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If A and B are two bounded, closed, non-empty, and convex subsets of a normed space X, then the
Hausdorff distance between A and B is the same as the Hausdorff distance between the boundary of A
and the boundary of B.
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The following definition is taken from [4, p. 274].

Definition 1. Let (X, d) be a metric space, with A and B nonempty subsets of X.
Define d(A,B) = inf{d(a,b) | a ∈ A,b ∈ B}. For γ > 0, let us define Aγ = { x ∈ X |
d({x}, A) < γ} and Bγ = {x ∈ X | d({x}, B) < γ}. Define dH(A,B) = inf{γ > 0 | A ⊂
Bγ, B ⊂ Aγ}. Then dH(A,B) is the Hausdorff distance between A and B.

The Hausdorff distance as defined above is not strictly speaking a metric on the subsets
of X. If A and B are not required to be closed, then dH is not positive definite. If A
and B are not required to be bounded, then dH(A,B) may not be finite. We note that
dH as a map on ordered pairs of subsets of X is well defined for any A and B, nonempty
subsets of X, provided that we allow the range of dH to be [0,∞]. Further, the triangle
inequality always holds. dH is a metric when A and B are required to be closed, bounded,
and non-empty [4, p. 274].

We now introduce notation that we will use throughout the paper.

Notation 2. The pair (X, ||.||) is a (real or complex) normed linear space, and dH is the
Hausdorff distance induced by the norm. In the examples (except Example 21), X = R

2

with the Euclidian norm. For B ⊂ X, B◦ denotes the interior of B, Cl(B) denotes the
closure of B, Bc = X\B is the complement of B in X, and ∂B denotes the topological
boundary of B. Unless otherwise stated, all subsets of X under consideration will have
nonempty boundary. For a,b ∈ X, we say that L(a,b) := {(1 − t)a + tb | 0 ≤ t ≤ 1}
is the line segment connecting a and b. Dt(a) denotes the open ball of radius t > 0
centered at a.

The following lemma is well known, but we give details for completeness.

Lemma 3. Let B be a nonempty subset of X and a /∈ B◦. Let b ∈ Cl(B). Then there

exists s ∈ L(a,b) ∩ ∂B and ||a− s|| ≤ ||a− b||.
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Figure 1: Illustration for Lemma 3

Proof. If b ∈ ∂B we can take s = b. We may therefore assume that b ∈ B◦. If
a ∈ Cl(B), then a ∈ Cl(B)\B◦ = ∂B, and so we may take s = a, and the inequality is
immediate. We may therefore assume that a /∈ Cl(B), and so a ∈ X\Cl(B) = (Bc)◦.

We claim that the map φ : [0, 1] → L(a,b), given by φ(t) = (1− t)a+ tb, is a homeomor-
phism. To see this, we note that φ is a bijection on the specified range and domain. It is
immediate that φ is continuous.

Now φ is bijective and continuous, [0, 1] is compact, and L(a,b) is Hausdorff. Therefore
φ−1 is also continuous [6, pp. 83–89], and L(a,b) is connected [5, p. 182].

If ∂B ∩ L(a,b) = ∅, then

(B◦ ∩ L(a,b)) ∪ ((Bc)◦ ∩ L(a,b)) = L(a,b).

Since b ∈ L(a,b) ∩ B◦, and a ∈ L(a,b) ∩ (Bc)◦, this contradicts the connectedness of
L(a,b). Therefore ∂B ∩ L(a,b) 6= ∅.
It is immediate that for s ∈ ∂B ∩ L(a,b), we have that ||a− s|| ≤ ||a− b||.
Lemma 4. Suppose A and B are subsets of X. Let dH(A,B) = ǫ ∈ [0,∞). If a ∈
Cl(A)\B◦ then a ∈ (∂B)γ for all γ > ǫ.

Proof. Fix γ > ǫ. We have by hypothesis that A ⊂ Bγ and B ⊂ Aγ. Let a ∈ Cl(A)\B◦.
Let {an}n∈N be a sequence in A converging to a. Without loss of generality ||an−a|| ≤ 1

n
.

For each an, there exists bn ∈ B such that ||an−bn|| < ǫ+ 1
n
. This is because A ⊂ Bǫ+ 1

n

.
Then

||a− bn|| ≤ ||a− an||+ ||an − bn|| ≤ ǫ+
2

n
.

For sufficiently large n, ǫ+ 2
n
< γ. Fix such an n. If bn ∈ ∂B we are done.

Otherwise, bn ∈ B◦. In this situation, we argue in the following way: since a is not in B◦,
we may apply Lemma 3 to the line segment L(a,bn). There exists sn in L(a,bn) ∩ ∂B
and

||a− sn|| ≤ ||a− bn|| ≤ ǫ+
2

n
< γ.
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Figure 2: Illustration for Example 6

Corollary 5. If A and B are subsets of X, ∂A ∩ B◦ = ∅ and ∂B ∩ A◦ = ∅, then

dH(A,B) ≥ dH(∂A, ∂B).

Proof. By hypothesis, no a ∈ ∂A can be in B◦ and hence, by Lemma 4, a ∈ (∂B)γ for
any γ > ǫ := dH(A,B), and every a ∈ ∂A. A symmetrical argument holds for ∂B and so

dH(∂A, ∂B) ≤ inf
γ>ǫ

γ = ǫ.

Example 6. We note that the inequality in Corollary 5 may be strict.

Let X = R
2, A = {(x, y) | x ≤ −1} and B = {(x, y) | x ≥ 1}. Then ∂A = {(x, y) | x =

−1} and ∂B = {(x, y) | x = 1}. We have

dH(A,B) = ∞ > 2 = dH(∂A, ∂B).

Example 7. Corollary 5 is false if we do not require ∂B ∩A◦ and ∂A∩B◦ to be empty.

Proof. Let X = R
2. Let a = (0, 0), b = (1, 1), c = (1

2
, 0), d = (1,−1), and e = (2

3
, 0).

Let A be the quadrilateral abcd, and let B be the quadrilateral abed. Here we include
the interior of the quadrilaterals. Note that A ⊂ B, so A ⊂ Bǫ for any ǫ > 0. The
point in B that is farthest away from any point in A is e and it is easy to check that
d({e}, ∂A) = d({e}, A) =

√
5

15
. Hence, dH(A,B) =

√
5

15
.

On the other hand, the point on ∂A farthest from any point on ∂B is c, and we find that
the Hausdorff distance between ∂A and ∂B is 1

6
. Thus, we have that

dH(∂A, ∂B) =
1

6
>

√
5

15
= dH(A,B).
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Figure 3: Illustration for Example 7

Notation 8. For A ⊂ X non-empty and bounded, and φ a non-zero real continuous
linear functional on X, define:

s(φ,A) = sup{φ(x) | x ∈ A}
HA,φ = {x ∈ X | φ(x) = s(φ,A)}
H−

A,φ = {x ∈ X | φ(x) ≤ s(φ,A)}.

We recall the Ascoli formula [1, p. 5]: For c ∈ R, define H = {x ∈ X | φ(x) = c}. Then
for a ∈ X,

d(a, H)||φ|| = |φ(a)− c|.
Remark 9. Suppose A and B are nonempty bounded convex subsets of X, ||φ|| = 1. If
there exists a ∈ ∂A ∩B◦ such that φ(a) = s(φ,A), then by Corollary 3.2.8 in [1],

dH(A,B) ≥ s(φ,B)− s(φ,A) = s(φ,B)− φ(a).

Proposition 10. Suppose that A,B ⊂ X are bounded, convex and have nonempty inte-

riors. Let ǫ = dH(A,B). Then for a ∈ ∂A ∩B we have a ∈ (∂B)γ for all γ > ǫ.

Proof. Fix γ > ǫ. Suppose that a ∈ ∂A ∩ B. If a ∈ ∂B, then a ∈ (∂B)γ. Therefore we
may assume that a ∈ B◦. Further, via the translation x → x − a we may assume that
a = 0. Since A is convex, A◦ is convex [3, pp. 110–112]. Then {0} and A◦ are disjoint
convex sets. By the Hahn-Banach separation theorem [2, pp. 4–8], there exists a real-
valued continuous linear functional, φ (with ||φ|| = 1), on X such that 0 = φ(0) = s(φ,A).
By the Ascoli formula, d(0, HB,φ) = s(φ,B). For n ∈ N, there exists hn ∈ HB,φ such that
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||hn|| ≤ s(φ,B) + 1
n
. Now 0 ∈ B◦ and B ⊂ H−

B,φ. Hence, by Lemma 3 there exists
cn ∈ ∂B ∩ L(0,hn). By Remark 9,

||cn|| ≤ ||hn|| ≤ s(φ,B) +
1

n
≤ dH(A,B) +

2

n
.

Hence for sufficiently large n,

d(0, ∂B) ≤ ||cn|| ≤ dH(A,B) +
2

n
< γ.

The argument of Proposition 10 relies on the usual topology of the ambient space. For
example, if a convex set A ⊂ R

n has dimension n−1, we automatically have that Cl(A) =
∂A ⊃ A, and hence dH(A, ∂A) = 0. Suppose A and B are convex subsets of Rn, m, k ∈ N,
inf(m, k) < n, A is locally homeomorphic to R

m, and B is locally homeomorphic to R
k.

The convexity of A and B guarantees that they will lie in hyperplanes in R
n of dimension

m and k respectively. Thus, we may think ofA andB as subsets of Rm and R
k respectively.

Then one may ask whether Proposition 10 holds if we consider the boundaries of A and
B with respect to the usual topologies on R

m and R
k respectively. The answer to that

question is no as the following example makes clear.

Example 11. Let n = 2, m = k = 1. Let A = {0}× [−1, 1] and B = [−1, 1]×{0}. Then
using the R topology for the boundaries,

dH(∂A, ∂B) =
√
2 > 1 = dH(A,B).

Proposition 12. If A,B ⊂ X are non-empty, bounded and convex then dH(A,B) ≤
dH(∂A, ∂B).

Proof. Let dH(∂A, ∂B) = ǫ. Let a ∈ A. It is enough to consider the case when a ∈ A◦.
We will show that for every n ∈ N, a ∈ Bǫ+ 2

n

. If a ∈ Cl(B) then a ∈ Bǫ ⊂ Bǫ+ 2

n

. Suppose

that a is not in Cl(B). Let δ = inf{||a − b|| | b ∈ B}. Since a ∈ A◦ ∩ (X\Cl(B)), an
open set, we have that 0 < δ. Since B is non-empty, δ is finite. Given a fixed n ∈ N,
there exists bn ∈ B such that ||a− bn|| ≤ δ + 1

n
. Since a ∈ A◦ and A is bounded, there

exists fn ∈ ∂A such that a ∈ L(bn, fn). Now fn ∈ ∂A implies there exists cn ∈ ∂B such
that ||fn − cn|| ≤ ǫ+ 1

n
. Since Cl(B) is convex, L(bn, cn) ⊂ Cl(B). There exists t ∈ [0, 1]

such that a = (1− t)bn + tfn. Define dn = ((1− t)bn + tcn) ∈ Cl(B) ∩ L(bn, cn).

Then

||a− dn|| = ||((1− t)bn + tfn)− ((1− t)bn + tcn)|| = ||t(fn − cn)|| ≤ t||fn − cn|| ≤ ǫ+
1

n
.

Since dn ∈ Cl(B) there exists en ∈ B such that ||dn−en|| ≤ 1
n
. By the triangle inequality

||a− en|| ≤ ||a− dn||+ ||dn − en|| ≤ ǫ+
2

n
.
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Figure 4: Illustration for Proposition 12

Therefore a ∈ Bǫ+ 2

n

for every n ∈ N, a ∈ A. Hence, A ⊂ Bǫ+ 2

n

. Reversing the roles of A
and B, we get B ⊂ Aǫ+ 2

n

. Therefore,

dH(A,B) ≤ inf
n∈N

(

ǫ+
2

n

)

= ǫ.

Proposition 12 is false if we relax convexity. The next example shows why.

Example 13. LetX = R
2. Let A = {(x, y) | x2+y2 ≤ 1}. Let B = {(x, y) | x2+y2 = 4}.

Note that B is not convex. We have that ∂B = B and ∂A = {(x, y) | x2 + y2 = 1}. Thus

dH(A,B) = 2 > 1 = dH(∂A, ∂B).

Theorem 14. If A,B ⊂ X are bounded, convex and have non-empty interior, then

dH(A,B) = dH(∂A, ∂B).

Proof. Set ǫ = dH(A,B). Let a ∈ ∂A. If a /∈ B◦, then Lemma 4 applies. Otherwise
Proposition 10 applies and either way a ∈ (∂B)γ for all γ > ǫ. Hence ∂A ⊂ (∂B)γ for
every γ > ǫ. Similarly, ∂B ⊂ (∂A)γ for every γ > ǫ. Hence,

dH(∂A, ∂B) ≤ inf
γ>ǫ

γ = ǫ.

By Proposition 12, ǫ ≤ dH(∂A, ∂B).

We next state a result which is immediate.

Proposition 15. Suppose that γ > 0, and A is a non-empty, bounded and convex set.

Then Aγ has non-empty interior, and is bounded and convex.

There is one remaining question left. Does dH(A,B) = dH(∂A, ∂B) when A,B are
bounded, non-empty and convex, B has non-empty interior, and A has empty interior?
The problem is that if A has empty interior, we cannot apply the Hahn-Banach separation
theorem. Unfortunately, the answer to our question is no, as Example 21 will show. We
therefore try to find sufficient conditions that will give the desired equality.

Proposition 16. Let A,B ⊂ X be bounded and non-empty. If A◦ = ∅ = B◦ then

dH(A,B) = dH(∂A, ∂B).
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Proof. Note that in this situation, A ⊂ ∂A = Cl(A), B ⊂ ∂B = Cl(B) and dH(A, ∂A) =
dH(B, ∂B) = 0. Hence,

dH(A,B) ≤ dH(A, ∂A) + dH(∂A, ∂B) + dH(B, ∂B)

= dH(∂A, ∂B)

≤ dH(∂A,A) + dH(A,B) + (∂B,B)

= dH(A,B).

Since both ends of this string of inequalities are the same, equality must hold throughout,
giving us the desired result.

Notation 17. Suppose A ⊂ X is bounded. For a ∈ ∂A, Let µn(a) = inf{||c − a|| | c ∈
∂(A 1

n

)}. Now a ∈ A 1

n+1

⊂ A 1

n

and A 1

n

is bounded for every n. Therefore 0 ≤ µn+1(a) ≤
µn(a) < ∞. Hence, for each a ∈ ∂A the sequence {µn(a)}∞n=1 is a bounded, monotonic,
non-increasing sequence and therefore converges, to µ(a), say.

Theorem 18. Let A,B ⊂ X be bounded, non-empty and convex. Suppose A◦ = ∅ 6= B◦.

If µ(a) = 0 for every a ∈ ∂A, then dH(A,B) = dH(∂A, ∂B).

Proof. By Proposition 12, dH(A,B) ≤ dH(∂A, ∂B). Hence, all we need to show is that
dH(∂A, ∂B) ≤ dH(A,B) := ǫ.

Let a ∈ ∂A. If a /∈ B◦ then by Lemma 4, a ∈ (∂B)γ for every γ > ǫ. We may therefore
assume that a ∈ B◦. Without loss of generality, a = 0. Fix γ > ǫ. We show that
0 ∈ (∂B)γ.

For each n ∈ N, there exists an ∈ ∂(A 1

n

) such that ||an|| ≤ µn(0) +
1
n
. By hypothesis,

µ(0) = 0, and so an → 0 as n → ∞. By choosing n sufficiently large, an ∈ B◦, since
0 ∈ B◦.

Let β = γ − ǫ > 0. Choose n such that 2
n
< β

8
and ||an|| < β

4
. Since A 1

n

has nonempty
interior, we may apply Proposition 10 to A 1

n

and B to get bn ∈ ∂B such that

||an − bn|| ≤ dH(A 1

n

, B) +
2

n

≤ dH(A,B) + dH(A,A 1

n

) +
β

8

≤ dH(A,B) +
1

n
+

β

8

≤ dH(A,B) +
β

4
.

Hence,

||bn|| ≤ ||an − bn||+ ||an|| ≤ dH(A,B) +
β

4
+

β

4
= dH(A,B) +

β

2
=

ǫ+ γ

2
< γ.

Therefore, d(0, ∂B) < γ.

Next, let b ∈ ∂B. Since A◦ = ∅, b ∈ Cl(B)\A◦. By Lemma 4, b ∈ (∂A)γ for every γ > ǫ.
Since b was arbitrary, ∂B ⊂ (∂A)γ for every γ > ǫ.
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Since γ > ǫ was arbitrary,
dH(∂A, ∂B) ≤ inf

γ>ǫ
γ = ǫ.

Requiring µ(a) = 0 for every a ∈ ∂A is an unenlightening technical condition. We now
search for a more intuitive condition that implies µ(a) = 0 for every a ∈ ∂A.

Proposition 19. Let A ⊂ X be bounded and convex. If (Cl(A))◦ = A◦ then µ(a) = 0
for all a ∈ ∂A.

Proof. Fix a ∈ ∂A. Without loss of generality a = 0. We would like to show that
µ(0) = 0. Suppose not. Then µ(0) > 0.

Suppose Cl(Dµ(0)(0)) ⊂ Cl(A). Then Dµ(0)(0) ⊂ (Cl(A))◦ = A◦ which, since Dµ(0)(0)
is open and nonempty, contradicts the fact that 0 ∈ ∂A. Hence there exists d ∈ X such
that ||d|| = µ(0) and d /∈ Cl(A).

Suppose d ∈ X\Cl(A 1

n

). By Lemma 3, there exists t ∈ [0, 1] such that e := (1 − t)d ∈
∂(A 1

n

). Since 0 and (by assumption) d are not in ∂(A 1

n

), t ∈ (0, 1). But

||e|| = ||(1− t)d|| ≤ (1− t)||d|| < ||d|| = µ(0) ≤ µn(0)

contradicting the definition of µn(0). Hence d ∈ Cl(A 1

n

) for every n ∈ N. For each n ∈ N,

there exists fn ∈ A 1

n

such that ||fn − d|| ≤ 1
n
. Therefore, there exists en ∈ A such that

||en − fn|| ≤ 1
n
and so

||en − d|| ≤ ||en − fn||+ ||fn − d|| ≤ 2

n
.

Thus en → d. Hence d ∈ Cl(A) which is a contradiction and so our assumption that
µ(0) > 0 is false. Therefore µ(0) = 0. Since 0 = a ∈ ∂A was arbitrary, the result
follows.

Theorem 20. If A and B are non-empty, closed, bounded convex sets, dH(A,B) =
dH(∂A, ∂B).

Proof. If A◦ 6= ∅ 6= B◦, this follows from Theorem 14. If A◦ = ∅ = B◦, this follows from
Proposition 16. If A◦ = ∅ 6= B◦ we observe that A = Cl(A). Hence by Proposition 19,
µ(a) = 0 for every a ∈ A, and so Theorem 18 applies.

We note that in Theorem 18 we do need µ(a) = 0 for every a ∈ ∂A.

Example 21. Let X = l2(N) (equipped with the usual norm, with entries in C). Let
{ei}i∈N be the standard basis for X. Let C be the set of all finite linear combinations of
the ei’s. Then C is convex, since finite linear combinations of finite linear combinations
are again finite linear combinations. Let B = D1(0). Let A = C ∩B. Then A is bounded
since B is, and convex since both C and B are [3, p. 14]. We claim that A is dense in
B. To see this, let b =

∑∞
i=1 biei ∈ B. Then

∑∞
i=1 |bi|2 < 1. Hence, for ǫ > 0, there

exists N ∈ N such that
∑∞

i=N |bi|2 < ǫ2, and so
∑N

i=1 biei ∈ A ∩ Dǫ(b). Since ǫ can be
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arbitrarily small, and the argument holds for every b ∈ B the claim is verified. Therefore
Cl(A) = Cl(B) and dH(A,B) = 0.

We also claim that A◦ = ∅. To see this, fix a =
∑N

i=1 aiei ∈ A. Choose ǫ > 0. Since
∑∞

i=1
1
i2
< ∞ there exists M ∈ N such that k ≥ M ⇒ ∑∞

i=k
1
i2
< ǫ2. Choosing k >

sup{N,M}, define b = a+
∑∞

i=k
1
i
ei. Then

||b− a|| = ||
∞
∑

i=k

1

i
ei|| =

(

∞
∑

i=k

1

i2
)

1

2 < ǫ.

Then b is not in A but is in Dǫ(a). Since ǫ can be arbitrarily small, and the argument
holds for every a ∈ A, the claim is verified.

Therefore, A ⊂ ∂A, and hence 0 ∈ ∂A. Since A 1

n

= D1+ 1

n

(0) ⊃ Cl(A) for every n ∈ N,

µn(0) ≥ 1 for every n, and so µ(0) ≥ 1. On the other hand, ∂B = {x ∈ X | ||x|| = 1}.
Hence

dH(A,B) = 0 < 1 ≤ dH(∂A, ∂B).
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