconvexlike on X. So, G(X) + icr(D) is a relatively solid convex set.
(b) Condition (19) is equivalent to

aff(icr(D)) = aff(icr[G(X) + icr(D)]).

because:

If S ⊂ Y is a relatively solid convex set, then aff(S) = aff(icr(S)).

Indeed, the inclusion “⊂� is clear as icr(S) ⊂ S. Let us see the converse. Let v ∈ L(S)
and pick a ∈ icr(S). Then there is t0 > 0 such that a+ t0v ∈ S, and by Proposition 3(ii)
in [4], [a, a + t0v) ⊂ icr(S). So if we choose t ∈ (0, t0), we have that b = a + tv ∈ icr(S),
and therefore v = t−1(b − a) ∈ L(icr(S)). Thus, L(S) = L(icr(S)), and consequently,
aff(S) = aff(icr(S)).
(c) Condition (19) is weaker than cor(D) 6= ∅ since in this case aff(D) = aff(G(X) +
cor(D)) = Z.
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Theorem 6.4. Assume that there exists a pair (x0, y0) and a positive linear operator

T ∈ L+(Z, Y ) such that

(i) x0 ∈ Ω and y0 ∈ F (x0),

(ii) 0 ∈ T (G(x0)),

(iii) (x0, y0) is a Benson-vectorial proper minimizer of the unconstrained problem

K −Min{(F + T ◦G)(x)} subject to x ∈ X.

Then (x0, y0) is a Benson-vectorial proper minimizer of the problem (CP ).

If, in addition, one of the following conditions holds:

(a) F + T ◦G is K-convexlike on X,

(b) cor(K+) 6= ∅ and F + T ◦G is relatively solid K-subconvexlike on X,

then (x0, y0) is a Hurwicz-vectorial proper minimizer of the problem (CP ).

Proof. The proof of the first part ((x0, y0) is BeV of (CP )) is similar to case (a) and we
omit it. Let us see that (x0, y0) is HuV of (CP ) when (i)-(iii) and (a) are satisfied.

Firstly, let us observe that y0 ∈ (F+T ◦G)(x0) by assumptions (i) and (ii), so assumption
(iii) makes sense. Condition (iii) is equivalent to

vcl

{

cone

[(

⋃

x∈X

((F + T ◦G)(x))

)

+K − y0

]}

∩ (−K) = {0}. (33)

Now, if x ∈ Ω, then there exists z ∈ G(x) ∩ (−D). Since T (D) ⊂ K we have 0 ∈
T (z) +K ⊂ T (G(x)) +K, and consequently

K ⊂ T (G(x)) +K +K = T (G(x)) +K ∀x ∈ Ω.

Using this and assumption (i), it follows that

K ⊂ F (x0)− y0 + T (G(x0)) +K ⊂
⋃

x∈Ω

(F (x)− y0 + (T ◦G)(x) +K). (34)

On the other hand,

(

⋃

x∈Ω

F (x)

)

− y0 =
⋃

x∈Ω

(F (x)− y0) ⊂
⋃

x∈Ω

(F (x)− y0 + (T ◦G)(x) +K). (35)

But for the last set in (34) and (35) we have

⋃

x∈Ω

(F (x)− y0 + (T ◦G)(x) +K) = (F + T ◦G)(Ω) +K − y0

⊂ (F + T ◦G)(X) +K − y0.

Therefore,

conv((F (Ω)− y0) ∪K) ⊂ conv((F + T ◦G)(Ω) +K − y0)

⊂ conv((F + T ◦G)(X) +K − y0).
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But, (F + T ◦ G)(X) + K is a convex set because F + T ◦ G is K-convexlike on X, so
(F + T ◦G)(X) +K − y0 is also a convex set, and then

conv((F (Ω)− y0) ∪K) ⊂ (F + T ◦G)(X) +K − y0.

Hence

vcl{cone[conv((F (Ω)− y0) ∪K)]} ⊂ vcl{cone[(F + T ◦G)(X) +K − y0]}.

From (33) it follows

vcl{cone[conv((F (Ω)− y0) ∪K)]} ∩ (−K) = {0},

with this we have concluded.

Now, let us see that (x0, y0) is HuV of (CP ) when (i)-(iii) and (b) are satisfied.

Since F + T ◦ G is relatively solid K-subconvexlike on X, applying Theorem 5.4 there
exists ϕ ∈ K+s such that

ϕ(F (x)) + ϕ(T (G(x))) ≥ ϕ(y0) for all x ∈ X. (36)

If x ∈ Ω, there exists z ∈ G(x) such that z ∈ −D. On the other hand, as T ∈ L+(Z, Y ),
T (z) ∈ −K, and since ϕ ∈ K+s we obtain that

ϕ(T (z)) ≤ 0.

From this, according to (36) and taking z ∈ G(x), for each y ∈ F (x) we obtain that

ϕ(y) ≥ ϕ(y) + ϕ(T (z)) ≥ ϕ(y0).

Hence, for all y ∈ F (Ω)
ϕ(y) ≥ ϕ(y0).

As y0 ∈ F (x0) ⊂ F (Ω) by assumption (i), applying Theorem 5.2, (x0, y0) is a Hurwicz-
vectorial proper minimizer of problem (CP ).

Once again, our results extend Theorems 5.1 and 5.2 in Li [20] which are done in the
framework of topological linear spaces with solid cones.
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