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A convex body D ⊂ Ed is an ellipsoid if all the sections given by hyperplanes are elliptic. We study
whether we can restrict the hyperplanes to those that contain one of two fixed linear varieties. In a
previous paper we considered the case where one of the varieties cuts the interior of D, and now we
assume that the varieties support D.
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1. Introduction

Let Ed (d ≥ 3) be the d-dimensional Euclidean space and let D ⊂ Ed be a convex
body (i.e., a compact convex set with non-empty interior) with boundary S. It is well
known that S is an ellipsoid if and only if all the sections of S given by hyperplanes are
ellipsoidal. This characterization of ellipsoids can be improved by limiting the hyperplanes
we consider. For example, we can assume that all the hyperplanes go through a fixed point
p. Busemann [4] proved this result for p ∈ Int D, Burton [3] extended it for p ∈ Ed, and
Petty [5] pointed out that one can consider p in the d-dimensional projective space P d.
With the aim of expressing a number of characterizations of this kind in a unified language,
in [2] we gave the following definition:

For a linear variety l with 0 ≤ dim l ≤ d−2 we call D (or, equivalently, S) elliptic through
l if for every hyperplane P such that l ⊂ P and P ∩ Int D 6= ∅ the section P ∩ S is
ellipsoidal.

The Busemann-Burton-Petty result can then be re-formulated by saying that S is an
ellipsoid if and only if it is elliptic through a point p ∈ P d. In [1] we showed that S
is an ellipsoid if and only if it is centrally symmetric and elliptic through three (d − 2)-
dimensional linear varieties of the hyperplane at infinity. E.g., a centrally symmetric
convex body in E3 is an ellipsoid if and only if all the sections by planes parallel to three
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Figure 2.1:

fixed planes are elliptic. This result is not true either if S is not centrally symmetric or if
only two planes are considered. In [2], we obtained the following result:

Theorem 1.1 ([2]). Let S be the boundary of a convex body D ⊂ Ed (d ≥ 3), and let l1
and l2 be two linear varieties such that 1 ≤ dim li ≤ d − 2, i = 1, 2, l1 6⊂ l2, l2 6⊂ l1, and
l1 ∩ Int D 6= ∅. If S is elliptic through l1 and l2, then S is an ellipsoid.

Straightforward counterexamples show that Theorem 1.1 is false when either the hypoth-
esis l1 ∩ Int D 6= ∅ is eliminated or only one variety is considered. We here extend the
result in Theorem 1.1 by considering cases where no variety cuts the interior of D but
with some new hypotheses added.

2. Results

For l1 and l2 linear varieties in Ed, let l1 + l2 denote the lowest-dimensional linear variety
that contains l1 and l2. If D ⊂ Ed is a convex body with boundary S and l is a linear
variety, then l supports D (or, equivalently, S) if l ∩D = l ∩ S 6= ∅. It is easy to see that
if l supports S and S is elliptic through l then l ∩ S is reduced to one point. Our main
result is the following theorem which we have stated so as to include Theorem 1.1.

Theorem 2.1. Let S be the boundary of a convex body D ⊂ Ed (d ≥ 3), and let l1 and l2
be two linear varieties such that 1 ≤ dim li ≤ d− 2, i = 1, 2, and l1 6⊂ l2, l2 6⊂ l1. Assume
that S is elliptic through l1 and l2 and that one of the following properties holds:

(i) Either l1 or l2 cuts the interior of D.

(ii) l1 and l2 support S, l1 ∩ S = l2 ∩ S, and dim(l1 + l2) < d.

(iii) l1 and l2 support S, l1 ∩ l2 = ∅, and dim(l1 + l2) = d.

Then S is an ellipsoid.

Example 2.2 below shows that one can not reduce the hypotheses in Theorem 2.1 (i) and
(ii). The lines li, i = 1, 2, 3, are coplanar and none cut either D1 or D2. None of the
bodies is an ellipsoid. Nevertheless, D1 is elliptic through l1 and l2, and D2 is elliptic
through the three lines. The body D3 in Example 2.3 satisfies all the hypotheses in (ii),
but is non-convex. The convex bodies D5 and D6 in Example 2.5 are elliptic through any
line in a plane that does not cut their interior, even if the line supports it. This shows
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that the hypothesis l1∩S = l2∩S is necessary in (ii) and that dim(l1+l2) = d is necessary
in (iii). The sets D5 and D6 are made by glueing together two pieces of quadrics. The
convex body D4 in Example 2.4 is elliptic through two lines. As also is the case for the
bodies D1, D2, and D3, no piece of D4 is contained in a quadric. The particularity of this
body is that while l1 supports it, the plane l1 + l2 does not cut its interior.

Example 2.2. The sets of points (x, y, z) ∈ R3 defined by

D1 ≡




4(x2 + y2 + z2)(x + z − 1)2 − (x + z − 1)4 + 16x2y2 ≤ 0

x + z − 1 6= 0





D2 ≡




25(x + z − 1)(x2 + y2 + z2)− (x + z − 1)3 + 125 xyz ≥ 0

−1
3
≤ x ≤ 1

5
, −1

3
≤ y ≤ 1

3
, −1

3
≤ z ≤ 1

5





are convex bodies elliptic through the lines li ( i = 1, 2 for D1; i = 1, 2, 3 for D2 ), where
l1 ≡ {x = 0, z = 1}, l2 ≡ {y = 0, x + z = 1} and l3 ≡ {x = 1, z = 0}. Neither of them
is an ellipsoid (see Figure 2.1).

Example 2.3. The set

D3 = {(x, y, z) ∈ R3 : (x2 + y2)(z − 2)2 + x2y2 + z(z − 2)3 ≤ 0, z < 2} ∪ {(0, 0, 2)}

is a non-convex body in R3 elliptic through the lines l1 ≡ {x = 0, z = 2} and l2 ≡ {y =
0, z = 2}. Both lines support D3 at the point (0, 0, 2) (see Figure 2.2).

Example 2.4. The set

D4 = {(x, y, z) ∈ R3 : x2(x− 1) + y2(x + z − 1) + z(x + z − 1)2 ≥ 0,

z < 1, 2x + z < 1} ∪ {(0, 0, 1)}

is a convex body in R3 elliptic through the lines l1 ≡ {x = 0, z = 1} and l2 ≡ {x =
1, z = 0}. It is not an ellipsoid (see Figure 2.2).
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Example 2.5. The sets of points (x, y, z) ∈ R3 defined by

D5 ≡
{

x2 + y2 + (|z|+ 1
2
)2 ≤ 1

}
, D6 ≡





x2 + y2 + z2 ≤ 1 if z ≤ 0

x2 + y2 +
z2

4
≤ 1 if z ≥ 0





are convex bodies elliptic through any line in the plane z = 0 that does not cut the circle
{x2 + y2 < 1, z = 0}. Neither of them is an ellipsoid (see Figure 2.3).

In the proof of Proposition 2.7 below we shall use the following lemma which shows that
if we remove the hypothesis l1 ∩ S = l2 ∩ S from Theorem 2.1 (ii), then the only possible
counterexamples are of the type described in Example 2.5.

Lemma 2.6. Let S be the boundary of a convex body D ⊂ E3. Let l1 and l2 be two lines
that support S such that l1 ∩ S 6= l2 ∩ S and dim(l1 + l2) = 2. If D is elliptic through l1
and l2, then S is made by glueing together two pieces of quadrics along (l1 + l2) ∩ S.

Consider now the bodies in Example 2.5 (see Figure 2.3). One observes that D5 is symmet-
ric about the plane where the two pieces of quadric are glued, but there is no uniqueness
of supporting hyperplanes at the points in that plane. In contrast, D6 has the opposite
properties, i.e., it lacks the symmetry but has a unique supporting hyperplane at any
point. These two bodies inspired Proposition 2.7.

Proposition 2.7. Let S be the boundary of a convex body D ⊂ Ed (d ≥ 3), and let l1
and l2 be two linear varieties such that 1 ≤ dim li ≤ d− 2, i = 1, 2. Assume that

(a) S is elliptic through l1 and l2,

(b) l1 and l2 support S, and l1 ∩ S 6= l2 ∩ S,

(c) there exists a hyperplane P such that l1 + l2 ⊂ P and one of the following properties
holds:
(i) S is symmetric about P and there exists only one supporting hyperplane at every

point of P ∩ S,
(ii) there exists a hyperplane Q, Q 6= P , such that Q ∩ P ∩ Int D 6= ∅ and Q ∩ S is

ellipsoidal.
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Then S is an ellipsoid.

Finally, Corollary 2.8 shows that if we require S to be centrally symmetric, then only one
linear variety is necessary in Proposition 2.7.

Corollary 2.8. Let S be the boundary of a centrally symmetric convex body D ⊂ Ed

(d ≥ 3), and let l be a linear variety with 1 ≤ dim l ≤ d− 2, that supports S. Let P be a
hyperplane that contains l and the centre of S, and assume that one of the properties (i)
or (ii) in Proposition 2.7 holds. If S is elliptic through l, then S is an ellipsoid.

3. Proofs and remarks

Proof of Theorem 2.1. Case (i) reduces to Theorem 1.1, whose proof can be found in
[2]. For cases (ii) and (iii), we shall consider first the proof for d = 3 and then for d > 3.
For a line l, we shall denote the sheaf of planes of axis l by l-sheaf.

(d = 3) Case (ii). Let p be the point where the lines l1 and l2 meet, and let P be the
plane defined by l1 and l2. Since S is elliptic through l1 and l2, P supports S at p. Let
P ′ be the plane parallel to P that supports S at some other point denoted by p′. Let l′1
and l′2 be the lines parallel to l1 and l2, respectively, that meet at p′. For i = 1, 2, let
Ei be the ellipse that defines in S the plane of the li-sheaf that contains p′. For every
x ∈ P ′, the plane of the l1-sheaf that contains x cuts E2 at some point other than p, and
consequently it cuts S in an ellipse. The same is the case with the plane of the l2-sheaf
that contains x.

Let us now consider a projective transformation that moves P to the plane at infinity.
We continue using the same notation for the images of the points, lines, and planes as
described in the above paragraph. Since li, i = 1, 2, is now in the plane at infinity, the
planes of the li-sheaf are parallel, and the section of S by any of these planes is a parabola
with p as the point at infinity. The plane P ′ still supports S at p′. Let l′3 be the line that
goes through p′ and has the direction defined by p. For every x ∈ P ′, the plane through
x parallel to l′i and l′3 cuts S in a parabola with p as the point at infinity.

From the above it follows that, taking p′ as the origin of the space and considering a
coordinate system defined by the lines l′1, l′2, and l′3, we can define a function

F : (x1, x2) ∈ R2 → F (x1, x2) ≥ 0,

such that (x1, x2, F (x1, x2)) ∈ S for every (x1, x2) ∈ R2. Moreover, we know that with
either x1 or x2 fixed, the resulting function is parabolic. Therefore, there exist real
functions ai, bi, i = 0, 1, 2, such that

F (x1, x2) = a0(x1) + a1(x1)x2 + a2(x1)x
2
2

= b0(x2) + b1(x2)x1 + b2(x2)x
2
1,

(1)

for every (x1, x2) ∈ R2. The restriction of F to any of the coordinate axes is a parabola
tangent at the origin. Hence, taking an appropriate basis, we can assume that

a0(x1) = F (x1, 0) = x2
1, b0(x2) = F (0, x2) = x2

2 ,
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so that

x2
1 + a1(x1) + a2(x1) = F (x1, 1) = 1 + b1(1)x1 + b2(1)x2

1,

x2
1 − a1(x1) + a2(x1) = F (x1,−1) = 1 + b1(−1)x1 + b2(−1)x2

1.

By solving the above two equations for a1(x1) and a2(x1) and substituting these values
into (1), we get

F (x1, x2) = x2
1 + x2

2 + c1x1x2 + c2x
2
1x2 + c3x1x

2
2 + c4x

2
1x

2
2,

for certain constants c1, . . . , c4.

We next have to show that F is a quadratic function, i.e., c2 = c3 = c4 = 0. At this
point, the role played by the convexity of D is crucial. By hypothesis, our original D is a
convex body. Therefore, the sections of S by planes parallel to P ′ enclose convex regions.
This means that, after the projective transformation, for every t > 0 the closed curve
F (x1, x2) = t encloses a convex region. As will be seen below, it is this fact that forces F
to be a quadratic function. For every t > 0, the points

(
√

t, 0, t), (0,
√

t, t), (0,−
√

t, t)

are in the section of S defined by F (x1, x2) = t. Let us consider the line defined by the
points (

√
t, 0, t) and (0,

√
t, t), i.e.,

(
λ
√

t, (1− λ)
√

t, t
)
, λ ∈ R. (2)

Obviously, a point of this line (identified by λ) is in the section defined by F (x1, x2) = t
if and only if

Gt(λ) := F
(
λ
√

t, (1− λ)
√

t
)− t = 0.

For every t > 0, Gt(λ) is a polynomial of fourth degree in λ such that Gt(0) = Gt(1) = 0.
Therefore Gt(λ) is divisible by λ(λ− 1), and we get

Gt(λ) = λ(λ− 1) tHt(λ),

where
Ht(λ) = c4tλ

2 + (c3

√
t− c2

√
t− c4t)λ + (2− c1 − c3

√
t ).

Each real root of Ht(λ) defines a point where the line (2) cuts the curve F (x1, x2) = t.
Then, since the region enclosed by F (x1, x2) = t is convex, the only possible real roots of
Ht(λ) are 0 and 1.

Recall that we want to show that c2 = c3 = c4 = 0. Assume first that c4 6= 0. Since

(c3

√
t− c2

√
t− c4t)

2 − 4c4t(2− c1 − c3

√
t)

t2
−−−→
t→+∞

c2
4 > 0,

it follows that there exists t0 > 0 such that if t > t0 then the discriminant of Ht(λ) is
positive. Hence, its roots λ1(t), λ2(t) can only take the values 0 and 1. From the identity
Ht(λ) = c4t(λ− λ1(t))(λ− λ2(t)), it follows that

c4λ1(t)λ2(t) =
2− c1

t
− c3√

t
.
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For t > t0, the left-hand member of the above identity can only take the values c4 or 0,
which implies c1 = 2 and c3 = 0.

Considering now the line through the points (
√

t, 0, t) and (0,−√t, t) and repeating the
previous arguments, we have that for t large enough the polynomial

H̄t(λ) = c4tλ
2 + (c3

√
t + c2

√
t− c4t)λ + (2 + c1 − c3

√
t)

has the roots 0 and 1 only. This implies c1 = −2 and c3 = 0, in contradiction with the
previous result. Therefore c4 = 0, and

Ht(λ) =
√

t (c3 − c2)λ + (2− c1 − c3

√
t),

H̄t(λ) =
√

t (c3 + c2)λ + (2 + c1 − c3

√
t).

Assume now that either c2 or c3 is non-zero. Then, either c3 − c2 6= 0 or c3 + c2 6= 0.
Assume c3 − c2 6= 0. In that case the root of Ht(λ) is

λ(t) =
c1 − 2 + c3

√
t

(c3 − c2)
√

t

for every t > 0. If λ(t) = 0, we get c1 = 2 and c3 = 0. Therefore, c2 6= 0 and H̄t(λ) has the
root −4(c2

√
t)−1, which is an absurdity. On the other hand, if λ(t) = 1 then c1 = 2 and

c2 = 0, and we again get an absurdity by considering the root of H̄t(λ). The alternative
assumption that c3 + c2 6= 0 leads to the same conclusion. Hence, c2 = c3 = 0.

We have thus proved that F is a quadratic function. The corresponding quadric then
comes (via the projective transformation) from a quadric contained in the original S. But
S is bounded, which implies that S has to be an ellipsoid.

(d = 3) Case (iii). Let p1 and p2 be the points where the lines l1 and l2, respectively,
support D. Necessarily, p1 6= p2. Let P1 and P̄1 be two planes of the l1-sheaf that cut the
interior of D but do not contain p2. Then, E1 = P1 ∩ S and Ē1 = P̄1 ∩ S are ellipses. Let
P2 be a plane of the l2-sheaf that does not contain p1 and cuts E1 at two points a, b, and
Ē1 also at two points ā, b̄. Let E2 = P2∩S. Then E1∩E2 = {a, b} and Ē1∩E2 = {ā, b̄}.
Let q ∈ Ē1 be a point different from p1, ā, and b̄. There then exists a unique quadric C
that contains E1, E2, and q. The conic P̄1 ∩ C goes through the points p1, ā, b̄, and q.
Moreover, l1 is tangent to P̄1 ∩C at p1 because l1 is tangent to E1 at that point, E1 ⊂ C,
and l1 = P1 ∩ P̄1. Therefore, P̄1 ∩ C = Ē1.

Let P̄2 be the plane of the l2-sheaf that contains p1. Then l1 6⊂ P̄2, and P̄2 cuts each ellipse
defined in S by planes of the l1-sheaf at another point besides p1. This forces P̄2 to cut
the interior of D, so that P̄2 ∩ S is an ellipse. This ellipse has the points p1, p2 and the
other two points where P̄2 cuts E1 and Ē1 in common with the conic P̄2 ∩ C. Moreover,
l2 is tangent to P̄2 ∩ S at p2, and it is also tangent to P̄2 ∩ C at that point because it is
tangent to E2 ⊂ C. We conclude that P̄2 ∩ S = P̄2 ∩ C.

The planes P2 and P̄2 divide the space into four quadrants. Let M be the quadrant that
contains the triangle of vertices a, b, and p1, and let Q be any plane of the l2-sheaf that
goes through M . The ellipse Q ∩ S and the conic Q ∩ C coincide at p2 (with the same



8 J. Alonso, P. Mart́ın / Convex Bodies with Sheafs of Elliptic Sections II

tangent) and at the four points where they cut E1 and Ē1. Therefore, Q∩ S = Q∩C, so
that, in the region M , the quadric C coincides with S.

Each plane of the l1-sheaf that goes through the interior of D cuts S in an ellipse with
tangent l1 at p1. But l1 passes through P̄2 at p1. Hence, part of that ellipse is in M , and
from the above paragraph it follows that the entire ellipse is in C. Similarly, we get that
any plane of the l2-sheaf that goes through the interior of D cuts S in an ellipse that also
is in C.

Finally, let x ∈ S, x 6= p1. If the plane of the l1-sheaf that contains x cuts the interior
of D, then x is in an ellipse contained in C. On the other hand, assume that this plane
does not cut the interior of D. In this case the segment xp1 is in S. Let (xn), xn 6= x, be
a sequence in xp1 such that xn → x. For each n, the plane of the l2-sheaf that contains
xn cuts the interior of D. Then xn ∈ C, which implies x ∈ C. We therefore have that
S ⊂ C, and consequently C is an ellipsoid, and S = C.

(d > 3) In both cases, (ii) and (iii), we can assume that dim l1 = dim l2 = d − 2, since
otherwise if, for example, dim l1 < d − 2, then we can take a (d − 2)-dimensional linear
variety L1 such that l1 ⊂ L1, l2 6⊂ L1 and L1 cuts the interior of D. The varieties L1 and
l2 satisfy the hypothesis of Case (i), so that S is an ellipsoid.

Having proved the two cases for d = 3, we can proceed by induction on d assuming
that they are true for dimension d − 1. The proof will consist in showing that from the
hypotheses of Cases (ii) and (iii) it follows that there exists a plane L such that L 6⊂ l1,
l1 6⊂ L, L ∩ Int D 6= ∅, and S is elliptic through L. Then, from Case (i) we get that S is
an ellipsoid.

Let p1 and p2 be the points where l1 and l2, respectively, support S.

Case (ii). In this case p1 = p2. Let L be a plane that contains p1 and a point p ∈ l1\l2, and

that cuts the interior of D. To show that S is elliptic through L, let Ê be a hyperplane in
Ed such that L ⊂ Ê and Ê∩Int D 6= ∅. If li ⊂ Ê for i = 1 or 2, then, from the hypothesis,
we have that Ê ∩ S is an ellipsoid. On the other hand, if l1 6⊂ Ê and l2 6⊂ Ê, then, from
the hypothesis on l1 and l2, it follows easily that the (d − 1)-dimensional convex body

Ê ∩S and the (d− 3)-dimensional linear varieties Ê ∩ l1 and Ê ∩ l2 satisfy the hypotheses

of Case (ii). Therefore, from the hypothesis of induction, we get that Ê∩S is an ellipsoid.

Case (iii). Now p1 6= p2. Let
−→
l1 and

−→
l2 be the subspaces such that l1 = p1 +

−→
l1 and

l2 = p2 +
−→
l2 . Since dim(l1 + l2) = d, there exists −→v ∈ −→l1 \−→l2 . Let L be a plane such that

p1, p2 ∈ L and −→v is in the subspace of directions of L. Since S is elliptic through l1 and
l2, the line containing p1 and p2 cuts the interior of D and so does L. The proof follows
as in Case (ii), but changing “hypotheses of Case (ii)” to “hypotheses of Case (iii)”.

Proof of Lemma 2.6. Let P = l1 + l2, and let p1 and p2 be the points where l1 and l2,
respectively, support S. For i = 1, 2, the line li is tangent to all the ellipses defined in S
by planes of the li-sheaf.

Let us first assume that l1 and l2 are parallel. Consider u ∈ Int D, u /∈ P , and let Ei

(i = 1, 2) be the ellipse defined in S by the plane of the li-sheaf that contains u. The
ellipses E1 and E2 meet in two points, and the line defined by these points is parallel to
l1 and l2. Let Ē2 be the ellipse defined in S by another plane of the l2-sheaf that cuts E1
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in two points. It is a simple matter to check that in the above situation there exists a
unique quadric C that contains the three ellipses.

The plane P and the plane that contains E1 divide the space into four quadrants. Let
us denote by M and N the quadrants that contain u, and assume that p2 ∈ M . Each
plane of the l1-sheaf that cuts the interior of M cuts S in an ellipse and cuts C in a conic.
But the two curves share the point p1 and the four points where they cut E2 and Ē2.
Therefore, S and C coincide in the interior of M .

Now, let x ∈ S. If x ∈ Int M , then x ∈ C. Assume that x ∈ N and let Px be the plane of
the l2-sheaf that contains x. If Px cuts the interior of D then Px ∩ S is an ellipse that is
partially contained in Int M . Therefore, Px ∩ S = Px ∩ C and x ∈ C. If Px does not cut
the interior of D, then the segment xp2 is in S and is partially contained in Int M . But
in Int M the quadric C coincides with S. Therefore the entire line defined by x and p2 is
in C. In particular, x ∈ C.

To summarize, if D has interior points in one of the two open semi-spaces defined by P
then, in that semi-space, S coincides with a bounded piece of quadric. In this semi-space,
therefore, the sections of S by planes parallel to P must be ellipses, and the limit of these
ellipses as the planes converge to P must be a bounded conic, i.e., an ellipse. If one of
the semi-spaces has no interior points of D, then S ∩ P is the disc defined by the above
limit ellipse. Such is the case, for example, when D is a cone.

Finally, assume that l1 and l2 meet in a point q. It is obvious that q /∈ D. By considering
a plane that goes through q but does not touch D, and a projective transformation that
moves this plane into the plane at infinity, we return to the first case.

Proof of Proposition 2.7. (d=3) In this case, P = l1 + l2. From Lemma 2.6 we know
that S is made up of two pieces of quadrics C and C ′.

(i) From the symmetry about P , it follows that D has interior points in the two semi-
spaces defined by P , and also that C and C ′ are not planes. Let m be a line that defines
the symmetry about P , and let Q be any plane parallel to m that cuts D. Then Q ∩ S
is symmetric about Q ∩ P . The section Q ∩ S is made up of two pieces of the conics
Q ∩ C and Q ∩ C ′ that meet at the points {p, p′} = P ∩ Q ∩ S. From the hypothesis
of symmetry and supporting hyperplane uniqueness, it follows that at p (respectively, p′)
the tangents to Q ∩ C and Q ∩ C ′ coincide and are parallel to m. This forces Q ∩ C and
Q ∩ C ′ to be ellipses contained in S, and Q ∩ C = Q ∩ C ′. Varying the plane Q, we get
that C = C ′ = S, and consequently S is an ellipsoid.

(ii) Since Q∩S is an ellipse, there are interior points of D in the two semi-spaces defined
by P . Moreover, since there is a piece of the ellipse Q ∩ S in both of the quadrics C and
C ′, the entire ellipse is in both quadrics, i.e., Q ∩ S = Q ∩ C = Q ∩ C ′. The quadrics C
and C ′ also meet at the ellipse P ∩ S. Therefore, to show that C = C ′, and consequently
that S = C = C ′ is an ellipsoid, we only need to show that they share another point.

Let q1, q2 ∈ Q ∩ S be two points such that q1 is in one of the semi-spaces defined by P
and q2 in the other. Let m be the line through q1 and q2. Since Q cuts C and C ′ in an
ellipse, we can take another plane R in the m-sheaf, “close enough” to Q for R ∩ C and
R∩C ′ to still be ellipses. Let {p1, p2} = R∩P ∩S. The four points p1, p2, q1, and q2 are
in the ellipses R∩C and R∩C ′. We shall now show that the two ellipses coincide, which
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allows us to get the new point (in fact, an entire ellipse) we are looking for in C ∩ C ′.

The section R∩ S is a closed convex curve composed of two arcs of ellipses, one in R∩C
and the other in R ∩ C ′, that meet in p1 and p2. Let us assume that p̂1q1p2 is the arc in
S ∩ C and p̂1q2p2 is the arc in S ∩ C ′. If the two ellipses coincide at some point other
than p1, p2, q1, and q2, then they are the same. They must also be the same if at some
of those points the tangents to each ellipse coincide. Let us assume that the two ellipses
are different, and that, for example, the arc q̂1p1 in R ∩ C is outside R ∩ C ′. Then the
arc p̂1q2 in R∩C is inside R∩C ′, which implies that in p1 the curve R∩S is not convex.
Other possible situations lead to the same absurdity.

(d > 3) As in the proof of Theorem 1.1, we can assume that dim l1 = dim l2 = d− 2, and
the proof is again based on showing that S is elliptic through a plane L that cuts the
interior of D.

Let {pi} = li ∩ S, i = 1, 2, and let l be the line through p1 and p2. In both cases, (i) and
(ii), it follows easily that l cuts the interior of D.

Case (i). Let l′ be the line through the point midway between p1 and p2 that has the
direction defined by the symmetry about P .

Case (ii). If l ⊂ Q, let q ∈ Q \ P . If l 6⊂ Q, let q ∈ Q∩ P ∩ Int D, q /∈ l. Let l′ be the line
through p1 and q.

The plane L = l + l′ cuts the interior of D. That S is elliptic through L follows as in
Theorem 1.1.

Proof of Corollary 2.8. The proof follows from Proposition 2.7 by taking l1 = l and
considering as l2 the linear variety symmetric to l about the centre of S.

Remarks on Example 2.2. The set D1 follows from the set D′
1 = {(x, y, z) ∈ R3 :

x2 + y2 + z2 + x2y2 ≤ 1} by applying the projectivity that fixes the plane x + z + 2 = 0
(which does not intersect D′

1) as the plane at infinity. In [1] it is proved that D′
1 is a

convex body.

In [1] we showed that the set

D̄2 =
{
(x̄, ȳ, z̄) ∈ R3 : x̄2 + ȳ2 + z̄2 + x̄ȳz̄ ≤ 1, max{|x̄|, |ȳ|, |z̄|} ≤ 1

}

is a convex body, and that the sections by planes parallel to any of the planes x̄ = 0,
ȳ = 0, or z̄ = 0 are ellipses; i.e., D̄2 is elliptic through the lines at infinity, l̄1, l̄2, and l̄3,
of those planes. If we apply to D̄2 the projective transformation

x =
x̄

x̄ + z̄ − 5
, y =

ȳ

x̄ + z̄ − 5
, z =

z̄

x̄ + z̄ − 5
,

we get D2, which is still a convex body because the plane x̄ + z̄ − 5 = 0 does not touch
D̄2. The lines l̄1, l̄2, and l̄3 are transformed into the lines l1, l2, and l3, respectively.

Remarks on Example 2.3. The set D3 is not convex because the points ( 8
17

, 0, 32
17

) and
(0, 8

17
, 32

17
) are in D3, but the midpoint is not.
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Let (x, y, z) ∈ D3, z < 2. Since z(z − 2)3 ≤ 0, it follows that z ≥ 0. From x2(z − 2)2 ≤
(x2 +y2)(z−2)2 +x2y2 ≤ z(2−z)3, we get x2 ≤ z(2−z) ≤ 1. Similarly, y2 ≤ 1. Therefore
D3 is bounded.

To see that D3 is closed, let (xn, yn, zn) ∈ B be such that xn → x, yn → y, zn → z.
Then (x2 + y2)(z − 2)2 + x2y2 + z(z − 2)3 ≤ 0, and z ≤ 2. If z < 2, then (x, y, z) ∈ D3.
On the other hand, if z = 2 then it follows from the inequality x2

n ≤ zn(2 − zn) that
x2 ≤ z(2− z) = 0, so that x = 0; similarly, y = 0.

It may be interesting to remark on how D3 was conceived. If one considers

x̄ =
x

2− z
, ȳ =

y

2− z
, z̄ =

z

2− z
,

then it is easy to see that
x̄2 + ȳ2 + x̄2ȳ2 − z̄ ∼ 0

if and only if
(x2 + y2)(z − 2)2 + x2y2 + z(z − 2)3 ∼ 0, z < 2,

where ∼ denotes either “≤” or “=”. I.e., the boundary of D3 comes from a projec-
tive transformation of the graph of the function F (x̄, ȳ) = x̄2 + ȳ2 + x̄2ȳ2, adding the
point (0, 0, 2) that was originally at infinity. The restriction of F to the lines x̄ = const,
ȳ = const, gives rise to parabolas that all meet at the same point at infinity. These
parabolas are transformed into the ellipses defined by the l1 and l2 sheafs in D3. The
sections of the graph of F by planes z = const, for large enough z, are not convex.

Remarks on Example 2.4. The set D4 was studied in detail in [2], where we showed
that it follows from the set

D′
4 = {(x, y, z) ∈ R3 : x2 + y2(1− z)− z(1− z)2 ≤ 0, 0 ≤ z < 1} ∪ {(0, 0, 1)}

by applying the projectivity that sends the plane x + 1 = 0 (which does nor intersect D′
4)

to infinity. It is easier to see that D′
4 is a convex body than D4. All the sections of D′

4

by planes parallel to the plane z = 0 or that contain the line {x = 0, z = 1} (which is
tangent to D′

4) are ellipses.
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