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For the Gateaux derivative of a C1,1 function defined on a reflexive Banach space with Kadec norm
|| · ||, we use Moreau-Yosida regularization to show that Clarke’s subdifferential of second-order can be
weak∗−approximated from below. Moreover, in the convex case we can strengthen the inclusion to an
equality in the limit.

In another approach for C1,1 functions, we establish a weak∗ stability result for second-order subdifferen-
tials of Clarke’s type. We apply the latter result to the continuous behaviour of the Lagrange multipliers
in second-order necessary optimality conditions under epi-convergent perturbations and to stability of
second-order subdifferentials of Clarke’s type of integral functionals and also of the standard type of
functionals in calculus of variations.

Since in optimization one frequently has to consider perturbed problems, stability theory
is a very important topic [6]. One of the first investigations in this area is due to Mosco.
In [13] he uses his concept of set convergence for the analysis of stability of variational
inequalities. More recently this stability theory has been extended to a broader class of
variational inequalities in [10]. There various applications, including distributed market
equilibria and elliptic unilateral boundary value problems are treated. Further in [14]
Salvadori has shown that Mosco convergence is inherited to integral functionals from the
associated convex normal integrands.

In [16], Zolezzi is concerned with the weak∗− upper convergence of the graphs of Clarke’s
generalized gradients. We are motivated by this paper to investigate the weak∗− up-
per convergence of the second-order subdifferentials of Clarke’s type of C1,1 functions
introduced by P. Georgiev and N. Zlateva in [8].

In Section 3, we consider a sequence fn of C1,1 functions defined on a reflexive Banach
space X endowed with Kadec norm, which Gateaux derivatives for fixed element h ∈ X,
〈f ′

n(x), h〉, are epi-convergent to 〈f ′(x), h〉 and possess an uniform minorization property.
We apply Moreau-Yosida regularization to the functions 〈f ′

n(x), h〉 and under these con-
ditions we obtain Theorem 3.1, which provides a weak∗−approximation of the Clarke’s
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subdifferential ∂〈f ′(x), h〉 from below. To prove this result we use essentially Theorem
2.1 (Section 2). This latter result summarizes some results obtained by Correa, Jofré and
Thibault in [4]. Also in our analysis we use some approximation results due to Attouch
and Azé [2] and some generalized differentiability results due to Borwein and Strojwas
[3]. In the convex case we can strengthen the inclusion of Theorem 3.1 to an equality by
regularization and monotonicity arguments from Attouch [1].

Another approach of this paper (Section 4) introduces conditions on the functions fn, f
that guarantee weak∗−upper convergence of the second-order subdifferentials of Clarke’s
type. In comparison to the work of T. Zolezzi [16], we consider a sequence fn, f of C1,1

functions defined on an arbitrary Banach space, which Gateaux derivatives for fixed h,
〈f ′

n(x), h〉, are locally convergent with respect to the Lipschitz seminorm to 〈f ′(x), h〉. For
such functions we extend the main result of Zolezzi [16] to the second-order subdifferentials
of Clarke’s type.

Further we apply this result not only to the continuous behaviour of the Lagrange multi-
pliers in the second-order necessary optimality conditions but also to the relevant second-
order subdifferentials of Clarke’s type under epi-convergent perturbations (Section 5).
Here, we deal with the second-order necessary optimality conditions for constrained min-
imization problems with C1,1 data obtained by P. Georgiev and N. Zlateva in [8]. As
another application we establish the convergence of the second-order subdifferentials of
Clarke’s type of integral functionals and we show how this result can be extended to the
standard type of functionals in calculus of variations (Section 6).

1. Notations and definitions

Let E be a real Banach space with dual E∗. E is said to have a Kadec norm if for any
sequence xn which converges weakly to x (denoted by xn

ω
→ x) with ||xn|| → ||x||, then

xn converges strongly to x (denoted by xn → x). Analogously, ω∗ − lim denotes the limit
with respect to the weak∗ topology. Further co∗A is the convex topological closure of a
set A ⊂ E∗ with respect to the weak∗ topology.

Throughout the paper we use the definition of epi-convergence: A sequence fn is called

epi-convergent to f (writting fn
epi
→ f) iff xn

ω
→ x in E implies lim inf fn(xn) ≥ f(x) and

for every y ∈ E there exists a sequence yn → y such that lim sup fn(yn)≤ f(y).

We shall denote the value of a linear functional x∗ ∈ E for an element h ∈ E either by
x∗[h] or by 〈x∗, h〉 and the value of a bilinear functional L : E × E → IR for a pair of
elements h1, h2 ∈ E by L[h1, h2].

Let L(E × E) be the Banach space of all bilinear continuous functionals L : E × E → IR

with the norm

||L|| = sup
{

|L[h1, h2]| : ‖h1‖ = 1 , ‖h2‖ = 1
}

.

In the sequel we shall use the duality map H : E → 2E
∗

defined by

H(x) = {x∗ ∈ E∗ : ||x∗|| = ||x|| and 〈x∗, x〉 = ||x||2}

for each x ∈ E. It is known that H(x) is nonempty for every x ∈ E and also it is the
subdifferential of φ(x) = 1

2
||x||2X . If E

∗ is strictly convex, H(·) is single valued. From the
renorming theorem of Troyanski ([15], [11]) every reflexive Banach space can be renormed
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by an equivalent norm such that both the space and its dual are locally uniformly convex
and since locally uniformly convex implies strictly convex, we can assume in the sequel
that H(·) is a single valued map.

Let G be an open subset of E. Consider the class C1,1(G) of all functions f : G → IR,
whose first Gateaux derivatives f ′ : x ∈ G → f ′(x) ∈ E∗ is continuous and locally
Lipschitz. We also have that f ′ is Gateaux differentiable on a dense subset G(f) of G
(see [8]), hence f has a twice Gateaux derivative f ′′(x) at x ∈ G(f).

For such functions f ∈ C1,1(G) we consider the Clarke subdifferential ∂〈f ′(x), h〉 ⊂ E∗ of
the function 〈f ′(·), h〉 with respect to x ∈ G and any fixed h ∈ E. Further we recall the
following definition.

Definition 1.1. For every x ∈ G, h1, h2 ∈ E we define

f 00(x;h1, h2) := lim sup
y→x
t↓0

f ′(y + th1)[h2]− f ′(y)[h2]

t

= 〈f ′(·), h2〉
0(x;h1),

∂2
cf(x) := {L ∈ L(E × E) : L[h1, h2] ≤ f 00(x;h1, h2), ∀(h1, h2) ∈ E × E}. (1)

This gives rise to the image set

∂2
cf(x)h = {〈Lh, ·〉 ∈ E∗ : L ∈ ∂2

cf(x)}. (2)

and to the multivalued map h ∈ E → ∂2
cf(x)h ⊂ E∗. In [8] it has been proven that in a

real Banach space with separable dual, for every x ∈ E, the set ∂2
cf(x) as given by (1) is

nonempty convex and ω∗− compact. Also by [8], the multivalued mapping ∂2
cf is upper

semicontinuous on G and locally norm bounded in L(E×E). In [7] all these properties of
∂2
cf(x) are extended to arbitrary Banach spaces. In ([7], Theorem 3), it has been shown

that if E is an Asplund space, then for every h1, h2 ∈ E and x ∈ G

f 00(x, h1, h2) = max
L∈∂2

c f(x)
L[h1, h2]. (3)

2. Some properties of Moreau-Yosida approximations

In what follows X is a reflexive Banach space. We assume that X is endowed with a
Kadec norm such that X and X∗ are locally uniformly convex.

Let f : X → IR = IR∪{+∞} be a proper function, i.e. domf = {x ∈ X : f(x) < ∞} 6= ∅.
Recall that the Frechet subdifferential of f at x ∈ domf is the set

∂Ff(x) := {x∗ ∈ X∗ : lim inf
||h||→0

f(x+ h)− f(x)− 〈x∗, h〉

||h||
≥ 0}.

Note that due to ([3], Theorem 6.2) any lower semicontinuous function on a reflexive
Banach space is densely Frechet subdifferentiable on its domain.

It is easy to see that for a locally Lipschitz function f , we have ∂Ff(x) ⊂ ∂f(x) for every
x, where ∂f stands for the Clarke subdifferential of f .
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For any proper f : X → IR, the Moreau-Yosida regularization of the index λ > 0 of f is
defined by

fλ(x) := inf
y∈X

{f(y) +
1

2λ
||x− y||2}.

Assume that f satisfies the growth condition, i.e., there exists a nonnegative constant c
such that for all x ∈ X

f(x) ≥ −
c

2
(1 + ||x||2). (4)

Then (see [2], Proposition 1.1), provided λ ∈ (0, 1
c
) the function fλ is a finitely valued

function which is Lipschitz continuous on each bounded subset of X. Moreover, the proof
of ([2], Proposition 1.2 a)) shows that for x ∈ domf , for each λ ∈ (0, 1

c
) and for each

ρ > ρ, where

ρ = ρ(x, f, λ, c) :=
[

λ
2f(x) + c(2||x||2 + 1)

1− 2λc

]1/2

we have

fλ(x) = inf
||x−y||≤ρ

{f(y) +
1

2λ
||x− y||2}.

We now summarize some of the results obtained by Correa, Jofré and Thibault in [4] in
the following theorem.

Theorem 2.1. Let f : X → IR be a lower semicontinuous, proper function that satisfies

the growth condition (4). Consider its Moreau-Yosida regularization fλ for fixed λ ∈
(0, 1

2c
). Then there holds:

(A) For each point x0 ∈ X from the dense subset where fλ is Frechet subdifferentiable,

i.e., ∂Ffλ(x0) 6= ∅ there exists a xλ ∈ X such that

fλ(x0) = f(xλ) +
1

2λ
||x0 − xλ||

2 .

Moreover, for any xλ ∈ argminy∈X{f(y) +
1
2λ
||x0 − y||2} there holds:

(B) ∂Ffλ(x0) = { 1
λ
H(x0 − xλ)} .

(C) ∂Ffλ(x0) ⊂ ∂Ff(xλ).

Proof. For the proof of (A) see the proof of Lemma 3.7 in [4]. Parts (B) and (C) follow
immediately from

∂F 1

2λ
|| · ||2(x0 − xλ) = {

1

λ
H(x0 − xλ)}

and from ([4], Lemma 3.6) which gives

∂Ffλ(x0) ⊂ ∂Ff(xλ) ∩ ∂F 1

2λ
|| · ||2(x0 − xλ).
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3. An approach by Moreau-Yosida approximation

Let h ∈ X be fixed. We consider the Moreau-Yosida approximations 〈f ′
n(·), h〉λ, 〈f

′(·), h〉λ
of the functions 〈f ′

n(·), h〉, 〈f
′(·), h〉 respectively.

Theorem 3.1. Let X be a reflexive Banach space with Kadec norm. Given f : X → IR

and the sequence, fn : X → IR, (n ∈ IN), we posit the following assumptions:

(A1 ) f and every fn is C1,1 on X;

(A2 ) For every h ∈ X there exists r > 0 such that for every n ∈ IN and x ∈ X

〈f ′
n(x), h〉 ≥ −r (1 + ||x||2);

(A3 ) For every h ∈ X,

〈f ′
n(·), h〉

epi
→ 〈f ′(·), h〉.

Then for every h ∈ X and x ∈ X,

co∗ ω∗ − lim sup
z→x
λ→0+

[co∗{ω∗ − lim sup
u→z
n→∞

∂〈f ′
n(u), h〉λ}] ⊆ ∂〈f ′(x), h〉.

Proof. We need several lemmas, as follows. In each lemma, the assumptions of Theorem
3.1 are in force.

Let Gλ and Gn
λ be dense subsets, where 〈f ′(·), h〉λ and 〈f ′

n(·), h〉λ are Frechet subdifferen-
tiable.

Since f ∈ C1,1 there exists a bounded neighbourhood V (x) of x, on which 〈f ′(·), h〉 is
Lipschitz and bounded by the Lipschitz constant Lf ′ .

Lemma 3.2. For every λ ∈ (0, 1
4r
), y ∈ Gλ, h ∈ X and for every yn ∈ Gn

λ such that

yn → y, it follows that

∃ỹnλ ∈ argminz∈X{〈f
′
n(z), h〉+

1

2λ
||z − yn||

2}

and

∃y ∈ argminz∈X{〈f
′(z), h〉+

1

2λ
||z − y||2}

such that

(a) ỹnλ → y;

(b) H(yn − ỹnλ) → H(y − y); and

(c) 1
λ
H(y − y) ∈ ∂F 〈f ′(y), h〉λ.

Proof. (a) Since yn ∈ Gn
λ, by Theorem 2.1(A) there exists a ỹnλ ∈ X such that

〈f ′
n(yn), h〉λ = 〈f ′

n(ỹ
n
λ), h〉+

1

2λ
||ỹnλ − yn||

2 (5)

and by (B) and (C)

1

λ
H(yn − ỹnλ) ∈ ∂F 〈f ′

n(yn), h〉λ ⊂ ∂F 〈f ′
n(ỹ

n
λ), h〉 ⊂ ∂〈f ′

n(ỹ
n
λ), h〉.



418 N. Ovcharova, J. Gwinner / On Moreau-Yosida Approximation and on Stability ...

Let us take some v ∈ V (x). By assumption (A3 ), ∃vn → v such that lim sup〈f ′
n(vn), h〉 ≤

〈f ′(v), h〉 and from (5),

〈f ′
n(ỹ

n
λ), h〉+

1

2λ
||ỹnλ − yn||

2 ≤ 〈f ′
n(vn), h〉+

1

2λ
||vn − yn||

2. (6)

Combining (A2 ) and (6), we calculate

−r(1 + ||ỹnλ ||
2) +

1

2λ
||ỹnλ − yn||

2 ≤ 〈f ′
n(ỹ

n
λ), h〉+

1

2λ
||ỹnλ − yn||

2

≤ 〈f ′
n(vn), h〉+

1

2λ
||vn − yn||

2.

Consequently,

1

2λ
||ỹnλ − yn||

2 ≤ 〈f ′
n(vn), h〉+

1

2λ
||vn − yn||

2 + r(1 + ||ỹnλ ||
2),

which clearly implies that the sequence ỹnλ is bounded since λ ∈ (0, 1
4r
). The space X

being reflexive, we can extract a weakly convergent subsequence ỹnλ
ω
→ y.

Let us take an arbitrary z ∈ X. By (A3 ), there exists a sequence zn → z such that
lim sup〈f ′

n(zn), h〉 ≤ 〈f ′(z), h〉. From the inequality

〈f ′
n(ỹ

n
λ), h〉+

1

2λ
||ỹnλ − yn||

2 ≤ 〈f ′
n(zn), h〉+

1

2λ
||zn − yn||

2

we get

lim inf〈f ′
n(ỹ

n
λ), h〉+ lim inf

1

2λ
||ỹnλ − yn||

2 ≤ lim sup〈f ′
n(zn), h〉+

1

2λ
||z − y||2.

Using (A3 ) and the lower semicontinuity of the norm for the weak topology, it follows for
every z ∈ X,

〈f ′(y), h〉+
1

2λ
||y − y||2 ≤ 〈f ′(z), h〉+

1

2λ
||z − y||2,

that

y ∈ argminz∈X{〈f
′(z), h〉+

1

2λ
||z − y||2}.

In order to obtain the strong convergence of the sequence ỹnλ , we prove ||ỹnλ || → ||y||. By
(A3 ), there exists a sequence yn → y such that

lim sup 〈f ′
n(yn), h〉 ≤ 〈f ′(y), h〉.

Hence,

〈f ′
n(ỹ

n
λ), h〉+

1

2λ
||ỹnλ − yn||

2 ≤ 〈f ′
n(yn), h〉+

1

2λ
||yn − yn||

2,

letting n → ∞ leads to

lim sup
1

2λ
||ỹnλ − yn||

2 ≤ lim sup (−〈f ′
n(ỹ

n
λ), h〉) + lim sup 〈f ′

n(yn), h〉

+ lim
1

2λ
||yn − yn||

2

≤ − lim inf 〈f ′
n(ỹ

n
λ), h〉+ 〈f ′(y), h〉+

1

2λ
||y − y||2

≤ −〈f ′(y), h〉+ 〈f ′(y), h〉+
1

2λ
||y − y||2.
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We finally arrive at
lim sup ||ỹnλ − yn||

2 ≤ ||y − y||2

and at the strong convergence of the sequence ỹnλ to y. Thus the proof of part (a) is
completed.

Due to the Kadec assumption, H is continuous from X to X∗ with respect to the strong
topology. Therefore part (a) implies part (b).

Since u∗ ∈ argminz∈X{〈f
′(z), h〉 + 1

2λ
||z − y||2}, part (c) follows from (C) of Theorem

2.1.

To prove Lemma 3.4, we need the following lemma ([3], Corollary 7.4) due to Borwein
and Strojwas.

Lemma 3.3. Let f be a locally Lipschitz function on a reflexive Banach space X. Then

there holds for every y ∈ X,

∂f(y) = co∗{ω∗ − lim sup
z→y

∂Ff(z)}.

Lemma 3.4. For every λ > 0, h ∈ X and x ∈ X,

co∗{ω∗ − lim sup
y→x

n→+∞

∂〈f ′
n(y), h〉λ} ⊂ ∂〈f ′(x), h〉λ.

Proof. Let λ > 0, x ∈ X, h ∈ X be fixed. Since ∂〈f ′(x), h〉λ is a convex and ω∗−closed
subset of X∗, it suffices to prove that

ω∗ − lim sup
y→x

n→+∞

∂〈f ′
n(y), h〉λ ⊂ ∂〈f ′(x), h〉λ. (7)

Let L belong to the left hand set of (7) i.e. L = ω∗ − limL∗
n, where L∗

n ∈ ∂〈f ′
n(yn), h〉λ,

yn → x.

By Lemma 3.3,
L∗
n ∈ co∗{ω∗ − lim sup

Gn
λ∋z→yn

∂F 〈f ′
n(z), h〉λ}. (8)

By Theorem 2.1, for every n ∈ IN and z ∈ Gn
λ there exist ỹnλ(z) ∈ argminu∈X{〈f

′
n(u), h〉+

1
2λ
||u − z||2} and there holds ∂F 〈f ′

n(z), h〉λ = { 1
λ
H(z − ỹnλ(z))}. Consequently, the set

ω∗ − lim sup
Gn

λ∋z→yn

∂F 〈f ′
n(z), h〉λ coincides with the following set

An(yn) := ω∗ − lim sup
Gn

λ∋z→yn

{
1

λ
H(z − ỹnλ(z))}.

Denote
φ(h1) = 〈f ′(·), h〉0λ(x;h1).

Our aim is to prove that for every Ln ∈ An(yn) and every h1 ∈ X we have

lim sup
n→∞

〈Ln, h1〉 ≤ φ(h1). (9)
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First, we shall show that if (9) holds, then L ∈ ∂〈f ′(x), h〉λ, which proves (7). For this
purpose we establish that (9) implies the inequality

lim sup
n→∞

sup {〈Ln, h1〉 : Ln ∈ An(yn)} ≤ φ(h1). (10)

Indeed, for every n ∈ N there exists L̃n ∈ An(yn) such that

〈L̃n, h1〉 ≥ sup {〈Ln, h1〉 : Ln ∈ An(yn)} −
1

n
.

Since (9) is assumed, we get

lim sup
n→∞

sup {〈Ln, h1〉 : Ln ∈ An(yn)} ≤ lim sup
n→∞

〈L̃n, h1〉+ lim
1

n
≤ φ(h1).

From (10), for every ε > 0 there exists N0 ∈ IN such that for every n ≥ N0 there holds

〈Ln, h1〉 ≤ φ(h1) + ε for every Ln ∈ An(yn).

Since φ is positively homogenous and subadditive on X, the last inequality is also true
for every Ln ∈ coAn(yn). Let L∗

n ∈ co∗ {An(yn)}. Then for every ε > 0 there exists
Ln ∈ coAn(yn) such that

|〈L∗
n − Ln, h1〉| < ε.

Hence

〈L∗
n, h1〉 < 〈Ln, h1〉+ ε ≤ φ(h1) + 2ε.

Consequently

lim sup
n→∞

sup {〈L∗
n, h1〉 : L∗

n ∈ co∗An(yn)} ≤ φ(h1),

which implies that 〈L, h1〉 ≤ φ(h1), i.e. L ∈ ∂〈f ′(x), h〉λ.

Thus we need only to prove inequality (9). Let Ln ∈ An(yn). Then Ln = ω∗ −

lim
m→∞

1

λ
H(znm − ỹnλ(znm)), where for all m ∈ IN we have znm ∈ Gn

λ and znm → yn.

Hence, for every ε > 0 and n ∈ IN, there exists a m(n) ∈ IN such that for all n and
zn := znm(n)

|〈Ln, h1〉 − 〈
1

λ
H(zn − ỹnλ(zn)), h1〉| < ε, (11)

where

zn −−−→
n→∞

x,

ỹnλ(zn) −−−→
n→∞

y (by Lemma 3.2(a)),

y ∈ argminz∈X{〈f
′(z), h〉+

1

2λ
||x− z||2},

and

H(zn − ỹnλ(zn)) → H(x− y) (by Lemma 3.2(b)).
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The latter strong convergence gives a constant N(ε) > 0 such that for every n > N(ε)

|〈
1

λ
H(zn − ỹnλ(zn)), h1〉 − 〈

1

λ
H(x− y), h1〉| < ε. (12)

By combining inequalities (11) and (12), for every n > N(ε) we obtain

〈Ln, h1〉 < 〈
1

λ
H(x− y), h1〉+ 2ε. (13)

According to Lemma 3.2(c), 1
λ
H(x − y) ∈ ∂〈f ′(x), h〉λ. Consequently 〈 1

λ
H(x − y), h1〉 ≤

〈f ′(·), h〉0λ(x;h1) and after letting n → ∞ in (13) we arrive at the inequality (9). The
proof of the lemma is now complete.

The following lemma extends Theorem 4.4 in [9] from the Hilbert space setting to the
setting of a reflexive Banach space.

Lemma 3.5. Let f : X → IR be a locally Lipschitz function that satisfies the growth

condition (4). Then
∂f(x) = co∗{ω∗ − lim sup

z→x
λ→0+

∂fλ(z)}.

Proof. Denote
C(x) = ω∗ − lim sup

z→x
λ→0+

∂fλ(z).

Following the proof of Theorem 4.4 in [9], we obtain, using Frechet subdifferentiability
of the functions fλn

instead of Frechet differentiability and the mean-value theorem of
Clarke in [5] instead of the mean-value inequality of Preiss in [9], that ∂f(x) ⊂ co∗C(x).

Let us prove the opposite inclusion. Since ∂f(x) is a convex and ω∗−closed subset of X∗,
it is enough to prove that

C(x) ⊂ ∂f(x). (14)

If L∗ ∈ C(x), then there exist sequences

zn → x, λn → 0+ and L∗
n

ω∗

→ L∗.

such that
L∗
n ∈ ∂fλn

(zn).

Consequently to prove inclusion (14), it suffices to examine the set ω∗ − lim sup
n→∞

∂fλn
(zn)

and to show that
ω∗ − lim sup

n→∞
∂fλn

(zn) ⊂ ∂f(x). (15)

By Lemma 3.3,
∂fλn

(zn) = co∗{ω∗ − lim sup
Gλn∋z→zn

∂F (fλn
)(z)}. (16)

Denote
Tn(zn) = ω∗ − lim sup

Gλn∋z→zn

∂F (fλn
)(z).
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First, we shall prove that the set
⋃

n∈IN
Tn(zn) is bounded. Let Ln ∈ Tn(zn). By Theorem

2.1 there exist ỹλn
(zn) such that ∂Ffλn

(zn) ⊂ ∂Ff(ỹλn
(zn)) ⊂ ∂f(ỹλn

(zn)). Since the
latter set is contained in LfB

∗ (B∗ is the ω∗−closed unit ball in X∗) for large n, it follows
that Ln are norm bounded. Consequently, we can apply Lemma 2 [16] and obtain

ω∗ − lim sup
n→∞

{co∗ Tn(zn)} ⊂ co∗{ω∗ − lim sup
n→∞

Tn(zn)}.

Moreover by (16),

ω∗ − lim sup
n→∞

∂fλn
(zn) = ω∗ − lim sup

n→∞
{co∗ Tn(zn)}.

Therefore, to prove (15), it suffices to show that

ω∗ − lim sup
n→∞

Tn(zn) ⊂ ∂f(x). (17)

Let L ∈ ω∗ − lim sup
n→∞

Tn(zn). Assume that

L 6∈ ∂f(x). (18)

By the separation theorem there exist h1, ||h1|| = 1 and s > 0 such that

〈L, h1〉 ≥ sup
a∈∂f(x)

〈a, h1〉+ s.

Using the same notation as in [9], let U(x) be a bounded neighborhood of x, on which f

is Lipschitz and supz∈U(x) ρ(z, f, λ, c) → 0 as λ → 0. Since ∂f is upper semicontinuous,
there exists ε > 0 such that

〈L, h1〉 ≥ sup
a∈∂f(x)

〈a, h1〉+ s > sup
a∈Dε(x)

〈a, h1〉+
s

2
,

where Dε(x) = co∗{d ∈ ∂f(z), z ∈ B(x, ε) ⊂ U(x)}. On the other hand by definition of

L, there exist a subsequence {nk}k∈IN and a sequence {Lk}k∈IN such that Lk
ω∗

→ L and
Lk ∈ Tnk

(znk
). From the definition of Tnk

(vk), where vk := znk
, for every k ∈ IN there

exist sequences {vkm}m∈IN and Lkm such that vkm → vk , Lk = ω∗ − limLkm as m → ∞
and Lkm ∈ ∂Ffλnk

(vkm) for every m ∈ IN. Hence, there exist a constant K(s) > 0 and a
subsequence {mk}k∈IN such that for every k > K(s), one has

|〈L, h1〉 − 〈Lk, h1〉| <
s

8

and
|〈Lk, h1〉 − 〈Lkmk

, h1〉| <
s

8
,

where uk := vkmk
, uk → x and Lkmk

∈ ∂Ffλnk
(uk) ⊂ ∂f(ỹλnk

(uk)).

Hence for sufficiently large k

〈Lkmk
, h1〉 ≥ sup

a∈Dε(x)

〈a, h1〉+
s

4
. (19)

Since for sufficiently large k, the points ỹλnk
(uk) ∈ B(x, ε) and Lkmk

∈ Dε(x), we obtain
a contradiction.
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Now let us give the Proof of Theorem 3.1. By Lemma 3.4

co∗ω∗ − lim sup
z→x
λ→0+

[

co∗{ω∗ − lim sup
u→z
n→∞

∂〈f ′
n(u), h〉λ}

]

⊆ co∗ω∗ − lim sup
z→x
λ→0+

∂〈f ′(z), h〉λ.

In order to apply Lemma 3.5 for the function 〈f ′(·), h〉 we need to show that this function
satisfies the growth condition (4). Indeed, since 〈f ′

n(·), h〉 is epi-convergent to 〈f ′(·), h〉
and 〈f ′

n(·), h〉 satisfy the condition (A2 ), Corollary 2.67 in [1] implies that

〈f ′(x), h〉 = sup
λ>0

lim sup
n

〈f ′
n(x), h〉λ.

Let 0 < εn → 0 be an arbitrary sequence and let Un(x) be a bounded neighborhood of x,
on which 〈f ′

n(·), h〉 is Lipschitz and supz∈Un(x) ρ(z, 〈f
′
n(·), h〉, λ, 2r) tends to 0 as λ → 0.

For every n ∈ IN, let us choose λn > 0 such that sup
z∈Un(x)

ρ(z, 〈f ′
n(·), h〉, λn, 2r) ≤ εn. Then,

||ỹnλn
(x)− x|| ≤ εn.

Thus, by Theorem 2.1 and (A2 ) we have,

〈f ′
n(x), h〉λn

= 〈f ′
n(ỹ

n
λn
(x)), h〉+

1

2λn

||x− ỹnλn
(x)||2

≥ −r(1 + ||ỹnλn
(x)||2) +

1

2λn

||x− ỹnλn
(x)||2

≥ −r(1 + ||ỹnλn
(x)||2) ≥ −r[1 + (εn + ||x||)2],

consequently
〈f ′(x), h〉 ≥ lim sup

n
〈f ′

n(x), h〉λn
≥ −r(1 + ||x||2),

which proves the growth condition (4) with c = 2r.

Then, by Lemma 3.5,

co∗{ω∗ − lim sup
z→x
λ→0+

∂〈f ′(z), h〉λ} = ∂〈f ′(x), h〉.

This proves Theorem 3.1.

Remark. Let a sequence of set-valued functions An : E → E∗ be given. Then we say
that

(x, x∗) ∈ lim sup
n→∞

gphAn

iff
x∗ ∈ ω∗ − lim sup

y→x
n→∞

An(y),

In this sense the result of Theorem 3.1 is equivalent to

lim sup
λ→0

{

lim sup
n→∞

gphAn,λ

}

⊂ gph ∂〈f ′(·), h〉.
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Here gphAn,λ denotes the graph of the set-valued map

An,λ : X → X∗,

defined for any x ∈ X as
An,λ(x) := ∂〈f ′

n(x), h〉λ.

In the convex case we can strengthen the result of Theorem 3.1 in the following way.

Theorem 3.6. Let X be a reflexive Banach space with a Kadec norm and fn, f be a

sequence of closed convex proper functions defined on X. If the sequence fn is locally

bounded and epi-convergent to f , then for every x ∈ X,

co∗{ω∗ − lim sup
u→x, λ→0+

n→∞

∇(fn)λ(u)} = ∂f(x).

Proof. First we prove the inclusion

ω∗ − lim sup
u→x, λ→0+

n→∞

∇(fn)λ(u) ⊂ ∂f(x).

By Theorem 3.24 in [1], (fn)λ ∈ C1 and for every u ∈ X there exists a point Jfn
λ u such

that ∇(fn)λ(u) =
1
λ
H(u− J

fn
λ u) ∈ ∂f(Jfn

λ u). Hence it is enough to prove that

ω∗ − lim sup
u→x, λ→0+

n→∞

1

λ
H(u− J

fn
λ u) ⊂ ∂f(x).

Let λn, zn and y∗n be sequences such that λn → 0+, zn → x and y∗n ∈ ∂fn(zn). By the
local boundedness there exists δ > 0 and a constant M > 0 such that |fn(y)| ≤ M for
every y such that ||y−x|| < δ. Hence for all with ||h|| = 1 we have for sufficiently large n

〈y∗n,
δ

2
h〉 ≤ fn(zn +

δ

2
h)− fn(zn) ≤ 2M.

By monotonicity of ∂fn

〈y∗n −
1

λn

H(zn − J
fn
λn
zn), zn − J

fn
λn
zn〉 ≥ 0.

Hence

〈
1

λn

H(zn − J
fn
λn
zn), zn − J

fn
λn
zn〉 ≤ 〈y∗n, zn − J

fn
λn
zn〉

1

λn

||zn − J
fn
λn
zn||

2 ≤ ||y∗n|| ||zn − J
fn
λn
zn||

1

λn

||zn − J
fn
λn
zn|| ≤ ||y∗n|| ≤

4M

δ
.

Consequently the sequence { 1
λn
H(zn−J

fn
λn
zn)} is norm bounded and moreover Jfn

λn
zn → x.

By boundedness there exists an element u∗ ∈ X∗ such that for a subsequence 1
λn
H(zn −
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J
fn
λn
zn)

ω∗

→ u∗. Proposition 3.59 in [1] concerning graph convergence of maximal monotone
operators implies that u∗ ∈ ∂f(x).

Now let us prove the opposite inclusion

∂f(x) ⊂ co∗{ω∗ − lim sup
u→x, λ→0+

n→∞

∇ (fn)λ(u)}.

Note that a closed convex proper function satisfies the growth condition. Therefore
Lemma 3.5 applies and for any L ∈ ∂f(x) there exist sequences λk and zk such that
λk → 0+, zk → x and L = ω∗ − lim ∇fλk

(zk). From definition of graph convergence
(Definition 3.58 [1]), it follows that for every k ∈ IN there exists a sequence zkn such
that zkn → zk as n → ∞ and ∇fλk

(zk) = lim
n
∇(fn)λk

(zkn). From the diagonalization

formula (Corollary 1.18 in [1]) there exists a mapping k → n(k) increasing to ∞ such
that L = ω∗ − lim ∇(fn(k))λk

(zkn(k)), zkn(k) → x which proves the inclusion.

4. A direct approach

Let A be a given subset of a linear normed space X and g be a Lipschitz function on A.
We consider the following Lipschitz seminorm:

|g|A := sup
y,z∈A
y 6=z

g(y)− g(z)

||y − z||
.

Let G be an open subset of X. Let gn, g be locally Lipschitz functions on G. Then we
say that gn → g in C0,1(G) iff ∀x ∈ G ∃ neighbourhood U(x) ⊂ G such that

|gn − g|U(x) → 0.

In this connection we consider the sequence f, fn : X → R, n ∈ IN on which we posit the
following assumptions:

(i1) f and every fn is C1,1 on G;

(i2) For all x ∈ G and for all h ∈ X we have 〈f ′
n(·), h〉 → 〈f ′(·), h〉 in C0,1(G).

Theorem 4.1. Assume (i1) and (i2). Then

(B1 ) for every x ∈ G, xn → x and h ∈ X

⋃

n∈IN

∂〈f ′
n(xn), h〉 is bounded (20)

and

ω∗ − lim sup
n→+∞

∂〈f ′
n(xn), h〉 ⊂ ∂〈f ′(x), h〉; (21)

(B2 ) for every x ∈ G and xn → x

⋃

n∈IN

∂2
cfn(xn) is bounded (22)

and

ω∗ − lim sup
n→+∞

∂2
cfn(xn) ⊂ ∂2

cf(x). (23)
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Proof. Let us prove (B1 ). Let Ln ∈ ∂〈f ′
n(xn), h〉 and h1 be an arbitrary element of X

such that ||h1|| = 1. Then

Ln[h1] ≤ 〈f ′
n(·), h〉

0(xn;h1) = f 00
n (xn;h1, h)

For every ε > 0, by (i2), for given x, ∃δ > 0 such that for every y, z ∈ X with ||y−x|| < δ,
||z − x|| < δ and ∀n > N(ε) we have y, z ∈ G and

〈f ′
n(y), h〉 − 〈f ′(y), h〉 − 〈f ′

n(z), h〉+ 〈f ′(z), h〉 < ε||y − z||.

The choice y = z + th1 with 0 < t < δ
2
and ||z − x|| < δ

2
in this inequality gives

〈f ′
n(z + th1), h〉 − 〈f ′(z + th1), h〉 − 〈f ′

n(z), h〉+ 〈f ′(z), h〉 < ε||th1||.

Hence,
〈f ′

n(z + th1), h〉 − 〈f ′
n(z), h〉 < 〈f ′(z + th1), h〉 − 〈f ′(z), h〉+ εt.

Using the definition of f 00
n (xn;h1, h) we obtain for large enough n ∈ IN

f 00
n (xn;h1, h) = lim sup

z→xn
t↓0

f ′
n(z + th1)[h]− f ′

n(z)[h]

t

≤ lim sup
z→xn

t↓0

f ′(z + th1)[h]− f ′(z)[h]

t
+ ε

= f 00(xn;h1, h) + ε.

Hence for large enough n ∈ IN ,

Ln[h1] ≤ f 00
n (xn;h1, h) ≤ f 00(xn;h1, h) + ε. (24)

Since the set ∂〈f ′(xn), h〉+εB∗ ( B∗ is the unit ball inX∗) is ω∗−compact, by an argument
using the separation theorem we obtain

Ln ∈ ∂〈f ′(xn), h〉+ εB∗.

Since the set-valued map x → ∂〈f ′(x), h〉 is ω∗−upper semicontinuous (see [5], Proposition
2.1.5), for sufficiently large n, we get

∂〈f ′(xn), h〉 ⊂ ∂〈f ′(x), h〉+ εB∗.

So, for sufficiently large n, Ln ∈ ∂〈f ′(x), h〉 + 2εB∗. This proves (20). Moreover, since
f 00(·;h1, h) is upper semicontinuous in G, we obtain from (24)

lim sup
n→∞

Ln[h1] ≤ lim sup
n→∞

f 00(xn;h1, h) ≤ f 00(x;h1, h). (25)

Let us prove (21). Let L ∈ ω∗ − lim supn→+∞ ∂〈f ′
n(xn), h〉. The latter set denotes the

set of all weak∗- limit points of sequences Lnk
∈ ∂〈f ′

nk
(xnk

), h〉 where xnk
→ x and

nk is a subsequence of IN. Consequently L = ω∗ − limLn, for a suitable subsequence
Ln ∈ ∂〈f ′

n(xn), h〉 denoted by the same index n. Using (25) we obtain

L[h1] = lim sup
n

Ln[h1] ≤ f 00(x;h1, h) = 〈f ′(·), h〉0(x;h1),
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i.e. L ∈ ∂〈f ′(x), h〉.

To prove part (B2 ), let ξn ∈ ∂2
cfn(xn). We shall prove that the sequence {ξn}n∈IN is norm

bounded. Let h1 and h be arbitrary elements of X such that ||h1|| = 1 and ||h|| = 1.
Then

ξn[h1, h] ≤ f 00
n (xn;h1, h) = 〈f ′

n(·), h〉
0(xn;h1)

= max
L∈∂〈f ′

n(xn),h〉
〈L, h1〉 = 〈Ln, h1〉,

for suitable Ln ∈ ∂〈f ′
n(xn), h〉. Consequently

ξn[h1, h] ≤ 〈Ln, h1〉. (26)

By (B1 ) (20), {Ln}n∈IN is norm bounded, and hence {ξn} is also norm bounded.

Now we prove (23). Let ξ ∈ ω∗ − lim supn→+∞ ∂2
cfn(xn), i.e. ξ = ω∗ − lim ξnk

, where
ξnk

∈ ∂2
cfnk

(xnk
), xnk

→ x. Consequently ξ = ω∗ − lim ξn, for a suitable subsequence
ξn ∈ ∂2

cfn(xn) denoted by the same index n. Using (26) and (25) we obtain

ξ[h1, h] = lim ξn[h1, h] ≤ lim sup〈Ln, h1〉 ≤ f 00(x;h1, h).

This proves (23) and the proof of Theorem 4.1 is completed.

5. Continuity of Multipliers

To apply some of the results in [8], we now consider a real Banach space X with separable
dual. Let G be an open subset of X and

f, fn; gi, gni, i = 1, . . . , p; hj, hnj, j = 1, . . . , q,

be sequences in C1,1(G). We consider the following family (Pn) of constrained minimiza-
tion problems

(Pn)

{

fn → min

subject to x ∈ G, gni(x) ≤ 0, i = 1, p; hnj(x) = 0, j = 1, q

and the analogous problem

(P )

{

f → min

subject to x ∈ G, gi(x) ≤ 0, i = 1, p hj(x) = 0, j = 1, q.

Let us denote the admissible region of (Pn) by Cn and that of (P ) by C. Further to state
the necessary optimality condition of [8] we have to introduce the following sets

K(x) :=
{

h ∈ X : f ′(x)[h] ≤ 0, g′i(x)[h] ≤ 0, i = 1, p, h′
j(x)[h] = 0, j = 1, q

}

and

Λ(x) :=
{

(λ, µ) ∈ Rp+1 ×Rq : λ0f
′(x) +

p
∑

i=1

λig
′
i(x) +

q
∑

j=1

µjh
′
j(x) = 0,

λigi(x) = 0, i = 1, p;λi ≥ 0, i = 0, p,

p
∑

i=0

λi +

q
∑

j=1

|µj| = 1
}

.
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The sets Kn(xn), Λn(xn) are defined analogously.
Denote F (x) = (h1(x), . . . , hq(x))

T . Then the main result in [8] reads:

If x is a local minimum of (P ) and ImF ′(x) = IR
q, then ∀h ∈ K(x) ∃(λ, µ) ∈ Λ(x),

ξ ∈ ∂2
cf(x), ξi ∈ ∂2

c gi(x), i = 1, p, ηj ∈ ∂2
chj(x), j = 1, q such that the bilinear form

β = λ0
ξ +

p
∑

i=1

λi ξi +

q
∑

j=1

µj ηj satisfies

β[h, h] ≥ 0. (27)

We posit the following assumptions:

1) fn
epi
→ f

2) Each sequence f, fn; gi, gni, i = 1, p; hj, hnj, j = 1, q, fulfils the conditions of
Theorem 4.1;

3) For every x ∈ G and every sequence xn → x

ω∗ − lim g′ni(xn) = g′i(x), i = 1, p;

ω∗ − limh′
nj(xn) = h′

j(x), j = 1, q.

4) gni → gi, hnj → hj continuously for every i, j (i.e. for every sequence xn → x we have
gni(xn) → gi(x) and hnj(xn) → hj(x))

5) For every y ∈ C there exists yn ∈ Cn such that

lim sup fn(yn) ≤ f(y).

Theorem 5.1. Let the above assumptions 1)–5) hold. Let xn be a local minimum of (Pn)
and xn → x. Then x solves locally (P ) and fn(xn) → f(x). Moreover, for any h ∈
∩nKn(xn) we have that h ∈ K(x) and from the sequences (λn0, λni, µnj) and (ξn, ξni, ηnj)
that satisfy (27) with subscript n we can extract subsequences such that

(λn0, λni, µnj) → (λ0, λi, µj) ∈ Λ(x)\{0}; (28)

ξn
ω∗

→ ξ ∈ ∂2
cf(x), ξni

ω∗

→ ξi ∈ ∂2
c gi(x), ηnj

ω∗

→ ηj ∈ ∂2
chj(x) (29)

and (λ0, λi, µj), (ξ, ξi, ηj) satisfy the necessary optimality conditions (27) for the given h.

Proof. Using assumptions 1), 4) and 5), the proof that x is a local minimum of P is
exactly as in [16], Theorem 2. Moreover by 1) fn(xn) → f(x).

Let h ∈ ∩nKn(xn). Since fn attains a local minimum at xn, then 0 ∈ ∂fn(xn). But
fn ∈ C1,1(G), consequently ∂fn(xn) = {f ′

n(xn)} and f ′
n(xn) = 0. Analogously f ′(x) = 0.

Hence, it is enough to consider the relations h′
nj(xn)[h] = 0, j = 1, q and g′ni(xn)[h] ≤

0, i = 1, p. For any i = 1, p, by assumption 3) we have

〈g′i(x), h〉 = lim
n→∞

〈g′ni(xn), h〉 ≤ 0.

Analogously, for any j = 1, q, 〈h′
j(x), h〉 = 0. Hence h ∈ K(x).
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Since

p
∑

i=0

λni +

q
∑

j=1

|µnj| = 1, we can obviously assume that the sequences λn0, λni, µnj

are bounded for every i, j and consequently we have (28). Moreover, Theorem 4.1 (B2 )
entails (29).

For any (λn, µn) ∈ Λn(xn) we have

p
∑

i=1

λnig
′
ni(xn) +

q
∑

j=1

µnjh
′
nj(xn) = 0

and
λnigni(xn) = 0.

Assumptions 3), 4) and (28) entail that (λ, µ) ∈ Λ(x).

Let h ∈ ∩nKn(xn). For every n there exist ξn ∈ ∂2
cfn(xn), ξni ∈ ∂2

c gni(xn), i = 1, p,
ηnj ∈ ∂2

chnj(xn), j = 1, q and (λ̃n, µ̃n) ∈ Λn(xn) such that βn[h, h] > 0, i.e.

0 ≤ λ̃n0
ξn[h, h] +

p
∑

i=1

λ̃niξni[h, h] +

q
∑

j=1

µ̃njηnj[h, h]. (30)

Letting n → ∞ in (30) and using (29), we obtain that

0 ≤ λ̃0
ξ[h, h] +

p
∑

i=1

λ̃iξi[h, h] +

q
∑

j=1

µ̃jηj[h, h],

so the necessary optimality condition (27) at point x is satisfied.

Remarks. (1) Theorem 5.1 provides convergence not only for the multipliers but also
for the associated second-order Clarke’s subdifferentials ξn, ξni, ηnj.

(2) As it was noted in [16], the assumption of continuous convergence of gni in 4) can be
replaced by the condition

∂Fgni(xn) 6= ∅ for every n and i.

6. Stability of the second-order Clarke’s subdifferentials of integral function-

als

We consider a σ− finite positive measure space (T,Σ, dt) and a sequence of functions
g, gn : T × IR

m → IR. We posit the following assumptions:

(1) For each y ∈ IR
m, every function g(·, y), gn(·, y) belongs to L1(T );

(2) For all t ∈ T , g(t, ·), gn(t, ·) ∈ C1,1(IRm), i.e. for every x ∈ IR
m there exist a neigh-

borhood U(x) ⊂ IR
m and a function k ∈ L1(T, IR+) such that, for all t ∈ T , for all

y1, y2 ∈ U(x) we have

||g′(t, y1)− g′(t, y2)||IRm ≤ k(t) ||y1 − y2||IRm .

(3) For every y ∈ IR
m, the functions g′(·, y) and g′n(·, y) belong to L1(T );
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(4) For a.e. t ∈ T , g′n(t, ·) → g′(t, ·) in C0,1(IRm), i.e. for every x ∈ IR
m there exist δ > 0

and a function k1 ∈ L1(T, IR+) such that for every ε > 0 there exists N(ε) ∈ IN such
that for every y1, y2 ∈ IR

m with ||y1 − x||IRm < δ, ||y2 − x||Rm < δ and ∀n > N(ε) we
have

||g′n(t, y1)− g′(t, y1)− g′n(t, y2) + g′(t, y2)||IRm < εk(t) ||y1 − y2||IRm

for a.e. t ∈ T .

For u ∈ L∞ = L∞(T, IRm), we introduce the following integral functionals

f(u) =

∫

T

g(t, u(t)) dt, fn(u) =

∫

T

gn(t, u(t)) dt.

By (1), f and fn are well defined.

Since g(t, ·) ∈ C1,1(IRm), by the mean value theorem g(t, ·) is strictly Frechet differentiable
and consequently by Proposition 2.2.4 in [5], locally Lipschitz. By ([5], Theorem 2.7.3)
for every u ∈ L∞, f is locally Lipschitz at u and

∂f(u) =

∫

T

∂g(t, u(t)) dt. (31)

Since ∂g(t, u(t)) = {g′(t, u(t))}, the right hand side of (31) is a singleton and defines a

map ξ[·] such that for any v ∈ L∞, ξ[v] =

∫

T

g′(t, u(t))Tv(t) dt, where by assumption (3)

for every v ∈ L∞, the function t → g′(t, u(t))Tv(t) belongs to L1(T ).

The existence of f ′(u; v) for any v ∈ L∞ and the equality

f ′(u; v) =

∫

T

g′(t, u(t); v(t)) dt

follow from the dominated convergence theorem. Hence f ′(u; v) = ξ[v] and consequently

f admits a Gateaux derivative at u ∈ L∞ denoted by f ′(u) and f ′(u)[v] =

∫

T

g′(t, u(t))T

v(t) dt.

Analogously, for every v ∈ L∞,

f ′
n(u) [v] =

∫

T

g′n(t, u(t))
T v(t) dt.

The fact that the first Gateaux derivatives f ′ and f ′
n are locally Lipschitz on L∞ follows

from assumption (2), as in Theorem 2.7.2 in [5].

By (4), for any v ∈ L∞, ||v||∞ = 1 we have 〈f ′
n(·), v〉 → 〈f ′(·), v〉 in C0,1(L∞), i.e. ∀u ∈ L∞

there exists δ > 0 such that ∀ε > 0 there exists N(ε) ∈ IN such that for every n > N(ε),
||u1 − u||∞ < δ, ||u2 − u||∞ < δ, we have

|〈f ′
n(u1), v〉 − 〈f ′(u1), v〉 − 〈f ′

n(u2), v〉+ 〈f ′(u2), v〉| < ε||u1 − u2||∞.

So, we can directly apply Theorem 4.1 within X = L∞ and obtain the following corollary.
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Corollary 6.1. Let the above assumptions (1), (2), (3) and (4) hold. Then

(i) for every u, v ∈ L∞

ω∗ − lim sup
w→u
n→+∞

∂〈f ′
n(w), v〉 ⊂ ∂〈f ′(u), v〉. (32)

(ii) for every u ∈ L∞

ω∗ − lim sup
w→u
n→+∞

∂2
cfn(w) ⊂ ∂2

cf(u). (33)

Remark. This theorem can be extended to the standard type of functionals in calculus
of variations as given by

J(φ) =

∫ b

a

L(t, φ(t), �φ(t)) dt, Jn(φ) =

∫ b

a

Ln(t, φ(t), �φ(t)) dt,

where φ is an absolutely continuous function from [a, b] to IR
m.

We claim that for every φ

ω∗ − lim sup
φ→φ

n→+∞

∂2
cJn(φ) ⊂ ∂2

cJ(
φ). (34)

We follow the approach of Clarke in [5], Example 2.7.4. Using the Lebesgue measure λ,
we consider the measure space (T,Σ, µ) = ([a, b],B([a, b]), λ) and the linear subspace

X =
{

(s, v) ∈ L∞(T, IR2m) : ∃c ∈ IR
m, s(t) = c+

∫ t

a

υ(τ)dτ
}

of L∞(T, IR2m) and define g(t; s, v) = L(t, s, v).

Note that for any (s, v) ∈ X, we have f(s, v) =

∫ b

a

g(t; s, v)dt = J(s) and fn(s, v) =

∫ b

a

gn(t; s, v)dt = Jn(s).

With (s, v) a given element of X, (34) follows from (33) by Corollary 6.1 in L∞(T, IR2m).
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